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Robust standard gradient descent algorithm for
ARX models using Aitken acceleration technique

Jing Chen, Min Gan, Quanmin Zhu, Narayan Pritesh, Yanjun Liu

Abstract—A robust standard gradient descent algorithm for
ARX models using Aitken acceleration method is developed.
Considering that the standard gradient descent algorithm has
slow convergence rates and is sensitive to the step-size, a robust
and accelerative standard gradient descent algorithm is derived.
This algorithm is based on Aitken acceleration method, and
its convergence rate is improved from linear convergence to
at least quadratic convergence in general. Furthermore, the
robust and accelerative standard gradient descent algorithm is
always convergent with no limitation of the step-size. Boththe
convergence analysis and the simulation examples demonstrate
that the presented algorithm is effective.

Index Terms—Parameter estimation, standard gradient de-
scent algorithm, Aitken acceleration technique, convergence rate,
ARX model

I. I NTRODUCTION

System identification plays an important role in control engineer-
ing, for the reason that robust controller designs often need the
parameters of the systems to be known in prior [1]–[5]. Generally,
two directions are involved in the system identification: model struc-
ture identification and parameter estimation [6]–[8]. Model structure
identification is the base and more challenging; while parameter
estimation has the assumption that the model structure of the system
is known, and then the parameters are estimated by using some
identification algorithms. These algorithms roughly include the s-
tandard gradient descent (SGD) algorithm [9], the least squares
algorithm [10], [11], the iterative algorithm and the expectation-
maximization algorithm [12], [13]. Among these algorithms, the SGD
algorithm does not require to solve for the matrix’s inverse, thus
has less computational efforts [14]. However, gradient descent is
relatively slow close to the minimum: technically, its asymptotic
rate of convergence is inferior to many other methods. For poorly
conditioned convex problems, gradient descent increasingly ’zigzags’
as the gradients point nearly orthogonally to the shortest direction to
a minimum point. In addition, the SGD algorithm is sensitiveto the
step-size: a small step-size leads to slow convergence rates, while a
large one makes the algorithm divergent.
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In order to increase the convergence rate of the SGD algorithm,
some modified gradient descent algorithms are developed over the
past few decades, e.g., changing the direction of the gradient descent
to get an optimal one, or computing a suitable step-size in each
iteration [15], [16]. For example, Abbasbandy et al provided a con-
jugate gradient method for fuzzy symmetric positive definite system
of linear equations [17], in which the conjugate gradient method
can obtain an optimal direction in each iteration. To get a suitable
step-size, Ma et al proposed a forgetting factor gradient descent
algorithm for Hammerstein systems with saturation and preload
nonlinearities by using data filtering method [18]; Chen et al derived a
modified gradient descent algorithm for ARX models by introducing
a convergence index in the step-size, and then the convergence rates
of the gradient descent algorithm are increased [19]. Although these
two kinds of algorithms can increase the convergence rates,they
also bring some issues, e.g., a big oscillation when the parameter
estimates are close to the true values, or heavy computational efforts
when computing a better direction and a suitable step-size in each
iteration.

Recently, a multi-step-length gradient iterative (MUL-GI) algorith-
m is developed to increase the convergence rates in a new way,and
its basic idea is to assign a direction and a corresponding step-size
for each element in the parameter vector, where the columns in the
information matrix are independent [20]. The MUL-GI algorithm can
obtain the best parameter estimates in one iteration and is robust
to the initial parameter values. However, the information vector
must be turned into a new information vector by using the Gram-
Schmidt orthogonalization method in the MUL-GI algorithm,which
will increase the computational efforts. For machine learning, two
outstanding modified stochastic gradient algorithms are developed:
one is the stochastic average gradient (SAG) algorithm [21], and the
other is the stochastic variance reduced gradient (SVRG) algorithm
[22]. Both these two algorithms can increase the convergence rates
from sub-linear to linear and have less computational efforts, with a
prerequisite that the step-size needs to meet certain conditions.

The Aitken technique is an accelerative method which is usually
used for solving matrix equations. Its main idea is to apply a
transformed iterative function to replace the original unchanging
iterative function, and then the convergence rate will be improved
[23], [24]. For example, in [25], an Aitken-Newton iterative method
for nonlinear equations was developed, and the method is better
than certain optimal methods of same convergence order. In [26], an
improved Aitken acceleration method for solving nonlinearequations
was presented, which can get the solutions of the nonlinear equations
quickly. In system identification, Wang et al proposed an Aitken-
based stochastic gradient (SG) algorithm for ARX models with time
delay [27]. Since the SG algorithm is an on-line algorithm whose
iterative function is changed at each sampling instant, it is doubtful in
terms of the feasibility and effectiveness of the proposed procedure.
As mentioned above, the slow convergence rate and the step-size
calculation are the two major disadvantages of the SGD algorithm.
To efficiently utilize the SGD algorithm to complex problemssuch
as large-scale system identification or neural network learning, there
remains a need for accurately integrating the Aitken acceleration
technique into a comprehensive SGD framework for achievinga
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much faster convergence rate and making the algorithm robust to the
step-size. In this paper, a robust and accelerative SGD (RA-SGD)
algorithm based on the Aitken technique is developed, whichsets
the following aims:

(1) The proposed algorithm can increase the convergence rate of
the SGD algorithm from linear convergence to at least quadratic
convergence.

(2) The proposed algorithm does not involve the step-size calcu-
lation, thus has less computational efforts, especially for large-scale
systems.

(3) The proposed algorithm can make a divergent SGD algorithm
convergent with no limitation of the step-size (is robust tothe step-
size).

Briefly, this paper is organized as follows. Section II introduces
the ARX models and the SGD algorithm. Section III develops the
RA-SGD algorithm. The convergence analysis is given in Section IV.
Section V provides the simulation examples. Finally, Section VI sums
up the paper and gives future directions.

II. T HE SGD ALGORITHM FOR ARX MODELS

Let us introduce some notations first. The symbolI stands for
an identity matrix of the appropriate sizes; the norm of a ma-
trix X is defined as‖X‖ =

√

λmax[XXT]; λmax[XX
T] means

the maximum eigenvalue of matrixXX
T; the norm of a vector

z = [z1, z2, · · · , zn]
T ∈ R

n is defined as‖z‖ = (
n
∑

i=1

|zi|
2)

1

2 ; the

superscriptT denotes the matrix transpose.
Consider an ARX model

A(z)y(t) =B(z)u(t) + v(t), (1)

whereu(t) andy(t) are the input and output, respectively,{u(t)} is
taken as a persistent excitation signal sequence, andv(t) is a stochas-
tic white noise with zero mean and varianceσ2, the polynomialsA(z)
andB(z) are expressed as

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ anz
−n,

B(z) = b1 + b2z
−1 + · · ·+ bnz

−n+1.

Define the parameter vectorθ and the information vectorϕ(t) as

θ = [a1, a2, · · · , an, b1, b2, · · · , bn]
T ∈ R

2n,

ϕ(t) = [−y(t− 1),−y(t− 2), · · · ,−y(t− n), u(t),

u(t− 1), · · · , u(t− n+ 1)]T ∈ R
2n.

Then the ARX model can be written by

y(t) = ϕ
T(t)θ + v(t).

CollectL (L≫ 2n) input and output data and define

Y (L) = [y(1), y(2), · · · , y(L)]T ∈ R
L,

Φ(L) = [ϕ(1),ϕ(2), · · · ,ϕ(L)] ∈ R
2n×L,

V (L) = [v(1), v(2), · · · , v(L)]T ∈ R
L.

We can rewrite the ARX model in a similar form

Y (L) = Φ
T(L)θ + V (L). (2)

Minimizing the cost function

J(θ) =
1

2
[Y (L)−Φ

T(L)θ]T[Y (L)−Φ
T(L)θ]

gives the following standard gradient descent (SGD) algorithm

θ̂k = θ̂k−1 + γΦ(L)[Y (L)−Φ
T(L)θ̂k−1], (3)

whereγ is the step-size.
The choice of the step-size plays an important role in the SGD

algorithm. Because a poor choice of the step-size in the SGD
algorithm may lead to a slow convergence rate or even divergent

results, e.g., a small step-size will lead to slow convergence rates,
while a large one may lead to divergence.

Remark 1. In the light of the literature [28]–[30], the step-size

should be chosen in

(

0, 2

λmax[Φ(L)Φ
T
(L)]

)

; otherwise, the SGD

algorithm will be divergent. The detailed derivation is given in [30]
and hence omitted.

III. ROBUST AND ACCELERATIVE SGD ALGORITHM

To improve the convergence rate of the SGD algorithm from linear
convergence to at least quadratic convergence, a new SGD algorithm
termed as robust and accelerative SGD (RA-SGD) algorithm is
developed based on the Aitken technique.

Lemma 1 Aitken acceleration method [31]: Assume that the
sequence{xk} is generated by the iterative functionψ(x), that is

xk = ψ(xk−1),

let x∗ be the limit of the sequence{xk}, and

lim
k→∞

xk+1 − x∗

xk − x∗

= c, c 6= 1.

Then the sequence{x̄k} generated by

x̄k = xk −
(xk+1 − xk)

2

xk+2 + xk − 2xk+1

also converges tox∗, and its convergence rate is quicker than that of
the sequence{xk}.

Definition 1 [32]: Assume that the sequence{xk}
∞

k=0 converges
to x∗, and letek = xk − x∗. If

lim
k→∞

|ek+1|

|ek|p
= c,

where p (p > 1) and c 6= 0 are two constants, then the sequence
{xk} is pth-order convergent. Whenp = 1, the sequence is linearly
convergent; whenp = 2, the sequence is quadratically convergent.

Lemma 2: Assume thatx∗ is a fixed point of the iterative
function ψ(x), the differential functionψ′(x) is continuous in the
neighborhood(x∗ − ξ, x∗ + ξ) of point x∗, ξ > 0 is a constant, and
0 < |ψ′(x∗)| < 1. Then the sequence{xk} generated by the iterative
function

xk+1 = ψ(xk)

is linearly convergent.
(The detailed derivation is given in Appendix A.)

Let θ∗ be the true parameters. For the SGD algorithm in (3),
assume that the parameter estimatesθ̂k converge to the true values
with the increase ofk, then we have

lim
k→∞

θ̂k = lim
k→∞

θ̂k−1 + γΦ(L)[Y (L)−Φ
T(L) lim

k→∞

θ̂k−1],

θ∗ = θ∗ + γΦ(L)[Y (L)−Φ
T(L)θ∗].

Replacingθ∗ with θ yields

ψ(θ) = θ + γΦ(L)[Y (L)−Φ
T(L)θ], (4)

whereψ(θ) is an iterative function.

Theorem 1: For the ARX model in (2), the true parameters are
θ∗. The corresponding SGD algorithm is expressed by (3), the step-
sizeγ ∈ (0, 2

λmax[Φ(L)Φ
T
(L)]

). Then the SGD algorithm is linearly
convergent.

Proof: Assume that the true parameter values areθ∗, we have

ek+1 = θ̂k+1 − θ∗ = ψ(θ̂k)− ψ(θ∗) = ψ′(ς)(θ̂k − θ∗) = ψ′(ς)ek.

Because
ψ′(θ) = I− γ[Φ(L)ΦT(L)].
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In order to make sure that the SGD algorithm is convergent, the
step-size must satisfy

‖γ[Φ(L)ΦT(L)]‖ < 2.

It follows that the step-sizeγ should be chosen as

γ <
2

λmax[Φ(L)ΦT(L)]
.

Then
0 < ‖ψ′(θ)‖ = ‖I− γ[Φ(L)ΦT(L)]]‖ < 1.

From Lemma 2, we can conclude that the SGD algorithm is linearly

convergent whenγ ∈

(

0, 2

λmax[Φ(L)Φ
T
(L)]

)

.

For the reason that the SGD algorithm is linearly convergent,
according to Lemma 1 and Definition 1, we can use the Aitken
technique to accelerate the SGD algorithm.

Assume that the parameter estimatesθ̂k converge to the true
parametersθ∗ and satisfy

lim
k→∞

[θ̂k − θ∗] ≈ c[θ̂k−1 − θ∗], (5)

wherec is a constant. Based on the Aitken technique, we have

[θ̂k + θ̂k−2 − 2θ̂k−1]
T
θ∗ ≈ θ̂

T

kθ̂k−2 − θ̂
T

k−1θ̂k−1. (6)

For the considered ARX model,θ is a vector, thus the optimal
parameter vector estimateθ∗ cannot be computed by the above
equation(one equation contains2n unknown variables). To remedy
this problem, we assume that each element in those parametervectors
satisfies the above equation. Define

θ∗ = [θ1∗, θ
2
∗, · · · , θ

2n
∗ ]T,

θ̂k = [θ̂1k, θ̂
2
k, · · · , θ̂

2n
k ]T.

Equation (6) is transformed into the following2n equations,

[θ̂jk + θ̂jk−2 − 2θ̂jk−1]θ
j
∗ ≈ θ̂jkθ̂

j

k−2 − θ̂jk−1θ̂
j

k−1,

j = 1, · · · , 2n, (7)

and each equation can be transformed into

θj∗ ≈ θ̂jk−2 −
(θ̂jk−1 − θ̂jk−2)

2

θ̂jk + θ̂jk−2 − 2θ̂jk−1

, j = 1, · · · , 2n. (8)

It follows that the iterative function is written by

θ̄jk = θ̂jk −
(θ̂jk+1 − θ̂jk)

2

θ̂jk+2 + θ̂jk − 2θ̂jk+1

. (9)

In summary, we can get the robust and accelerative SGD (RA-SGD)
algorithm as follows:

ājk−2 = âjk−2 −
(âjk−1 − âjk−2)

2

âjk + âjk−2 − 2âjk−1

,

j = 1, · · · , n, k > 3, (10)

b̄jk−2 = b̂jk−2 −
(b̂jk−1 − b̂jk−2)

2

b̂jk + b̂jk−2 − 2b̂jk−1

, j = 1, · · · , n, (11)

θ̂k = θ̂k−1 + γΦ(L)[Y (L)−Φ
T(L)θ̂k−1], (12)

θ̂k = [â1k, · · · , â
n
k , b̂

1
k, · · · , b̂

n
k ]

T, (13)

θ̄k−2 = [ā1k−2, · · · , ā
n
k−2, b̄

1
k−2, · · · , b̄

n
k−2]

T, (14)

Y (L) = [y(1), y(2), · · · , y(L)]T, (15)

Φ(L) = [ϕ(1),ϕ(2), · · · ,ϕ(L)], (16)

ϕ(t) = [−y(t− 1), · · · ,−y(t− n), u(t), · · · , u(t− n+ 1)]T,

t = 1, · · · , L, (17)

0< γ <
2

λmax[Φ(L)ΦT(L)]
. (18)

The steps of computing the parameter estimation vector by using
the RA-SGD algorithm are listed in the following.

1) Let θ̂0 = 1/p0 and θ̄0 = 1/p0 with 1 being a column vector
whose entries are all unity andp0 = 106.

2) Let k = 1, y(j) = 0, u(j) = 0, j 6 0, and give a small
positive numberδ.

3) Collect all the input-output data
{u(1), y(1)}, · · · , {u(L), y(L)}.

4) Formϕ(1), · · · , ϕ(L) by (17).
5) FormY (L) andΦ(L) by (15) and (16), respectively.
6) Choose the step-sizeγ according to (18).
7) Update the parameter estimation vectorθ̂k by (12).
8) Comparek with 2, if k 6 2, let k = k + 1 and go back to

step 7; otherwise, go to the next step.
9) Compute each parameter estimateājk−2 and b̄jk−2, j =

1, · · · , n by (10) and (11), respectively.
10) Formθ̄k−2 by (14).
11) Comparēθk−2 and θ̄k−3: if ‖θ̄k−2 − θ̄k−3‖ 6 δ, then termi-

nate the procedure and obtain theθ̄k−2; otherwise, increasek
by 1 and go to step 7.

Remark 2. Although the RA-SGD algorithm enjoys a faster con-
vergence rate (at least quadratic convergence) than the SGDalgorithm
(linear convergence), the parameter estimates in some iterations may
be abnormal. The reason is that the value of the denominator in (9)
sometimes nearly equals to zero, i.e.,|θ̂jk+2 + θ̂jk − 2θ̂jk+1| is very
small, but|θ̂jk+1 − θ̂jk| is not.

Remark 3. The abnormal parameter estimate of the RA-SGD
algorithm is mainly caused by the rounding error of the computer.
However, the estimates quickly become normal, as shown in Fig. 3:
the estimate in iteration25 is abnormal, but the estimate in the next
iteration approaches the true values. See Theorem 2 in Section IV.

IV. CONVERGENCE ANALYSIS

In this section, we compare the convergence rate of the RA-SGD
algorithm with that of the SGD algorithm, and explain why theRA-
SGD algorithm is robust to the step-size. Furthermore, the using range
of the Aitken acceleration technique is also given.

Lemma 3 [31]: Assume thatx∗ is a fixed point of the iterative
functionψ(x), the pth-order differential functionψ(p)(x) is contin-
uous in the neighborhood(x∗ − ξ, x∗ + ξ) of point x∗, p > 2 is an
integer,ξ > 0 is a constant, and the differential functions satisfy

ψ(l)(x∗) = 0, (l = 1, 2, · · · , p− 1), ψ(p)(x∗) 6= 0.

Then the errorsek = xk − x∗ satisfy

lim
k→∞

ek+1

epk
=
ψ(p)(x∗)

p!
,

and the sequence{xk} generated by the iterative function

xk+1 = ψ(xk)

is pth-order convergent.

Define an iterative function as

xk = ψ(xk−1),

and then the new iterative function obtained by using the Aitken
acceleration technique is

x̄k = φ(x̄k−1),

where

φ(x) = x−
[ψ(x)− x]2

ψ(ψ(x))− 2ψ(x) + x
. (19)

In order to get the convergence rate of the RA-SGD algorithm,the
following lemma is presented.
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Lemma 4: Assume that the iterative functionψ(x) and its
differential functionψ′(x) are both continuous in the neighborhood
(x∗ − ξ, x∗ + ξ) of point x∗, ξ > 0 is a constant,ψ′(x∗) 6= 1, and
the iterative functionφ(x) is expressed by Equation (19). Thenx∗

is a fixed point ofψ(x) if and only if x∗ is a fixed point ofφ(x).
(The detailed derivation is given in Appendix B.)

Theorem 2: For the ARX model in (2), the corresponding RA-
SGD algorithm is expressed by (10)-(17), andθ∗ is a fixed point of
the following iterative function

ψ(θ) = θ + γΦ(L)[Y (L)−Φ
T(L)θ],

where Y (L), Φ(L), and γ > 0 keep unchanged during all the
iterations. Then the RA-SGD algorithm is at least quadratically
convergent.

(The proof is given in Appendix C.)

Remark 4. If θ∗ is a fixed point of the iterative functionψ(θ),
then Theorem 2 illustrates that the parameter estimates of the RA-
SGD algorithm always converge to the fixed pointθ∗ even though
the step-sizeγ >

2

λmax[Φ(L)Φ
T
(L)]

. Thus, in the RA-SGD algorithm,

we can choose a random positive constant forγ instead of computing
it by Equation (18).

In conclusion, we have the following findings for different step-
sizes.

• When the step-size in the SGD algorithm is suggested to be
chosen equal to 2

λmax[Φ(L)Φ
T
(L)]

, the iterative function is

written by

ψ(θ) = θ −
2

λmax[Φ(L)ΦT(L)]
Φ(L)[Y (L)−Φ

T(L)θ].

Then
‖ψ′(θ∗)‖ = 1.

For this iterative function, we cannot guarantee that the parame-
ter estimates of the SGD algorithm converge to the true values,
which means thatγ = 2

λmax[Φ(L)Φ
T
(L)]

is the threshold for

convergence. Thus the conservative choice ofγ for the SGD

algorithm isγ ∈

(

0, 2

λmax[Φ(L)Φ
T
(L)]

)

.

• When the step-sizeγ > 2

λmax[Φ(L)Φ
T
(L)]

, the SGD algorithm

is divergent. Using the Aitken acceleration technique for this
SGD algorithm yields

φ(ϑ̂j

k) = ϑ̂j

k −
(ψj(ϑ̂

j

k)− ϑ̂j

k)
2

ψj(ψj(ϑ̂
j

k)) + ϑ̂j

k − 2ψj(ϑ̂
j

k)
.

and
ψ′(ϑ∗) 6= 1.

According to Theorem 2, we can get that the divergent SGD
algorithm becomes convergent by integrating the Aitken accel-
eration technique into it.

• When the step-sizeγ = 2

λmax[Φ(L)Φ
T
(L)]

, one cannot guaran-

tee the convergence of the SGD algorithm. However, we have

ψ′(ϑ∗) 6= 1,

which means that the RA-SGD algorithm is convergent. This is
also verified by Fig. 2 and Table III.

The convergence of the SGD and RA-SGD algorithms with
different step-sizes is listed in Table I.

Remark 5. From Table I, we can get that the RA-SGD algorithm
is always convergent when the step-sizeγ > 0, which means that
the RA-SGD algorithm is robust to the step-size.

Based on Lemma 4 and Theorem 2, we can conclude that when an
ARX model contains hidden variables (e.g., missing outputs, varying
time-delays), the RA-SGD algorithm would be invalid. That is to say,

the Aitken technique cannot accelerate the convergence rates of the
SGD algorithm when the systems have hidden variables. Taking the
ARX model for example, when the model contains unknown outputs,
the iterative function is

θ̂k = θ̂k−1 + γΦ̂k−1(L)[Y (L)− Φ̂
T

k−1(L)θ̂k−1],

in which

Φ̂k−1(L) = [ϕ̂k−1(1), ϕ̂k−1(2), · · · , ϕ̂k−1(L)],

ϕ̂k−1(t) = [−ŷk−1(t− 1),−ŷk−1(t− 2), · · · ,−ŷk−1(t− n),

u(t), u(t− 1), · · · , u(t− n+ 1)]T, t = 1, · · · , L,

ŷk−1(t− j) = ϕ̂
T
k−1(t− j)θ̂k−1, j = 1, · · · , n.

In this case, the iterative function is changed in each iteration for the
reason that̂Φk−1(L) is varying in each iteration, thus according to
Theorem 2, the Aitken based method is invalid.

Remark 6. When using the Aitken technique to accelerate the
convergence rates of the algorithms, the iterative functions of these al-
gorithms should keep unchanging; otherwise, the Aitken acceleration
technique would be invalid. For this reason, the algorithm proposed
in [27] needs to be further discussed.

Remark 7. This study shows that the RA-SGD algorithm achieves
a much faster convergence rate and is robust to the step-size(i.e.,
we can assign an unchanged constant step-size for the RA-SGD
algorithm during all the iterations), but the RA-SGD algorithm is
disadvantageous in terms of its limited using range. In other words,
the Aitken acceleration technique is only effective for those algo-
rithms whose iterative functions are unchanged, e.g., SGD algorithm
for systems without hidden variables.

Remark 8. The Aitken acceleration based methods are at least
quadratically convergent. Thus, if the given algorithm ispth-order
(p > 2) convergent, then there is no need to use the Aitken
acceleration technique to improve it.

V. EXAMPLES

A. Example 1
Consider the following ARX model in [20],

y(t) =−a1y(t− 1)− a2y(t− 2) + b1u(t) + b2u(t− 1) + v(t)

=−0.15y(t− 1)− 0.6y(t− 2) + 0.8u(t) + 0.9u(t − 1)

+v(t),

θ = [a1, a2, b1, b2]
T = [0.15, 0.6, 0.8, 0.9]T,

ϕ(t) = [−y(t− 1),−y(t− 2), u(t), u(t− 1)]T,

where{u(t)} is an input sequence with zero mean and unit variance,
{v(t)} is taken as a white noise sequence with zero mean and
varianceσ2 = 0.102.

In simulation, letL = 500 and the initial parameters bêθ0 =
1/106 and θ̄0 = 1/106, where1 = [1, 1, 1, 1]T. Apply the SGD
algorithm and the corresponding RA-SGD algorithm to this ARX
model (γ with different values). The estimation errorsδ := ‖θ̂ −
θ‖/‖θ‖ (for the SGD algorithm) orδ := ‖θ̄ − θ‖/‖θ‖ (for the
RA-SGD algorithm) versusk are shown in Figs. 1- 4. The parameter
estimates and the estimation errors are shown in Tables II-IV.

From this simulation, the following findings can be obtained.
1) When the step-sizeγ = 2.5

λmax(Φ(L)Φ
T
(L))

, the SGD algorithm

is divergent but the RA-SGD algorithm is convergent. This is
verified by Fig. 1 and Table II.

2) When the step-sizeγ = 2

λmax(Φ(L)Φ
T
(L))

, the estimates by

using the SGD algorithm converge to a stationary point, while
the estimates by using the RA-SGD algorithm achieve the
optimal point. This is shown in Fig. 2 and Table III.

3) When the step-size is small, the convergence rate of the RA-
SGD algorithm is much faster than that of the SGD algorithm.
This is demonstrated in Fig. 4 and Table IV.
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TABLE I
THE CONVERGENCE OF THESGDAND RA-SGDALGORITHMS

Algorithms γ ∈ (0, 2

λmax[Φ(L)Φ
T
(L)

) γ = 2

λmax[Φ(L)Φ
T
(L)]

γ > 2

λmax[Φ(L)Φ
T
(L)]

SGD Linearly convergent Not sure Divergent

RA-SGD At least quadratically convergent At least quadratically convergent At least quadratically convergent

TABLE II
THE PARAMETER ESTIMATES AND THEIR ESTIMATION ERRORS(γ = 2.5

λmax[Φ(L)Φ
T
(L)]

)

k a1 a2 b1 b2 δ (%)

1 -0.44015 -1.70518 1.03513 0.56367 178.37448
2 1.14086 0.44870 -0.36541 -0.82232 170.53413
5 -2.19133 -1.79761 2.56546 2.47191 302.94712

SGD 10 8.09778 8.13803 -6.15539 -6.74953 1112.69910
20 111.45590 105.34076 -95.14040 -101.81418 15338.72107
50 291721 274432 -251410 -268944 40187646

100 145260261208 136647645409 -125184741738 -133915657335 20010603645519

1 0.24943 -16.33531 0.28563 -0.40064 1255.32045
2 0.36413 -1.28816 0.36133 -0.17152 164.38028
5 0.01722 0.05298 0.62771 0.35273 59.37619

RA-SGD 10 0.00612 0.50910 0.79162 0.66190 21.62882
20 0.10303 0.59462 0.81951 0.82810 6.51800
50 0.14747 0.59740 0.79978 0.89760 0.32186

100 0.14890 0.59737 0.79892 0.89967 0.22685
True Values 0.15000 0.60000 0.80000 0.90000
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Fig. 1. The parameter estimation errorsδ versusk (γ = 2.5
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Fig. 2. The parameter estimation errorsδ versusk (γ = 2

λmax[Φ(L)Φ
T
(L)]

)

4) When the denominators in Equations (10) and (11) are ex-
tremely small, the estimation errors by using the RA-SGD
algorithm will oscillate. This can be seen from Fig. 3.

TABLE III
THE PARAMETER ESTIMATES AND THEIR ESTIMATION ERRORS

(γ = 2

λmax[Φ(L)Φ
T
(L)]

)

k a1 a2 b1 b2 δ (%)

1 -0.22661 -1.63773 0.86576 0.35945 172.38849
2 0.78317 -0.06774 -0.04597 -0.51097 139.24962
5 -0.58282 -0.41866 1.15978 0.94216 96.48387

SGD 10 0.59052 1.04980 0.28242 0.11341 83.67376
20 0.67943 1.14332 0.31596 0.27393 80.98142
50 0.73194 1.14857 0.29576 0.35514 80.60910

100 0.73497 1.14852 0.29385 0.36014 80.60789

1 0.32512 -3.99649 0.25289 -0.43340 356.08638
2 0.36413 -1.28816 0.36133 -0.17152 164.38028
5 0.04377 -0.03945 0.59838 0.29617 67.11511

RA-SGD 10 -0.00458 0.45950 0.77155 0.61991 25.89676
20 0.08742 0.59025 0.82140 0.80501 8.58079
50 0.14575 0.59743 0.80086 0.89475 0.53745

100 0.14908 0.59737 0.79876 0.90026 0.22604

True Values 0.15000 0.60000 0.80000 0.90000

5) From Figs. 1-4 and Tables II-IV, we can conclude thatγ =
2

λmax(Φ(L)Φ
T
(L))

is the threshold for convergence when using

the SGD algorithm.

B. Example 2
Consider a three-tank system shown in Fig. 5, where the inflowq

is the inputu, and the second tank water levelH2 is considered as the
output y. The three-tank system can be expressed by the following
model [33],

y(t) =−a1y(t− 1) − a2y(t− 2) + b1u(t− 2) + b2u(t− 3) + v(t)

= 0.4872y(t − 1) + 0.3409y(t − 2) + 0.1088u(t − 2) +

0.0476u(t − 3) + v(t),
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)

TABLE IV
THE PARAMETER ESTIMATES AND THEIR ESTIMATION ERRORS

(γ = 0.2

λmax[Φ(L)Φ
T
(L)]

)

k a1 a2 b1 b2 δ (%)

1 1.05459 -1.23300 -0.15048 -0.86589 211.53558
2 0.93657 -1.25777 -0.05798 -0.75206 202.78312
5 0.68585 -1.25025 0.13364 -0.50523 182.88640

SGD 10 0.45931 -1.10456 0.29743 -0.26854 158.76820
20 0.25585 -0.72532 0.43734 -0.02121 122.45418
50 0.04495 0.02154 0.63144 0.35611 60.46093

100 0.01246 0.45026 0.77021 0.62865 25.14419

1 1.06306 -1.23712 -0.16246 -0.88255 212.98265
2 0.36413 -1.28816 0.36133 -0.17152 164.38028
5 0.30612 -1.26793 0.39469 -0.09146 159.48088

RA-SGD 10 0.21225 -1.67235 0.45421 0.05545 180.95242
20 0.04275 1.15495 0.62185 0.41939 56.36538
50 -0.01282 0.58683 0.84972 0.75272 16.65730

100 -0.00454 0.59428 0.83046 0.82768 12.81055

True Values 0.15000 0.60000 0.80000 0.90000

θ = [a1, a2, b1, b2]
T = [0.4872, 0.3409, 0.1088, 0.0476]T ,

ϕ(t) = [y(t− 1), y(t− 2), u(t− 2), u(t− 3)]T.

The input{u(t)} is a filtered random binary signal sequence and
updated at every∆t = 15sec. {v(t)} is a Gaussian white noise
sequence satisfiesv(t) ∼ N(0, 0.04). In simulation, we sampleL =
600 input and output data. The simulation data are shown in Fig. 6.
The parameter estimates and the estimation errors are shownin Figs.
7-9. From this simulation, we also can conclude that the RA-SGD
algorithm is more effective than the SGD algorithm.

Fig. 5. The three-tank system
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Fig. 6. The simulation data

VI. CONCLUSIONS

This paper proposes a RA-SGD algorithm for ARX models. The
proposed algorithm, which has the assumption that all the elements in
the information matrix are known, is based on the Aitken acceleration
technique. The convergence analysis shows that the RA-SGD algo-
rithm is at least quadratically convergent, while the SGD algorithm
is only linearly convergent. When choosing a step-size for the SGD
algorithm, a small step-size may lead to slow convergence rates,
while a large one may cause divergence. Fortunately, the RA-SGD
algorithm proposed in this paper can overcome these disadvantages.
For a small step-size, the convergence rates of the SGD algorithm
can be increased through the Aitken technique; while for a large
one, a divergent SGD algorithm can be transformed into a convergent
RA-SGD algorithm. The simulation examples also indicate that the
RA-SGD algorithm has a faster convergence rate and is robustto the
step-size.
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)

Although the RA-SGD algorithm can increase the convergence
rates, it also has some limitations. For example, the RA-SGD
algorithm is invalid when the systems have hidden variables; the
parameter estimation errors by using the Aitken based method
sometimes oscillate intensively. The reasons mentioned above restrict
the extensive use of this method. Thus developing some modified RA-
SGD algorithms to remedy these problems is a more challenging and
interesting topic in the future.
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Appendix A
Proof of Lemma 2. Assume that the iterative function isψ(x), then

we have

xk = ψ(xk−1). (20)

Let the fixed point bex∗, which satisfies

x∗ = ψ(x∗).

Subtractingx∗ on both sides of Equation (20) gets

xk − x∗ = ψ(xk−1)− ψ(x∗) = ψ′(ς)(xk−1 − x∗).

Define

ek = xk − x∗,

ek−1 = xk−1 − x∗.

It follows that

0 < lim
k→∞

∣

∣

∣

∣

ek
ek−1

∣

∣

∣

∣

= lim
ς→x∗

∣

∣ψ′(ς)
∣

∣ =
∣

∣ψ′(x∗)
∣

∣ < 1.

Then according to Definition 1, the sequence{xk} is linearly
convergent.

Appendix B
Proof of Lemma 4. Whenx∗ is a fixed point of the iterative function
φ(x), according to Equation (19), the following Equation holds

[ψ(x)− x]2 = [x− φ(x)][ψ(ψ(x))− 2ψ(x) + x],

and it follows that
lim

x→x∗

[x− φ(x)] = 0,

which means that
lim

x→x∗

[ψ(x)− x] = 0.

Thusx∗ is also a fixed point of the iterative functionψ(x).
Whenx∗ is a fixed point of the iterative functionψ(x), transform-

ing Equation (19) yields

[x− φ(x)] =
[ψ(x)− x]2

ψ(ψ(x))− 2ψ(x) + x
.

Taking the limitx→ x∗ on both sides of the above equation gives

lim
x→x∗

[x− φ(x)] = lim
x→x∗

[ψ(x)− x]2

ψ(ψ(x))− 2ψ(x) + x
. (21)

Since the right side of the above equation islimx→x∗

0
0
. UsingL′

Hospital’s rule for the right side of the above equation gets

lim
x→x∗

[ψ(x)− x]2

ψ(ψ(x))− 2ψ(x) + x

= lim
x→x∗

2[ψ(x)− x][ψ′(x)− 1]

ψ′(ψ(x))ψ′(x)− 2ψ′(x) + 1
.

For the reason thatlimx→x∗
ψ(x) = x∗, Equation (21) can be

simplified as

lim
x→x∗

[x− φ(x)]

= lim
x→x∗

2[ψ(x)− x][ψ′(x)− 1]

[ψ′(x)− 1]2

= 0, (22)

which means thatx∗ is a fixed point of the iterative functionφ(x).

Appendix C
Proof of Theorem 2.According to Theorem 1, the SGD algorithm in
(3) is linearly convergent, then each element in the parameter vector
can be adjusted by using the Aitken technique.

Rewrite the parameter estimatesθ̂k as

θ̂k = θ̂k−1 + γΦ(L)[Y (L) −Φ
T(L)θ̂k−1]

= (I− γΦ(L)ΦT(L))θ̂k−1 + γΦ(L)Y (L). (23)
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Since γΦ(L)ΦT(L) is a symmetric positive definite matrix, there
exists an orthogonal matrixQ, which can keep

Q[γΦ(L)ΦT(L)]QT =









λ1 0 0 0
0 λ2 0 0
...

...
. . .

...
0 0 . . . λ2n









, (24)

whereλi > 0, i = 1, 2, · · · , 2n are the eigenvalues of the matrix
[γΦ(L)ΦT(L)]. Multiplying Q on both sides of Equation (23) yields

Qθ̂k = (I−Q[γΦ(L)ΦT(L)]QT)Qθ̂k−1 +Q[γΦ(L)Y (L)].

(25)

Define

Qθ̂k = ϑ̂k = [ϑ̂1
k, ϑ̂

2
k, · · · , ϑ̂

2n
k ]T ∈ R

2n,

Qθ∗ = ϑ∗ = [ϑ1
∗, ϑ

2
∗, · · · , ϑ

2n
∗ ]T ∈ R

2n,

Q[γΦ(L)Y (L)] = [̺1, ̺2, · · · , ̺2n]
T ∈ R

2n.

Then Equation (25) is transformed into










ϑ̂1
k

ϑ̂2
k

...
ϑ̂2n
k











=









1− λ1 0 0 0
0 1− λ2 0 0
...

...
. . .

...
0 0 . . . 1− λ2n



















ϑ̂1
k−1

ϑ̂2
k−1

...
ϑ̂2n
k−1











+







̺1
̺2
...
̺2n






. (26)

Each element̂ϑj can be expressed by using an iterative function as
follows

ϑ̂j
k = [1− λj ]ϑ̂

j
k−1 + ̺j = ψj(ϑ̂

j
k−1). (27)

According to the Aitken method, we have

ϑ̄j

k = ϑ̂j

k −
(ψj(ϑ̂

j

k)− ϑ̂j

k)
2

ψj(ψj(ϑ̂
j
k)) + ϑ̂j

k − 2ψj(ϑ̂
j
k)
,

j = 1, · · · , 2n. (28)

Equation (28) is equivalent to the following iterative function

ϑ̄j

k = φj(ϑ̂
j

k),

where

φj(ϑ̂
j

k) = ϑ̂j

k −
(ψj(ϑ̂

j

k)− ϑ̂j

k)
2

ψj(ψj(ϑ̂
j

k)) + ϑ̂j

k − 2ψj(ϑ̂
j

k)
,

and its first derivative is

[φ(ϑ̂j

k)]
′ = 1−

α(ϑ̂j

k)

β(ϑ̂j

k)
, (29)

in which

α(ϑ̂j

k) = 2[ψ(ϑ̂j

k)− ϑ̂j

k][ψ
′(ϑ̂j

k)− 1][ψ(ψ(ϑ̂j

k))− 2ψ(ϑ̂j

k) + ϑ̂j

k]−

[ψ(ϑ̂j

k)− ϑ̂j

k]
2[ψ′(ψ(ϑ̂j

k))ψ
′(ϑ̂j

k)− 2ψ′(ϑ̂j

k) + 1],

β(ϑ̂j

k) = [ψ(ψ(ϑ̂j

k))− 2ψ(ϑ̂j

k) + ϑ̂j

k]
2.

Taking the limit ϑ̂j

k → ϑj
∗ gives

lim
ϑ̂
j
k
→ϑ

j
∗

[φ(ϑ̂j

k)]
′ = 1− lim

ϑ̂
j
k
→ϑ

j
∗

0

0
.

The second part on the right side of Equation (29) islim
ϑ̂
j

k
→ϑ

j
∗

0
0
.

For the reason thatψ
′

j(ϑ̂
j) 6= 1, then UsingL′ Hospital’s rule for

this part gets

lim
ϑ̂
j

k
→ϑ

j
∗

α(ϑ̂j
k)

β(ϑ̂j

k)
= lim

ϑ̂
j

k
→ϑ

j
∗

(ψ′(ϑ̂j
k)− 1)2

(ψ′(ϑ̂j

k)− 1)2
= 1,

which means that

lim
ϑ̂
j

k
→ϑ

j
∗

[φ(ϑ̂j

k)]
′ = 0.

This shows that the iterative function is convergent. Furthermore, if
the second-order derivation of the functionφ(ϑ̂j

k) is

lim
ϑ̂
j
k
→ϑ

j
∗

[φ(ϑ̂j

k)]
(2) 6= 0.

Then the sequence{ϑ̂j

k} is quadratically convergent. If thep-order
(p > 2) derivation of the functionφ(ϑ̂j

k) is

lim
ϑ̂
j

k
→ϑ

j
∗

[φ(ϑ̂j

k)]
(p) 6= 0,

the sequence{ϑ̂j

k} is pth-order convergent.
SinceQθ̂k = ϑ̂k andQ is an orthogonal matrix, the sequence

{θ̂k} has the same convergence rate as{ϑ̂k}. It shows that the RA-
SGD algorithm is at least quadratically convergent.
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