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Abstract—A robust standard gradient descent algorithm for
ARX models using Aitken acceleration method is developed.
Considering that the standard gradient descent algorithm las
slow convergence rates and is sensitive to the step-size, @bust
and accelerative standard gradient descent algorithm is déved.
This algorithm is based on Aitken acceleration method, and
its convergence rate is improved from linear convergence to
at least quadratic convergence in general. Furthermore, th
robust and accelerative standard gradient descent algoritm is
always convergent with no limitation of the step-size. Boththe
convergence analysis and the simulation examples demonate
that the presented algorithm is effective.

Index Terms—Parameter estimation, standard gradient de-
scent algorithm, Aitken acceleration technique, convergece rate,
ARX model

|. INTRODUCTION

System identification plays an important role in control iaegr-
ing, for the reason that robust controller designs oftendnte
parameters of the systems to be known in prior [1]-[5]. Galher
two directions are involved in the system identification:dwmlostruc-
ture identification and parameter estimation [6]-[8]. Mosteucture
identification is the base and more challenging; while patam
estimation has the assumption that the model structureeoyhtem

In order to increase the convergence rate of the SGD algoyith
some modified gradient descent algorithms are developed thee
past few decades, e.g., changing the direction of the gradiescent
to get an optimal one, or computing a suitable step-size thea
iteration [15], [16]. For example, Abbasbandy et al prodide con-
jugate gradient method for fuzzy symmetric positive dediraystem
of linear equations [17], in which the conjugate gradienttirod
can obtain an optimal direction in each iteration. To get iable
step-size, Ma et al proposed a forgetting factor gradierscela
algorithm for Hammerstein systems with saturation and gact!
nonlinearities by using data filtering method [18]; Chenletaaived a
modified gradient descent algorithm for ARX models by introidg
a convergence index in the step-size, and then the conw&gates
of the gradient descent algorithm are increased [19]. Ailgiothese
two kinds of algorithms can increase the convergence ralesy,
also bring some issues, e.g., a big oscillation when thenpeter
estimates are close to the true values, or heavy computhtdiorts
when computing a better direction and a suitable step-sizeach
iteration.

Recently, a multi-step-length gradient iterative (MUL)}@lIgorith-
m is developed to increase the convergence rates in a newawedy,
its basic idea is to assign a direction and a correspondiegrstze
for each element in the parameter vector, where the columtisei
information matrix are independent [20]. The MUL-GI algbm can
obtain the best parameter estimates in one iteration andbisst
to the initial parameter values. However, the informaticector

is known, and then the parameters are estimated by using sofgsSt be turned into a new information vector by using the Gram

identification algorithms. These algorithms roughly im#uthe s-
tandard gradient descent (SGD) algorithm [9], the leastasep
algorithm [10], [11], the iterative algorithm and the exfsimon-

maximization algorithm [12], [13]. Among these algorithrize SGD
algorithm does not require to solve for the matrix’s invertais
has less computational efforts [14]. However, gradientceest is
relatively slow close to the minimum: technically, its agtotic

rate of convergence is inferior to many other methods. Farlpo
conditioned convex problems, gradient descent increbsinigzags’

as the gradients point nearly orthogonally to the shortesttion to
a minimum point. In addition, the SGD algorithm is sensitivethe
step-size: a small step-size leads to slow convergencs, nateéle a
large one makes the algorithm divergent.
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Schmidt orthogonalization method in the MUL-GI algorithmhich
will increase the computational efforts. For machine lesgntwo
outstanding modified stochastic gradient algorithms areeldped:
one is the stochastic average gradient (SAG) algorithm, [@id the
other is the stochastic variance reduced gradient (SVR@)rithm
[22]. Both these two algorithms can increase the convemyeates
from sub-linear to linear and have less computational &ffavith a
prerequisite that the step-size needs to meet certain toomsli

The Aitken technique is an accelerative method which is liysua
used for solving matrix equations. Its main idea is to apply a
transformed iterative function to replace the original hareging
iterative function, and then the convergence rate will b@roved
[23], [24]. For example, in [25], an Aitken-Newton iteratimethod
for nonlinear equations was developed, and the method igrbet
than certain optimal methods of same convergence orde2@j &n
improved Aitken acceleration method for solving nonlineguations
was presented, which can get the solutions of the nonlingaat®ns
quickly. In system identification, Wang et al proposed ankéiit
based stochastic gradient (SG) algorithm for ARX model$ wine
delay [27]. Since the SG algorithm is an on-line algorithmog
iterative function is changed at each sampling instans, doubtful in
terms of the feasibility and effectiveness of the proposextedure.
As mentioned above, the slow convergence rate and the izep-s
calculation are the two major disadvantages of the SGD idhgor
To efficiently utilize the SGD algorithm to complex problerssch
as large-scale system identification or neural networkniegt there
remains a need for accurately integrating the Aitken acatém
technique into a comprehensive SGD framework for achiewdang



much faster convergence rate and making the algorithm tabuke results, e.g., a small step-size will lead to slow convetgerates,
step-size. In this paper, a robust and accelerative SGD $B8A) while a large one may lead to divergence.

SigeofgtlroTvir?gSaei%gn the Aitken technique is developed, wisiets Remark 1. In the light of the literature [28]-[30], the step-size
(1) The proposed algorithm can increase the convergeneeofat should be chosen in 0, 2 ; otherwise, the SGD
the SGD algorithm from linear convergence to at least quidra . . . Amax [ RER (L)) )0
convergence. algorithm will pe divergent. The detailed derivation is @ivin [30]
(2) The proposed algorithm does not involve the step-siteuca and hence omitted.
lation, thus has less computational efforts, especialtyldcge-scale
systems. I1l. ROBUST AND ACCELERATIVE SGDALGORITHM
(3) The proposed algorithm can make a divergent SGD algorith  To improve the convergence rate of the SGD algorithm froradin
convergent with no limitation of the step-size (is robusthe step- convergence to at least quadratic convergence, a new S®hthig
size). termed as robust and accelerative SGD (RA-SGD) algorithm is
Briefly, this paper is organized as follows. Section Il inlnoes developed based on the Aitken technique.
the ARX models and the SGD algorithm. Section Ill develops th ) )
RA-SGD algorithm. The convergence analysis is given iniSedv. Lemma 1 Aitken acceleration method[31]: Assume that the
Section V provides the simulation examples. Finally, Sectl sums Seduence{z} is generated by the iterative functian(z), that is
up the paper and gives future directions. 2x = Y(zE_1),

Il. THE SGDALGORITHM FOR ARX MODELS let . be the limit of the sequencz,}, and

Let us introduce some notations first. The symibostands for lim ST et
an identity matrix of the appropriate sizes; the norm of a ma- k—oo Tk — Tx

trix X is defined as||X|| = /Amax[XXT]; Amax[XX"] means Then the sequencgz;} generated by
the maximum eigenvalue of matriXX"; the norm of a vector

T n s g2y 4 (The1 — 1)’
z = [z1,22, -+ ,2zn] € R" is defined ag|z|| = (> |z]°)2; the Tk = T —
i=1 Tht2 + Tk — 2Tp41

superscriptl’ denotes the matrix transpose.
Consider an ARX model

A(2)y(t) = B(2)u(t) + v(t), @ Definition 1 [32]: Assume that the sequende;}>, converges
whereu(t) andy(t) are the input and output, respectivefy,(¢)} is 10 @, and lete, =z — z.. If
taken as a persistent excitation signal sequencey@nds a stochas- . lewy1]
tic white noise with zero mean and variancg the polynomialsA (z) klglgo Teal? =¢
and B(z) are expressed as k

also converges ta., and its convergence rate is quicker than that of
the sequencéz; }.

) wherep (p > 1) andc¢ # 0 are two constants, then the sequence

Alz) =1+ a1z a2l + o+ anz {z1} is pth-order convergent. Whep = 1, the sequence is linearly
B(z) =b1 + boz b4 by ML convergent; whem = 2, the sequence is quadratically convergent.
Define the parameter vectérand the information vectop(t) as Le'mma 2 Assur_ne tha_ta:* is a fixc/ad p_oint of_ the itgrative
function ¢ (x), the differential functiom)’(x) is continuous in the
0 =[a1,as, - ,an,b1,b2,- - by]" € R*", neighborhoodz.. — &, z. + &) of point z., £ > 0 is a constant, and
p . )
o(t) = [—y(t — 1), —y(t —2), -, —y(t — n), u(t), ?u:clid(;rgx*)' < 1. Then the sequendez;, } generated by the iterative
T 2n
u(t_1)7...,u(t—n+1)] e R". fl'kﬁ-l:'l/](mk)
Then the ARX model can be written by is linearly convergent.
y(t) = @ (1)6 + v(1). (The detailed derivation is given in Appendix A.)

Let 6. be the true parameters. For the SGD algorithm in (3),

Collect L (Z > 2n) input and output data and define assume that the parameter estimagsconverge to the true values

Y (L) = [y(1),y(2), - 7y(L)]T c RL, with the increase ok, then we have
®(L)=[p(1),@(2), -, @(L)] € R***, lim 6 = lim 6,1 +~®(L)[Y(L) — ®"(L) lim O;_1],
T k— o0 k— o0 k— o0

V(L) =[v(1),v(2),--- ,o(L)]" € R". 6.=0.+~®(L)Y (L) — ®"(L)6.].

We can rewrite the ARX model in a similar form Replacingd. with 6 yields

V(L) =8 (L)0+V(L). @) $(60) = 0+ 1B(L)[Y (L) — ®7(1)6)], 4
Minimizing the cost function where(8) is an iterative function.
J(0) = l[y(L) —®"(L)O]'[Y (L) — ®"(L)6] Theorem 1: For the ARX model_ in (_2), the true parameters are
2 0... The corresponding SGD algorithm is expressed by (3), the- st
gives the following standard gradient descent (SGD) allgori sizey € (0, W)' Then the SGD algorithm is linearly
P . convergent.
01 = 01 +y2(L)[Y (L) — @ (L)Ok-1], @) Proof: Assume that the true parameter values @&rewe have
where is the step-size. — 0 — 0. — (0 — (0. = V(N (O — 0.) =
The choice of the step-size plays an important role in the SGD "~ ~*+ 7 V(Ok) = $(6+) = ¥ ()(0k — 0.) = ¥ (<)en.

algorithm. Because a poor choice of the step-size in the SM@®gcause
algorithm may lead to a slow convergence rate or even dinerge P'(0) =1 —[®(L)®"(L)].



In order to make sure that the SGD algorithm is convergerd, th The steps of computing the parameter estimation vector mgus

step-size must satisfy

@L)@ ()] < 2 1
It follows that the step-size should be chosen as 2)
2
. 3
S N[BT (D)] )
Then 4)
/ T
0 <[ (0)] = [T —~[®(L)® (L)]]]| <1. gg
From Lemma 2, we can conclude that the SGD algorithm is ligear 7)
2 8)
convergent whenry € (0, IO MDA ]

For the reason that the SGD algorithm is linearly convergent 9)
according to Lemma 1 and Definition 1, we can use the Aitken
technique to accelerate the SGD algorithm.

the RA-SGD algorithm are listed in the following.

Let@, = 1/po andB, = 1/po with 1 being a column vector
whose entries are all unity ang = 10°.

Letk = 1, y(5) = 0,u(j) = 0, j < 0, and give a small
positive numbe.

Collect all the
{u(1)7 y(l)}7 ) {U(L)7 y(L)}
Forme(1), -+, (L) by (17).
FormY (L) and ®(L) by (15) and (16), respectively.
Choose the step-sizgaccording to (18).

Update the parameter estimation vediqrby (12).
Comparek with 2, if k£ < 2, letk = k+ 1 and go back to
step 7; otherwise, go to the next step. B

Compute each parameter estimatg , and b, ,, j =
1,---,n by (10) and (11), respectively.

input-output data

10) Form@,_ by (14).

11) Comparedy_2 and@y_s: if ||@x—2 — Ok_3| < 4, then termi-
nate the procedure and obtain g »; otherwise, increasg

by 1 and go to step 7.

Assume that the parameter estima#s converge to the true
parameterd).. and satisfy
lim [0 — 6.] ~ c[@r_1 — 6.], (5) _ _
k—ro0 Remark 2. Although the RA-SGD algorithm enjoys a faster con-
wherec is a constant. Based on the Aitken technique, we have Vergence rate (at least quadratic convergence) than thesiaiithm
(linear convergence), the parameter estimates in sonaides may
(6) be abnormal. The reason is that the value of the denominat(8)i
sometimes nearly equals to zero, i.8;_, + 6, — 26, | is very
mall, but|d;_ , — 67] is not.

[9k + 6o — 291@71]T9* ~ é;ék—Q - é;_lék—b

For the considered ARX model is a vector, thus the optimal
parameter vector estimat®. cannot be computed by the above®
equation(one equation contaigs unknown variables). To remedy Remark 3. The abnormal parameter estimate of the RA-SGD
this problem, we assume that each element in those paraveeters algorithm is mainly caused by the rounding error of the corapu
satisfies the above equation. Define However, the estimates quickly become normal, as showngn3i

0 1 .2 2T the estimate in iteratio@5 is abnormal, but the estimate in the next

0. = [q*, GA*, e ﬂi I iteration approaches the true values. See Theorem 2 ino@efi

ek = [9i7927 e 79%” T-

Equation (6) is transformed into the followirZp equations,

[é;c + é}i& - 29}171]01 ~ éiéiﬂ - éiﬁlé‘ifp

IV. CONVERGENCE ANALYSIS

In this section, we compare the convergence rate of the RB-SG
algorithm with that of the SGD algorithm, and explain why fRA-

j=1,---,2n, (7) SGD algorithm is robust to the step-size. Furthermore, siiggrange
i ) of the Aitken acceleration technique is also given.
and each equation can be transformed into Lemma 3 [31]: Assume thatz. is a fixed point of the iterative
o @ —d ) function +(z), the pth-order differential function)® () is contin-
0l =6 - L R i—1 o (8) uous in the neighborhoott. — &, x. + ¢) of pointz., p > 2 is an
0, +07_,—260)_, integer,£ > 0 is a constant, and the differential functions satisfy
It follows that the iterative function is written by PO(z) =0, (=12 ,p—1), P (z,)#£0.
G 0L, —6))° ©) Then the errorgy, = x) — . satisfy
ETR TR 0 — 28],
k+2 k k+1 y €hi1 w(p)(x*)
. m — = —,
In summary, we can get the robust and accelerative SGD (RB)SG koo €] p!

Igorithm as follows: ) . )
algorithm as follows and the sequencgr, } generated by the iterative function

PV P B
af,_p=aj,_— By ak_z)- Ti1 = YP(zk)
ay + Gy _y — 245, .
j=1, n k>3, (10) is pth-order convergent.
b, b, j(bii; - b‘i,%f =1, 11) Define an iterative function as
by, + by _y —2b3 xr = Y(Tp—1),
. e
?k _6]@1_1 +7:{:(%1)[Y(L)An T(I, (£)8r—1]; (12) and then the new iterative function obtained by using thekekit
Ok =ar, ek b BRTL (13)  acceleration technique is
0k—2 = [allc727 o 7642727 b116727 o 76272]1-7 (14) Tk = Qb(fz'k—l)
2(L) = [p(1),#(2), - @(L)], (16) nere (o) — ]
(p(t):[_y(t_l7"'7_y(t_n)7u(t)7"'7u(t_n+1)]T7 (151' =T — R . (19)
f L an )= S — 20w T @
5 i .
0<~ < (18) In order to get the convergence rate of the RA-SGD algorittima,

Amax | ®(L)®T(L)] following lemma is presented.



Lemma 4 Assume that the iterative functiom(x) and its the Aitken technique cannot accelerate the convergenes mitthe
differential functiony’(z) are both continuous in the neighborhoodSGD algorithm when the systems have hidden variables. Gakia
(x4« — & s + €) Of point z,, € > 0 is a constanty)’(z.) # 1, and ARX model for example, when the model contains unknown dstpu
the iterative functionp(z) is expressed by Equation (19). Then the iterative function is
is a fixed point ofy)(x) if and only if . is a fixed point ofé(z). P P A AT p

(The detailed derivation is given in Appendix B.) Ok = k-1 + 721 (L)[Y (L) = Pp1(L)Bk-1],

Theorem 2: For the ARX model in (2), the corresponding RA-IN wWhich
SGD algorithm is expressed by (10)-(17), ahdis a fixed point of &1 (L) =[@r1 (1), @r1(2), - @r_1(L)],

the following iterative function Grr() = [=G1(t — 1), —Ger(E—2), - —Go1(t — 1)
P(0) = 0 +~@(L)[Y (L) — ®'(L)6), ut),ut — 1), ut —n+ )] t=1,--,L,

where Y (L), ®(L), and~y > 0 keep unchanged during all the gk_l(tfj):@c_l(t—j)ék_l, j=1,---,n

iterations. Then the RA-SGD algorithm is at least quadaditic ) ) . . . .
convergent. In this case, the iterative function is changed in eachtimndor the

(The proof is given in Appendix C.) reason tha@k_l(L) is varying in each iteration, thus according to
Theorem 2, the Aitken based method is invalid.
Remark 4. If 0. is a fixed point of the iterative functiog(8), . ) )
then Theorem 2 illustrates that the parameter estimateheoRA- Remark 6. When using the Aitken technique to accelerate the

SGD algorithm always converge to the fixed pofht even though convergence rates of the algorithms, the iterative funstiuf these al-
Thus, in the RA-SGD algorithm, 90rithms should keep unchanging; otherwise, the Aitkerelacation

technique would be invalid. For this reason, the algoritmoppsed
in [27] needs to be further discussed.

the step-sizey > W
we can choose a random positive constantyfanstead of computing
it by Equation (18).

. o . Remark 7. This study shows that the RA-SGD algorithm achieves
In conclusion, we have the following findings for differenes-

a much faster convergence rate and is robust to the step(isize

SIZ€S. o o we can assign an unchanged constant step-size for the RA-SGD
« When the step-size in the SGD algorithm is suggested to Bgyorithm during all the iterations), but the RA-SGD aldgiom is
chosen equal '[OW the iterative function is disadvantageous in terms of its limited using range. In rotherds,
written by ma| the Aitken acceleration technique is only effective for sboalgo-
9 . rithms whose iterative functions are unchanged, e.g., SIg@rithm

»(0) =0 B (D] (L)Y (L) - ®'(L)8)]. for systems without r-udden varlable.s.

Remark 8. The Aitken acceleration based methods are at least
Then , quadratically convergent. Thus, if the given algorithmpth-order

4" (@:)] = 1. (p = 2) convergent, then there is no need to use the Aitken

For this iterative function, we cannot guarantee that thrampa-  @cCeleration technique to improve it.
ter estimates of the SGD algorithm converge to the true galue
which means thaty = W is the threshold for V. EXAMPLES

convergence. Thus the conservative choiceydbr the SGD A. Example 1

algorithm isy € { 0, —T_ Consider the following ARX model in [20],
9 7 S)P (1)

Amax |

« When the step-sizg > [q)i Tl the SGD algorithm () = —a1y(t — 1) — a2y(t — 2) 4 biu(t) + bau(t — 1) 4 v(t)
is divergent. Using the *Ritken accelération technique fus t =—0.15y(t — 1) — 0.6y(t — 2) + 0.8u(t) + 0.9u(t — 1)
SGD algorithm yields +o(t),
Ny Ny B - ;
¢(1§§€) _ 1% - (?7(1%) - H7)? o 0 = [a1,a2,b1,b2] =[0.15,0.6,0.8,0.9] .
b; (1 (91)) + 9% — 2005 (97) p(t)=[—y(t— 1), —y(t — 2),u(t),u(t — 1),
and where{u(t)} is an input sequence with zero mean and unit variance,
W'(9,) # 1. {v(t)} is taken as a white noise sequence with zero mean and

variances? = 0.10°. .
According to Theorem 2, we can get that the divergent SGD In simulation, letZ. = 500 and the initial parameters b&, =
algorithm becomes convergent by integrating the Aitkerebcc 1/10° and 8y = 1/10°, where1 = [1,1,1,1]". Apply the SGD
eration technique into it. algorithm and the corresponding RA-SGD algorithm to thisXAR

+ When the step-sizg = —L one cannot guaran- model ¢ with different values). The estimation errofs:= || —

tee the convergence of the é5 algorlthm However, we hav&|/[|0|| (for the SGD algorithm) ow := [|& — 6]|/[|6]| (for the

RA-SGD algorithm) versug are shown in Figs. 1- 4. The parameter

P(04) # 1, estimates and the estimation errors are shown in Tableg. II-]

which means that the RA-SGD algorithm is convergent. This is From this simulation, the foIIowngsflndlngs can be obtained

also verified by Fig. 2 and Table III. 1) When the step-size = e (BB (1) the SGD algorithm

The convergence of the SGD and RA-SGD algorithms with is divergent but the RA-SG algorlthm is convergent. This is

different step-sizes is listed in Table I. verified by Fig. 1 and Table II.

) When the step-size = W the estimates by
using the SGD algorlthm Iéf)xnverge to a stationary point, evhil
the estimates by using the RA-SGD algorithm achieve the
optimal point. This is shown in Fig. 2 and Table IIl.

Based on Lemma 4 and Theorem 2, we can conclude that when ai8) When the step-size is small, the convergence rate of the RA

ARX model contains hidden variables (e.g., missing outptdsying SGD algorithm is much faster than that of the SGD algorithm.

time-delays), the RA-SGD algorithm would be invalid. Thato say, This is demonstrated in Fig. 4 and Table IV.

Remark 5. From Table I, we can get that the RA-SGD algorithm
is always convergent when the step-size> 0, which means that
the RA-SGD algorithm is robust to the step-size.



TABLE |

THE CONVERGENCE OF THESGDAND RA-SGDALGORITHMS

. 2 2 2
Algoritms | v € (0, 5 e ) T NP W@ ()] T BB )
SGD Linearly convergent Not sure Divergent
RA-SGD At least quadratically convergent At least quadratically convergent At least quadratically convergen
TABLE I -
THE PARAMETER ESTIMATES AND THEIR ESTIMATION ERROR$’y = m)
k ai as b1 ba 6 (%)
1 -0.44015 -1.70518 1.03513 0.56367 178.37448
2 1.14086 0.44870 -0.36541 -0.82232 170.53413
5 -2.19133 -1.79761 2.56546 2.47191 302.94712
SGD 10 8.09778 8.13803 -6.15539 -6.74953 1112.69910
20 111.45590 105.34076 -95.14040 -101.81418 15338.72107
50 291721 274432 -251410 -268944 40187646
100 145260261208 136647645409 -125184741738 -1339186573 20010603645519
1 0.24943 -16.33531 0.28563 -0.40064 1255.32045
2 0.36413 -1.28816 0.36133 -0.17152 164.38028
5 0.01722 0.05298 0.62771 0.35273 59.37619
RA-SGD 10 0.00612 0.50910 0.79162 0.66190 21.62882
20 0.10303 0.59462 0.81951 0.82810 6.51800
50 0.14747 0.59740 0.79978 0.89760 0.32186
100 0.14890 0.59737 0.79892 0.89967 0.22685
True Values 0.15000 0.60000 0.80000 0.90000
TABLE Il
5 S(‘BD THE PARAMETER ESTIMATES AND THEIR ESTIMATION ERRORS
45 RA-SGD [] (v= —T_)\mdx[@(L)‘I) L )
i ,
sor 1 k a az by ba 6 (%)

o [ | 1 -0.22661 -1.63773 0.86576 0.35945 172.38849
o i 2 0.78317 -0.06774 -0.04597 -0.51097 139.24962
o i 5 -0.58282 -0.41866 1.15978 0.94216 96.48387
T ) SGD 10 0.59052 1.04980 0.28242 0.11341 83.67376
T ) 20 0.67943 1.14332 0.31596 0.27393 80.98142
o ) 50 0.73194 1.14857 0.29576 0.35514 80.60910
%10 20 3 40 s s 70 s 90 1o 100 0.73497 1.14852 0.29385 0.36014 80.60789

« 1 0.32512 -3.99649 0.25289 -0.43340 356.08638
Fig. 1. The parameter estimation erréraersusk (v — 25 ) 2 0.36413 -1.28816 0.36133 -0.17152 164.38028
Amax[®(L)®T(L)] 5 0.04377 -0.03945 0.59838 0.29617 67.11511
RA-SGD 10 -0.00458 0.45950 0.77155 0.61991 25.89676
20 0.08742 0.59025 0.82140 0.80501  8.58079
50 0.14575 0.59743 0.80086 0.89475  0.53745
100 0.14908 0.59737 0.79876 0.90026  0.22604
True Values 0.15000 0.60000 0.80000 0.90000

5) From Figs 1-4 and Tables II-1V, we can conclude that

is the threshold for convergence when using

Amax (P
the SG

5’

@T(L))
algorlthm

B. Example 2
Consider a three-tank system shown in Fig. 5, where the inflow

Fia. 2. Th t timati . Sk (v — 2 is the inputu, and the second tank water levé} is considered as the_
9 @ parameter estimation errorsersusk (y Amax[<I>(L)<I>T(L)]) outputy. The three-tank system can be expressed by the following
model [33],
. . . t)=— t—1) — t—2 biu(t — 2 bou(t — 3 t
4) When the denominators in Equations (10) and (11) are e%( ) a1y( ) — a2yl ) + bru ) + bau( ) +o(®)

= 0.4872y(t — 1) + 0.3409y (¢ — 2) + 0.1088u(t — 2) +
0.0476u(t — 3) + v(t),

tremely small, the estimation errors by using the RA-SGD
algorithm will oscillate. This can be seen from Fig. 3.
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TABLE IV
THE PARAMETER ESTIMATES AND THEIR ESTIMATION ERRORS

_ 0.2 %
RS ICEACE 5 o el ety
k al as bl b2 6 (%) 0 100 200 3(:0 400 500 600
1 105459 -1.23300 -0.15048 -0.86580 211535¢ g 2 ‘
2 093657 -125777 -0.05798 -0.75206 202.7831  * of l
5 0.68585 -1.25025 0.13364 -0.50523 182.886/  * - A A A A A
0 100 200 300 400 500 600
SGD 10 0.45931 -1.10456 0.29743 -0.26854 158.768: .
20 0.25585 -0.72532 0.43734 -0.02121 122.4541  § 2 ‘ ‘ ‘ ‘ ‘
50 0.04495 0.02154 0.63144 0.35611 60.460¢ g}OWWW\NNWWWWWW%WW
o]

100 0.01246 0.45026 0.77021 0.62865 25.144/ . ™ - - o - w00

1 1.06306 -1.23712 -0.16246 -0.88255 212.982¢ '

2 0.36413 -1.28816 0.36133 -0.17152 164.38028

5 0.30612 -1.26793 0.39469 -0.09146 159.48088g. 6. The simulation data

RA-SGD 10 0.21225 -1.67235 0.45421 0.05545 180.95242
20 0.04275 1.15495 0.62185 0.41939 56.36538
50 -0.01282 0.58683 0.84972 0.75272 16.65730
100 -0.00454 0.59428 0.83046 0.82768 12.81055

True Values 0.15000 0.60000 0.80000 0.90000

VI. CONCLUSIONS

This paper proposes a RA-SGD algorithm for ARX models. The
proposed algorithm, which has the assumption that all theehts in
the information matrix are known, is based on the Aitken bre¢ion
technique. The convergence analysis shows that the RA-SGD a

_ T_ T rithm is at least quadratically convergent, while the SGBodthm
0 =lar, az,b1,b] = [0.4872,0.3409, 0'1(188’ 0.0476], is only linearly convergent. When choosing a step-size lier $§GD
p(t)=[y(t—1),y(t —2),u(t —2),u(t —3)]. algorithm, a small step-size may lead to slow convergentes a

while a large one may cause divergence. Fortunately, theSBA-
The input{u(¢)} is a filtered random binary signal sequence andlgorithm proposed in this paper can overcome these dintatyes.
updated at everyAt = 15sec. {v(t)} is a Gaussian white noise For a small step-size, the convergence rates of the SGDithigor
sequence satisfiegt) ~ N(0,0.04). In simulation, we samplé = can be increased through the Aitken technique; while forrgela
600 input and output data. The simulation data are shown in Fig. éne, a divergent SGD algorithm can be transformed into aergewnt
The parameter estimates and the estimation errors are shdvigs. RA-SGD algorithm. The simulation examples also indicatat tine
7-9. From this simulation, we also can conclude that the RFBS RA-SGD algorithm has a faster convergence rate and is rabube
algorithm is more effective than the SGD algorithm. step-size.



2 we have
18k SGD |
X RA-SGD XK = 1[1(17k_1). (20)
Let the fixed point bec., which satisfies
T = P(4).

Subtractingz. on both sides of Equation (20) gets

wp — 2 = P(xr-1) = P(22) = () (Tho1 — @)
Define

€ =Tk — Tx,
€k—1 =Tk—1 — Tx.

Fig. 7. The parameter estimation errérgersusk (y = W) It follows that

0 < lim

k— oo

= lim [¢'(¢)] = |[¢'(z.)] < 1.

S—Tx

€k—1

Then according to Definition 1, the sequenée} is linearly
convergent.

Appendix B
Proof of Lemma 4. Whenz. is a fixed point of the iterative function
¢(x), according to Equation (19), the following Equation holds

[¥(2) —2]* = [z — p(@)][¥(¥(2)) - 20 () + 2,

and it follows that

lim [z — ¢(2)] = 0,
0 10 20 30 40 50 60 70 80 90 100

K which means that

| Jim [(x) 2] = 0.

Fig. 8. The parameter estimation errérsgersusk (y = W

Thusz, is also a fixed point of the iterative functiap(x).
Whenz. is a fixed point of the iterative functiop(z), transform-

2 o ing Equation (19) yields
18 RA-SGD | 7 2
f o~ o(a)) = P
el ] V() (x) — 2(x) + =

Jef 1 Taking the limitz — x. on both sides of the above equation gives
N ,
: : [y (x) — a]?

08 1 lim [x — ¢(x)] = lim . 21
, Aol = S - e @
04 1 Since the right side of the above equationliis, .. % Using L’
02 3 Hospital’s rule for the right side of the above equation gets

0 . . . . . . . . . 2

0 10 20 30 20 50 ] 60 70 80 90 100 lim [1/; ( ;p) x]

ez P(P(a) — 20(2) + o
_ o 2(@) ] [ (z) — 1] .
e—ze Y (Y(2))Y (z) — 2¢/(z) + 1
For the reason thatim,_.., ¥(z) = =z., Equation (21) can be
Although the RA-SGD algorithm can increase the convergen&dmPplified as

Fig. 9. The parameter estimation errérsersusk (y = A[ﬁm)

rates, it also has some limitations. For example, the RA-SGD lim [z — ¢(z)]
algorithm is invalid when the systems have hidden variabiles T
parameter estimation errors by using the Aitken based rdetho . 2[(z) — 2] [ (z) — 1]
sometimes oscillate intensively. The reasons mentionedeatestrict = xhgg [/ (z) — 1]2
the extensive use of this method. Thus developing some radd®A- -0 (22)
SGD algorithms to remedy these problems is a more challgreyinl ’
interesting topic in the future. which means that. is a fixed point of the iterative functiop(x).
Appendix C
Acknowledgments Proof of Theorem 2.According to Theorem 1, the SGD algorithm in

The authors would like to thank the Associate Editor and th@) js linearly convergent, then each element in the paremictor
anonymous reviewers for their constructive and helpful w@mts can be adjusted by using the Aitken technique.

and suggestions to improve the quality of this paper. Rewrite the parameter estimat@s as

Appendix A Or=0r 1 +v®(L)[Y (L) — ®"(L)0)_1]
Proof of Lemma 2. Assume that the iterative function is(z), then =1 —~y®(L)® (L)0r_1 +~v®(L)Y(L). (23)



Since y®(L)®"(L) is a symmetric positive definite matrix, therewhich means that
exists an orthogonal matrig, which can keep

lim [¢(J])]' =
A1 0 0 0 91 0]
0 A 0 0 . _ .
Qly®(L)®"(L)]Q" = _ _2 ' ) , (24) This shows that the iterative function is convergent. Femtiore, if
: : " /\: the second-order derivation of the functig); ) is
0 0 N 2n
97 11(2)
where \; > 0,7 = 1,2,--- ,2n are the eigenvalues of the matrix 19J11H:9J [ )] # 0.
[v ( ) T(L)]. Multiplying @ on both sides of Equation (23) yields
R Then the sequenceﬁj} is quadratically convergent. If the-order
T T k a7
=(I-QNh®(L)2 (L)]Q)Q0k-1 + Q[V‘P(L)Y(L)]kz | (p > 2) derivation of the functions(?) is
5
li éj (p) 0,
Define 791;1—?91 [p(D)]" #
QOr = 9k = [I), O, -, 0x"]" € R™", the sequencéd/,} is pth-order convergent.
Q0. =0, =[0,,92,--- 07" € R*", 'Since @, = Y; and Q is an orthogonal matrix, the sequence
Q@ (L)Y (L)] = 01,02, - , 020" € R*™. {6} has the same convergence rate{@s }. It shows that the RA-

) ) ] SGD algorithm is at least quadratically convergent.
Then Equation (25) is transformed into
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