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The evolution of several subalpine alluvial fans SE of the Jostedalsbreen ice cap was 14 
investigated based on their geomorphology and Schmidt-hammer exposure-age dating 15 
(SHD) applied to 47 boulder deposits on the fan surfaces. A debris-flood rather than 16 
debris-flow or water-flow origin for the deposits was inferred from their morphology, 17 
consisting of low ridges with terminal splays up to 100 m wide without lateral levees. 18 
This was supported by fan, catchment, and boulder characteristics. SHD ages ranged 19 
from 9480±765 to 1955±810 years. The greatest number of boulder deposits, peak 20 
debris-flood activity and maximum fan aggradation occurred between ~9.0 and 8.0 21 
ka, following regional deglaciation at ~9.7 ka. The high debris concentrations 22 
necessary for debris floods were attributed to paraglacial processes enhanced by 23 
unstable till deposits on steep slopes within the catchments. From ~8.0 ka, fan 24 
aggradation became progressively less as the catchment sediment sources tended 25 
towards exhaustion, precipitation decreased during the Holocene Thermal Maximum, 26 
and tree cover increased. After ~4.0 ka, some areas of fan surfaces stabilized, while 27 
Late-Holocene climatic deterioration led to renewed fan aggradation in response to 28 
the neoglacial growth of glaciers, culminating in the Little Ice Age. These changes are 29 
generalized within a conceptual model of alluvial fan evolution in this recently-30 
deglaciated mountain region and in glacierized catchments. This study highlights the 31 
potential importance of debris floods, of which relatively little is known, especially in 32 
the context of alluvial fan evolution. 33 
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 41 
Alluvial fans are fan-shaped depositional landforms created where steep, high-42 

powered channelized flows deposit their material load on entering a zone of flow 43 

expansion and reduced power (Harvey 2004; Owen 2014; Ventra & Clarke 2018). 44 

Typically, they are classified according to the predominant depositional process, into 45 

(i) fluvial fans, where stream flows (water flow or water flood) deposit bedload, and 46 

(ii) colluvial fans dominated by mass movement processes, particularly debris flow 47 
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(also known as gravity-flow fans) (Rachocki & Church 1990; Crosta & Frattini 2004; 48 

Harvey et al. 2005; De Haas et al. 2015, 2019; Bowman 2019). Whereas most studies 49 

have emphasised these two types of alluvial fans, there is increasing recognition of the 50 

existence of a continuum of landforms, which reflect interactions between processes 51 

and intermediate-type flows (Wells & Harvey 1987; Hungr et al. 2001; Germain & 52 

Ouellet 2014). Terms for the flows that are intermediate in character between water 53 

floods and debris flows include fluid (wet or watery) debris flows (Sletten & Blikra 54 

2007; Harvey et al. 2013), hyperconcentrated flows (Matthews et al. 1999; Pierson 55 

2005; Sletten & Blikra 2007; Calhoun & Clague 2018), debris torrents (Slaymaker 56 

1988) and debris floods (Hungr et al. 2001; Wilford et al. 2004; Mayer et al. 2010; 57 

D’Agostino 2013; Ouellet & Germain 2014). However, the nature of these flows, 58 

which are characterised by sediment concentrations of 40–70% by weight according 59 

to Costa (1984), and their role in fan development, are still poorly understood. 60 

 61 

 In order to understand better the development of alluvial fans, the long-62 

standing problem of precise numerical dating (of the fan surface) needs to be 63 

overcome. Several techniques ranging from historical analysis to dendrochronology 64 

and lichenometry have been applied to the dating of fan development over annual to 65 

decadal timescales (e.g. D’Agostino 2013; Jomelli 2013; Schneuwly-Bollschweiler & 66 

Stoffel 2013; Stoffel 2013). Far fewer techniques, including those based on 67 

radiocarbon, optically stimulated luminescence (OSL) and terrestrial cosmogenic 68 

nuclides are applicable over longer, centennial to millennial timescales (e.g. Harvey et 69 

al. 2005; Schneuwly-Bollschweiler et al. 2013; Schürch et al. 2016). Here we apply 70 

the relatively new technique of Schmidt-hammer exposure-age dating (SHD) to fan 71 

surfaces. SHD is appropriate for providing numerical ages for boulders exposed 72 

during the Lateglacial and Holocene (see, for example, Winkler 2009; Matthews & 73 

Owen 2010; Shakesby et al. 2011; Matthews et al. 2013, 2015, 2018; Stahl et al. 74 

2013; Tomkins et al. 2016, 2018; Wilson & Matthews 2016; Winkler et al. 2016; 75 

Wilson et al. 2019). 76 

 77 

 Various temporal patterns and activity phases have been recognised in records 78 

of floods, debris flows and other colluvial processes (ranging from snow flows to rock 79 

falls) in southern Norway (Blikra & Nesje 1997; Blikra & Nemec 1998; Blikra & 80 

Selvik 1998; Sletten et al. 2003; Bøe et al. 2006; Sletten & Blikra 2007; Matthews et 81 
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al. 2009, 2018; Vasskog et al. 2011). Detailed case studies of two alluvial fans have, 82 

moreover, revealed contrasting histories. Radiocarbon dating and lichenometry show 83 

that development of the subalpine Nystølen fan in the Jostedalsbreen region (Lewis & 84 

Birnie 2001; McEwen et al. 2011) was dominated by deposition in the Little Ice Age 85 

of the last few centuries, whereas SHD shows that the alpine Illåe fan in Jotunheimen 86 

is largely a relict paraglacial landform that developed before ~8.0 ka (McEwen et al. 87 

2020). Differences in the evolution of these two fans were accounted for largely by 88 

the extent to which their catchments were glacierized in the past.  89 

 90 

 In this study, the aim is to generalize further by analysing the development of 91 

subalpine alluvial fans in the SE Jostedalsbreen region of southern Norway (Fig. 1), 92 

based on their geomorphology and the exposure age of their surface boulder deposits. 93 

There are three main objectives: (i) To date the numerous boulder deposits on the 94 

fan surfaces using SHD and hence provide a firm chronology; (ii) To assess the 95 

origin of the boulder deposits with reference to processes of debris flow, water flow 96 

(floods) and debris floods; and (iii) To reconstruct the evolution of several fans and 97 

hence develop a regional conceptual model of fan evolution in recently-deglaciated 98 

mountain catchments. 99 

 100 

 101 

Study sites and environment 102 

 103 

The alluvial fans are located to the SE of the Jostedalsbreen ice cap on valley floors at 104 

300–400 m above sea level at the foot of steep tributary valleys descending from a 105 

glacierized plateau at >1600 m a.s.l. (Fig. 2). Four fans, from south to north, are 106 

termed here: (i) the Erikstølsdalen fan; (ii) the Kvamsdalen fan; (iii) the Snøskreda 107 

fan; and (iv) the Kupegjelet fan, the latter two being located in Austerdalen. 108 

Kupegjelet fan (Fig. 3), in many ways similar to the others, was previously 109 

investigated by Innes (1985a, b). Data from a fifth fan (Nystølen fan) in lower 110 

Langedalen (Fig. 2), previously investigated by Lewis & Birnie (2001) and McEwen 111 

et al. (2011) are included in some of our analyses. The four fans (Fig. 4) were selected 112 

because of their extensive boulder deposits suitable for dating by SHD, using field 113 

and aerial photographic evidence. Other neighbouring fans were unsuitable: those 114 
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south of Veitastrond have been greatly modified by land clearance, while those further 115 

north in Austerdalen (e.g. at the mouth of Røysedalen) have been eroded by the 116 

historical advance of the glacier Austerdalsbreen. 117 

 118 

All five fans are subalpine in character: the Kvamsdalen and Kupegjelet fans 119 

are largely covered in Betula pubescens woodland, whereas the Erikstølen, Snøskreda 120 

and Nystølen fans have much larger areas of grassland, which are partly the result of 121 

snow-avalanche activity, and partly a response to grazing animals associated with the 122 

agricultural settlement of Veitastrond and sæters such as Tungestølen. Climatic data 123 

from the meteorological station Bjørkhaug, in the neighbouring valley of Jostedal 124 

(324 m a.s.l.), indicate a mean annual air temperature of +3.7 °C, with a July mean of 125 

+13.4 °C, a January mean of –4.9 °C and a mean annual precipitation of 1380 mm 126 

(Aune 1993; Førland 1993). The local lithology is predominantly granite with some 127 

areas of granitic gneiss (Lutro & Tveten 1996). 128 

 129 

Morphometric data from the fans, their catchments, and their surface boulder 130 

deposits are summarised in Table 1. The five catchments are small (1.17–3.44 km2), 131 

high relief, steep and rugged, with a Melton ratio (relief/√area; e.g. Melton 1965) of 132 

0.70–1.08. The fans are correspondingly small (0.16–0.51 km2) with gradients of 9–133 

17°, but fan toes have been truncated by the main river or obscured by the growth of 134 

peat mires. The boulder deposits on the fan surfaces form broad, irregular ridges, up 135 

to 200 m in length with a mean width of 24–34 m (maximum width 100 m), most with 136 

terminal splays, some with finger-like extensions (Fig. 5).    137 

 138 

Three of the investigated catchments are currently 8–24% glacierized by the 139 

Kvitekoll ice cap (Fig. 1) which, together with the Tverrdalsbreen glacier, occupy the 140 

plateau and extend onto the lee-slopes to the east. The catchment of the Nystølen fan 141 

is 56% glacierized. However, all catchments have late-lying snowbeds on their upper 142 

slopes, and are likely to have been affected by expanded plateau glaciers during Late-143 

Holocene neoglaciation and especially in the Little Ice Age.  144 

 145 

 Rapid Early-Holocene deglaciation of the main valleys of SE Jostedalsbreen 146 

occurred during the Preboreal, and by ~10.1-9.7 ka glaciers had receded to the valley 147 

heads, close to their Little Ice Age limits (Dahl et al. 2002; see also Mottershead & 148 
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Collin 1976; Aa 1982; Nesje 1991, 2009). Subsequently, further rapid warming and 149 

glacier shrinkage resulted in the total melting of the Jostedalsbreen ice cap by ~7.3 ka 150 

(Nesje & Kvamme 1991; Nesje et al. 2000, 2001). Centennial- to millennial-scale 151 

glacier variations interrupted neoglacial re-growth of glaciers after ~6.1 ka, which 152 

culminated in the Little Ice Age maximum of extant glaciers around AD 1750 (Grove 153 

1988; Bickerton & Matthews 1993). Latero-terminal moraines indicate the down-154 

valley limits of several of these glaciers in the Little Ice Age (Fig. 2).  155 

 156 

 157 

Methodology 158 

 159 

Field research focused on 47 boulder deposits, which are located on Fig. 4A-D. These 160 

represent integral geomorphological units each of which can be attributed to single 161 

depositional events. They also represent the entire statistical population of boulder 162 

deposits from each fan. SHD was carried out on these deposits, supplemented by 163 

lichenometric dating and measurements of boulder roundness and boulder size. 164 

 165 

SHD 166 

 167 

As a basis for SHD dating, R-values were recorded from a minimum of 100 boulders 168 

on each deposit (one impact per boulder) using a mechanical N-type Schmidt hammer 169 

(Proceq 2004). Use of one impact per boulder ensured that the R-value frequency 170 

distribution approximates the boulder-age distribution (Matthews et al. 2014). In 171 

order to minimise variability and measurement errors, small or unstable boulders, 172 

edges, joints and cracks, and lichen-covered or wet boulder surfaces were avoided, 173 

and measurements were confined to near-horizontal surfaces and granitic lithologies 174 

(cf. Shakesby et al., 2006; Matthews & Owen, 2010; Viles et al., 2011). No cleaning 175 

or artificial abrading of the boulder surfaces was carried out prior to measurement as 176 

this would have removed age-related weathering effects. The Schmidt hammer was 177 

regularly tested on the manufacturer’s test anvil during the fieldwork to ensure no 178 

deterioration in instrument performance following prolonged use (cf. McCarroll 1987, 179 

1994). 180 

 181 
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 Calibration of R-values followed the approach developed by Matthews & 182 

Owen (2010), Matthews & Winkler (2011) and Matthews & McEwen (2013), full 183 

details of which are given in Matthews et al. (2018). The calibration equation is a 184 

linear regression of surface age (y) on mean R-value (x) derived from two local 185 

control points: ‘old’ and ‘young’ surfaces of known age. Use of a linear relationship 186 

has been specifically tested over the Holocene timescale (Shakesby et al. 2011), and is 187 

justified also by comparison over similar relatively short timescales with terrestrial 188 

cosmogenic nuclide dating both in southern Norway (Wilson et al. 2019) and 189 

elsewhere (e.g. Tomkins et al. 2016, 2018). A linear or near-linear relationship, which 190 

results from the slow rate of chemical weathering of rock surfaces, is therefore 191 

considered appropriate, particularly in alpine and subalpine environments over the last 192 

~10 ka. 193 

 194 

Confidence intervals (95%) for SHD age (Ct) are based on combining the 195 

relatively small error term associated with the calibration equation (Cc) with the larger 196 

sampling error associated with the dated surfaces (Cs). Uncertainty associated with Cs 197 

is relatively small provided: (i) very large R-value sample sizes are used for control 198 

points; and (ii) control-point ages are accurately known. Here we used 600-750 R-199 

values for each control point and hence can justify using precise ages for the control 200 

points. 201 

 202 

The ‘young’ control point involves R-values from 600 boulders (one impact 203 

per boulder) deposited on the Erikstølsdalen and Snøskreda fans (Fig. 2) during a 204 

flash flood following intense rainfall on 14 August 1979 (cf. Gjessing & Wold 1980; 205 

Drageset 2001). Both the geomorphological integrity and lichen sizes associated with 206 

the flood deposits leave no doubt that the surface boulders sampled are representative 207 

of a synchronous surface and that their age is very tightly constrained. The rockfall 208 

deposits used previously by Matthews & Wilson (2015) as their ‘young’ control point 209 

were deemed unsuitable for the present study due to the roughness characteristics of 210 

such colluvial boulders (cf. Matthews & McEwen 2013; Matthews et al., 2015; Olsen 211 

et al., 2020). In contrast, the 1979 flood deposits, being characterised by relatively 212 

smooth boulders, have similar roughness to the boulder deposits on the fans, and are 213 

therefore appropriate for a study of alluvial fans. 214 

 215 
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The ‘old’ control point, involving 750 R-values recorded from three glacially-216 

scoured bedrock outcrops near Tungastølen and at the mouth of Kvamsdalen (Fig. 2), 217 

was used previously by Matthews & Wilson (2015). The precise date of ~9.7 ka used 218 

for this control point is based on the age of moraine ridges deposited by 219 

Jostedalsbreen outlet glaciers in valleys on both sides of the ice cap. Evidence for the 220 

age of these moraines comes from both radiocarbon (Nesje 1984; Dahl et al. 2002) 221 

and cosmogenic nuclide dating (Matthews et al. 2008) in Erdalen on the NW side of 222 

the ice cap, and by radiocarbon dating near Nigardsbreen in Jostedalen on the SE side 223 

(Dahl et al. 2002). The moraines, which are of a similar size to Little Ice Age 224 

moraines and located up to ~1 km beyond the Little Ice Age limits of Erdalsbreen and 225 

Nigardsbreen, relate to the Erdalen Event, an Early-Holocene centennial-scale glacier 226 

and climatic fluctuation that involved two glacier re-advances dated by Dahl et al. 227 

(2002) to ~10.1 and 9.7 ka.  228 

 229 

Although no similar moraines dating from the Erdalen Event occur in 230 

Austerdalen or Langedalen, the glaciers in these valleys are assumed to have 231 

fluctuated broadly synchronously with other outlet glaciers of Jostedalsbreen, as has 232 

been demonstrated for the Little Ice Age interval (cf. Bickerton & Matthews 1992, 233 

1993). We attribute the absence of Erdalen Event moraines downvalley of the Little 234 

Ice Age glacier limits in Austerdalen or Langedalen to the presence of relatively large 235 

ice bodies in these valleys and correspondingly large glacier re-advances during the 236 

Erdalen Event. Combined with the occurrence of this event during an otherwise 237 

prolonged period of rapid glacier retreat, we conclude that the ‘old’ control surfaces in 238 

the study area were deglaciated closely following the termination of the Erdalen Event 239 

(i.e. ~9.7 ka).               240 

 241 

Probability density function analyses were used to understand the SHD age-242 

frequency distributions over the Holocene timescale. Separate analyses were carried 243 

out for each fan and for the combined data set. Probability density was calculated at 244 

100-year intervals using the mean and standard deviation for each fan (R Core Team 245 

2019). Calculation assumed a normal distribution of the data. Probability density 246 

functions for each of the four alluvial fans were obtained by averaging the density 247 

values of the relevant individual boulder deposits. A regional density function was 248 
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obtained by averaging the density functions of all 47 boulder deposits from the four 249 

fans. 250 

 251 

Supplementary measurements 252 

  253 

Three types of supplementary measurements were made from the boulder deposits. 254 

First, the maximum diameter (longest axis) of the 5 largest lichens of the Rhizocarpon 255 

subgenus from each of the 47 deposits was measured in order to perform 256 

lichenometric dating. This had been previously attempted by Innes (1985a) for a fan 257 

in Austerdalen. We used updated lichenometric dating curves from the neighbouring 258 

glacier foreland of Nigardsbreen (Bickerton & Matthews 1992, 1993). Second, in 259 

order to assess potential sediment sources, the boulder roundness distribution and a 260 

numerical index of mean boulder roundness were derived from a subsample of 25 261 

boulders from 37 of the boulder deposits using the Powers (1953) roundness chart (cf. 262 

Matthews 1987). Finally, the maximum intermediate-axis clast size (d) from each 263 

boulder deposit was measured to allow the calculation of palaeohydrological 264 

parameters associated with the flows that deposited the sediment (Williams 1983): 265 

 266 
Unit stream power (ω) = 0.079 d1.3 (10 ≤ d ≤ 1500 mm)     (1) 267 
Bed shear stress (τ) = 0.17 d1.0 (10 ≤ d ≤ 3300 mm)     (2) 268 
Mean flow velocity (V) = 0.065 d0.50 (10 ≤ d ≤ 1500 mm)    (3) 269 

 270 

. 271 

Results 272 

 273 

R-values from control surfaces and calibration equations 274 

 275 

Combined data for the ‘old’ and ‘young ‘ control points (Table 2) show excellent 276 

agreement between each pair of ‘old’ and ‘young’ control surfaces, which justifies 277 

treating each pair of surfaces sampled from different locations as replicates drawn 278 

from the same statistical population. The R-value distributions of the control points 279 

(Fig. 6A) exhibit the symmetrical, unimodal characteristics of synchronous surfaces. 280 

Furthermore, the small standard deviations (σ = 6–8)  relative to the standard 281 

deviations associated with the fan surfaces (σ = 8–11; Table 3), together with wide 282 
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separation of the mean R-values, signal the potential for dating using the calibration 283 

equation shown in Fig. 6B.   284 

 285 

R-values and SHD ages from the boulder deposits 286 

 287 

R-value distributions for 47 boulder deposits are generally symmetrical and unimodal, 288 

which is again indicative of synchronous surfaces produced here by single 289 

depositional events (Fig. 6). Whereas mean R-values (Table 3) vary widely between 290 

38.5 (Sa 4) and 58.8 (En 7) most are closer to the characteristic of the ‘old’ control 291 

point than to those of the ‘young’ control point. SHD ages are correspondingly wide 292 

ranging but with a large majority of the boulder deposits dating from early in the 293 

Holocene (>70% before ~6.0 ka) and only two dating from the last 2.0 ka (Table 3). 294 

The sampling error (Cs) resulting from the high natural variability of weathered 295 

boulder surfaces is the dominant control on the 95% confidence intervals for age, 296 

which range from ~700-900 years. 297 

 298 

SHD ages and probability density distributions indicate significant clustering 299 

of events and notable similarities and differences between the chronology of boulder 300 

deposits from each fan (Fig. 8), which are discussed below. Amalgamation of the age 301 

data from the four fans in the combined record emphasises the overall concentration 302 

of dates shortly after deglaciation and the long-term declining frequency of 303 

depositional events through the Holocene.      304 

 305 

Lichen sizes and lichenometric ages 306 

 307 

Mean lichen size on the boulder deposits varies from ~50–300 mm, which 308 

corresponds to a lichenometric age of ~70–1500 years (Fig. 9). At three sites from 309 

Kupegjelet and one from Snøskreda, single largest lichens reached 300–320 mm, 310 

which are comparable to the largest lichens (270–290 mm) measured from the same 311 

sites by Innes (1985). As a result of using the up-dated calibration equation of 312 

Bickerton & Matthews (1992, 1993), our results suggest that >50% of deposits are 313 

characterised by mean lichen sizes >150 mm and date from pre-Little Ice Age times. 314 

In contrast, Innes (1985) concluded that all the deposits fell within the Little Ice Age. 315 

However, as there is no correlation between our SHD and lichenometric ages, it can 316 



 10 

be deduced that most of the latter are large underestimates of the true age of the 317 

deposits, resulting from extrapolation of surface ages beyond the range of 318 

lichenometric dating, combined with the limited lifespan of lichens of the 319 

Rhizocarpon subgenus in this environment (cf. Matthews & Trenbirth 2011).         320 

 321 

 322 

Boulder characteristics and palaeohydrological parameters 323 

 324 

Mean boulder roundness from boulder deposits across all four fans lies consistently 325 

between values characteristic of sub-angular and sub-rounded clasts (Fig. 10). 326 

Furthermore, the majority of sites (70%) have a sub-rounded modal class with a 327 

negligible proportion of angular and very angular clasts. These roundness values are 328 

consistent with a till source for the boulders and are consistent with a relatively small 329 

degree of abrasion during transportation in relatively small catchments (cf. Boulton 330 

1978; Matthews 1987; Evans & Benn 2004).   331 

 332 

 Maximum boulder size and the median size (D50; intermediate axis ) of the 10 333 

largest boulders from the boulder deposits (Fig. 11) approximate to 2.0 m and 1.0 m, 334 

respectively. The largest boulder (2.5 m) occurred at Erikstølsdalen (En 1) while the 335 

largest D50 (1.7 m) was recorded from Kupegjelet (Kt 8). Such sizes require high 336 

competent flows and imply major floods as large as the 1979 flash-flood event, the 337 

deposits of which, on the Snøskreda fan, involved maximum boulder sizes and D50 338 

values of 2.1 m and 1.2 m, respectively. The flash flood had a return period of ~1 in 339 

100 years, estimated from its magnitude on the main river in Jostedal (Gjessing & 340 

Wold 1980; Drageset 2001), but this may have increased to ~1 in 1000 years in 341 

smaller catchments within the region (Matthews & McEwen 2013).    342 

 343 

Minimum boulder-transport conditions for the largest boulder in deposits for 344 

each fan are summarised in Table 4. Lowest unit stream power for entrainment (ω) 345 

varies from 1646 W m-2 (Kvamsdalen) to 2065 W m-2 (Erikstølsdalen), lower than 346 

values for the coarsest debris-flood deposits on the upper Illåe fan, Jotunheimen (up to 347 

2850 W m-2; McEwen et al. 2020). A large number of deposits (47%) have largest 348 

clasts beyond the upper range of clast sizes used by Williams (1983). Lowest bed 349 

shear stresses for entrainment (τ) of the largest clast ranged from 357 to 425 N m−2. 350 



 11 

 351 

     352 

Discussion 353 

 354 

Water floods, debris flows or debris floods? 355 

 356 

The morphology and sedimentary characteristics of the boulder deposits, and the 357 

characteristics of the fans and their catchments, tend to be intermediate in terms of 358 

established criteria for recognising the products of water flow and debris flow (Table 359 

5). Using all these criteria, the boulder deposits can be attributed with some 360 

confidence to debris floods, which are now recognised in the most widely-used 361 

genetic classification of landslide types (Hungr et al., 2014). 362 

 363 

Previous studies by Innes (1985a, 1985b) assumed that these boulder deposits 364 

were debris-flow lobes, which also tend to have boulder concentrations in their 365 

terminal areas and on lateral levées. However, their morphologies differ from debris-366 

flow lobes in several respects. They are commonly irregular, broad ridges, which are 367 

raised above the general level of the adjacent fan surfaces by up to several metres 368 

(Fig. 5A, B). With a mean width of 24-34 m and a maximum width of up to 100 m 369 

(Table 1), they are considerably wider than typical debris-flow deposits and, crucially, 370 

levées are absent. They terminate in several different plan shapes ranging from 371 

simple, steep-fronted tongues (similar to debris-flow lobes) to single or multiple 372 

splays (less thick as well as wider than debris-flow lobes), the latter sometimes with 373 

finger-like extensions (Fig. 5C-F). Similar broad ridges without levées occur in 374 

Iceland, where they were described as ‘debris flow-like’ (Decaulne et al. 2007). 375 

Debris flood ridges and splays also differ from the thin gravel sheets with bars and 376 

braided channels deposited on fans by water floods. 377 

 378 

Neither the size nor slope of each of our fans, nor their catchment 379 

characteristics, are typical of either debris-flow fans, which are smaller and steeper 380 

with very small rugged catchments, or fluvial fans, which are generally larger with 381 

gentler slopes and much larger catchments. Although no sections were available 382 

through these deposits, the surface sediments of the ridges appear intermediate 383 
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between unsorted diamictons and well-sorted fluvial deposits. The sediments also 384 

seem to correspond to the proximal facies of terminoglacial fans described by 385 

Zieliński & van Loon (2000), which include boulder-rich diamictons and sandy 386 

gravels deposited by sheetflows and catastrophic hyperconcentrated flows. There is 387 

little evidence of fine matrix where boulder concentrations occur, but this could have 388 

been washed out of the surface material during or after deposition. The stratigraphy of 389 

the Illåe fan (Jotunheimen), where similar boulder deposits occur, revealed a variable 390 

content of matrix with alternating, crudely-sorted and generally indistinct clast-391 

supported and matrix-supported layers (McEwen et al. 2020). 392 

 393 

 In order to achieve the high debris concentrations necessary for debris floods, 394 

with sufficient large subrounded to subangular boulders (Figs 10, 11), the catchment 395 

would have had to contain a suitable sediment source. This is likely have been a till 396 

cover, deposited prior to ~9.7 ka, when the catchment was completely glacierized. We 397 

argue below that all four catchments had a substantial till cover, which was exposed to 398 

subaerial processes following deglaciation. This till cover would have been readily 399 

eroded from the steep slopes of the catchments, and provides the likely source of the 400 

sediments in the debris-flood boulder deposits. 401 

 402 

The chronology of events 403 

 404 

The chronology of boulder deposits from each fan (Fig. 8) shows that the earliest 405 

depositional events occurred shortly after deglaciation at ~9.7 ka. Indeed, the oldest 406 

SHD dates from Snøskreda (Sa 4) and Erikstølsdalen (En 5) are 9480±765 and 407 

9215±720 years, respectively which are statistically indistinguishable (along with 408 

several other SHD dates) from 9.7 ka. Taking account of the confidence intervals, 409 

both of these fans have a very high proportion of SHD ages >8.0 ka, while all the 410 

boulder deposits on the Kvamsdalen fan have SHD ages >4.0 ka and the Kupegjelet 411 

fan has a relatively high proportion between 8.0 and 6.0 ka. Three fans developed 412 

rapidly within two millennia of deglaciation while the fourth (Kupegjelet) appears to 413 

have started its rapid development about two millennia later than the others. All four 414 

fans therefore underwent major aggradation attributable to debris-flood activity during 415 

the Early Holocene. 416 

 417 
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Persistence of so many boulder deposits from the Early Holocene is indicative 418 

of the decline in the frequency of debris-flood events later in the Holocene. If the 419 

frequency of such events had remained high during the Middle and Late Holocene, 420 

fan aggradation in the form of debris-flood deposits would have continued into the 421 

Late Holocene and earlier deposits would have been buried by later ones. Instead, a 422 

small number of debris-flood deposits with ages <4 ka occur only at the 423 

Erikstølsdalen and Kupegjelet fans. At the Kvamsdalen and Snøskreda fans, debris-424 

flood deposits are confined to distal and marginal parts of the fans. In proximal- and 425 

mid-fan locations, however, these two fans exhibit evidence of late-Holocene and 426 

modern aggradation from snow-avalanche and fluvial activity, which may have buried 427 

earlier boulder deposits.    428 

 429 

The combined chronology from the four fans (Fig. 8) suggests a relatively 430 

steady decline in frequency of debris-flood events from a maximum at ~9.0–8.0 ka. 431 

However, the interpretation is complicated by wide confidence intervals for SHD age 432 

of the order of 700–900 years, the apparent absence of events between deglaciation 433 

and ~8.0 ka at the Kupegjelet fan where activity peaks at ~7.0 ka, and the possibility 434 

of centennial- to millennial-scale variations in aggradation in the Middle to Late 435 

Holocene. 436 

 437 

Holocene development of the alluvial fans and their environmental controls 438 

 439 

The peak in debris-flood activity immediately following deglaciation at ~9.7 ka is 440 

clearly indicative of a paraglacial pattern of sediment deposition conditioned directly 441 

by glaciation (cf. Ryder 1971; Church & Ryder 1972; Ballantyne 2002a, 2013). 442 

During and immediately following deglaciation, the till deposits on the extremely 443 

steep slopes of these catchments would have been particularly susceptible to gully 444 

erosion triggered by rainstorms, and glacial and snow meltwater (Curry 2000). Being 445 

a diamicton, the till would have been a source of abundant large subangular to 446 

subrounded boulders and fine matrix, providing the high sediment concentrations for 447 

debris-floods. These flows would have been confined in the narrow, steep tributary 448 

valleys before they debouched onto the main valley floor where redeposition and fan 449 

aggradation occurred.  450 

 451 
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 Although paraglacial processes are most effective in the unstable landscape 452 

that emerges during deglaciation, paraglacial effects may last for several millennia 453 

until the landscape stabilises or sediment sources are exhausted (Ballantyne & Benn 454 

1994; Curry 1999; Ballantyne 2002b). A steady decline in the frequency of debris-455 

flood deposits over the first few millennia following deglaciation (Fig. 8) might 456 

therefore be accounted for simply in terms of paraglaciation. Furthermore, the 457 

exhaustion of accessible sediment sources is a distinct possibility on extremely steep 458 

slopes, particularly at relatively high altitudes in all four catchments where extensive 459 

bedrock exposure is evidence of a more-or-less completely eroded, former till cover. 460 

 461 

 The Jostedalsbreen ice-cap, along with the Kvitekoll ice cap and the other 462 

glaciers that directly affected the catchments of the alluvial fans, are inferred to have 463 

melted away completely by ~7.3 ka (Nesje & Kvamme 1991; Nesje et al. 1991, 2000, 464 

2001). This date coincides with the rapid development of the Kupegjelet fan which, 465 

according to our SHD dates, occurred up to two millennia later than at the other three 466 

fans. A possible explanation for later development at Kupegjelet is the survival of 467 

glacier ice for longer in its narrow catchment and in the steep, north-facing cirque-like 468 

extension to the valley head on its south side. In much the same way, the north-facing 469 

valley head of Røysedalen is currently occupied by the northern outlet glacier of the 470 

Kvitekoll ice cap (Fig. 2). A second possible explanation is that rapid fan 471 

development at Kupegjelet was triggered by the paraperiglacial degradation of 472 

permafrost in the upper catchment: i.e. it was a conditional response to the transition 473 

from permafrost to seasonal-freezing regime (cf. Mercier 2008; Scarpozza 2016; 474 

Matthews et al. 2018). The lower altitudinal limit of discontinuous mountain 475 

permafrost currently lies at ~1600 m a.s.l. in the Jostedalsbreen region, and could be 476 

lower in north-facing rock walls (Etzelmüller & Hagen 2005; Gisnås et al. 2016; 477 

Steiger et al. 2016).      478 

 479 

Landscape stabilisation and hence reduced paraglacial aggradation on the fans 480 

are likely to have been accentuated by the spread of a dense tree cover onto the lower-481 

altitude slopes of the catchments in the Early to Middle Holocene as a result of a 482 

warmer climate than today during the Holocene Thermal Maximum (HTM). Present-483 

day tree lines attain altitudes of 850–1000 m at favourable locations within the four 484 

catchments (https://www.norgeskart.no/) and, based on pollen analyses from the 485 

https://www.norgeskart.no/
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valleys around Jostedalsbreen, would have been at least 200 m higher during the 486 

HTM (Nesje & Kvamme 1991; Nesje et al. 1991; see also Wilford et al. 2005; 487 

Marston 2010; Pawlik 2013). 488 

 489 

 The SHD evidence indicates that paraglacial sedimentation was the dominant 490 

control on the Early Holocene development of all four fans. However, there was 491 

greater divergence in their evolution during the Late-Holocene: the Kvamsdalen fan 492 

seems to have become an essentially relict landform when paraglacial effects 493 

effectively ceased at ~4.0 ka; the Kupegjelet fan experienced continuing deposition 494 

from debris floods at a much reduced level until at least ~2.0 ka; the Erikstølsdalen 495 

and Snøskreda fans appear to have been dominated by a different sedimentological 496 

and hydrological regime, which began sometime after ~8.0 ka and has continued to 497 

the present day. This new regime, which is attributed to the diminished sediment 498 

supply after the cessation of the debris floods of the paraglacial phase, was dominated 499 

by snow-avalanches and fluvial activity, and has left boulder deposits unburied at the 500 

margins of these fans. Evidence of the importance of snow avalanching at these sites 501 

includes the presence of extensive accumulations of snow on the fan apex and 502 

upstream, which are clearly visible on late-summer aerial photography 503 

(https://www.norgeibilder.no/), isolated angular boulders scattered over the fan 504 

surface, and the names ‘Snøskreda’ (which means snow avalanche in Norwegian) and 505 

‘Erikstølskreda’, which are established place names used on topographic maps. 506 

Fluvial activity is indicated by gravel deposits alongside the current stream, largely 507 

vegetated distributary channels, and the boulder-rich sediments deposited by the AD 508 

1979 flash flood. 509 

 510 

Neoglaciation from ~6.1 ka and Late-Holocene glacier variations appear to 511 

have made significant contributions to the later phases of fan evolution, particularly at 512 

the Erikstølsdalen and Kupegjelet sites. Based on moraines dated by historical 513 

evidence and lichenometric dating, it is well established that the main glaciers in this 514 

region, including Austerdalsbreen and Nystølsbreen (Fig. 2) attained their Late-515 

Holocene maximum extent c. AD 1750, in the Little Ice Age (Bickerton & Matthews 516 

1993) and, in the case of Nystølsbreen, the glacier extended onto its fan (McEwen et 517 

al. 2011). Similar undated moraines in Røysedalen indicate that the northern outlet of 518 

the Kvitekoll ice cap expanded at this time (Fig. 2), and strongly suggest that both this 519 

https://www.norgeibilder.no/
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ice cap and Tverradalsbreen overflowed into the fan catchments during the Little Ice 520 

Age. Although there is insufficient evidence from this study to detect any century- to 521 

millennia-scale responses, the existence of small glaciers in these catchments during 522 

the Little Ice Age and earlier neoglacial glacier expansion episodes (cf. Nesje et al. 523 

2008; Nesje 2009; Matthews 2013) are likely to have affected meltwater discharge, 524 

slope processes and sediment loads, and hence variations in Late-Holocene fan 525 

aggradation (cf. McEwen et al. 2011; Laute & Beylich 2012, 2013). Similarly, 526 

changes in fan aggradation would be expected from any Late-Holocene variations in 527 

snow meltwater discharge and snow-avalanche frequency, the latter affecting the 528 

Erikstølsdalen and Snøskreda fans in particular. 529 

 530 

A regional model of alluvial fan evolution in recently-deglaciated mountains 531 

 532 

The evolution of alluvial fans in the SE Jostedalsbreen region – including the four 533 

fans reported in this study and the Nystølen fan investigated by McEwen et al. (2011) 534 

– can be generalized as a regional conceptual model (Fig. 12A–D) that includes local 535 

variations in the timing of four main phases of fan development, the changing nature 536 

and intensity of aggradational processes, variations in glacier size, and changes in the 537 

climatic and hence hydrological regime during the Holocene. This model extends and 538 

refines a previous model of alluvial fan development in glacierized catchments 539 

presented by McEwen et al. (2020) and makes a broader contribution to the rather 540 

limited understanding of alluvial fans in alpine and subalpine environments from 541 

various perspectives (cf. Kostaschuk et al. 1986; Eyles & Kocsis 1988; Derbyshire & 542 

Owen 1990; Blair & McPherson 1994; Cavalli & Marchi 2008; Korup & Clagues 543 

2009; Schneuwly-Bollscheiler et al. 2013; Heiser et al. 2015; Tomczyk et al. 2019).    544 

 545 

Phase 1: Intense paraglacial aggradation (9.7–8.0 ka). – The first phase begins 546 

immediately after deglaciation. Aggradation rapidly intensifies as gully propagation 547 

takes place in steep and initially unvegetated till-mantled catchment slopes. Peak 548 

paraglacial aggradation, on the basis of the frequency of dated debris-flood deposits 549 

from three fans (Kvamsdalen, Erikstølsdalen and Snøskreda), is placed at ~9.0 ka 550 

(Fig. 12A, B). 551 

 552 
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The start of this intense phase may be delayed by the late survival of glacier 553 

ice within the catchment (or by paraperiglacial permafrost degradation), as 554 

hypothesised for Kupegjelet. Intense paraglacial aggradation takes place not only at a 555 

time of shrinking glaciers (Fig. 12C), but also in a climatic environment of high and 556 

rising temperatures and increasing precipitation (Fig. 12D). The hydrological effect of 557 

this is likely to contribute to relatively high discharges from both glacial and snow 558 

meltwater.        559 

 560 

Phase 2: Reduced paraglacial aggradation (8.0–4.0 ka). – The transition to a phase of 561 

reduced paraglacial aggradation is considered, on the basis of the dating evidence 562 

from Kvamsdalen and Kupegjelet, to occur no more than 2000 years after the start of 563 

the intense phase. The start of this second phase is therefore placed at ~8 ka for 564 

Kvamsdalen (Fig. 12A) and this date is also used in Fig. 12B (although this phase was 565 

delayed to ~6.0 ka at Kupegjelet). The apparent absence of debris-floods for many 566 

millennia from ~8.0 ka at Erikstølsdalen and Snøskreda is attributed to their burial by 567 

later fluvial and snow-avalanche sedimentation. 568 

 569 

 Reduced aggradation after ~8.0 ka is primarily a response to the reduced 570 

availability of sediment and the possible eventual exhaustion of sediment sources 571 

within the catchment. Three other factors are seen as contributing to increasing 572 

stability within the catchment and the reduction of aggradation on the fans. First, with 573 

glaciers very small or absent from the catchments (Fig. 12C), the paraglacial sediment 574 

load of the rivers is supplemented to a negligible extent by glaciofluvial sediments 575 

direct from glaciers. Second, stabilization increases over time with the establishment 576 

of vegetation and, in particular, with the spread of trees at relatively low altitudes 577 

within the catchments. Third, temperatures remain high while precipitation is much 578 

reduced, at least until ~6.0 ka (Fig. 12D): the climatic regime therefore suggests 579 

reduced runoff from snowmelt at this time. Diminution of paraglacial aggradation is 580 

shown in Fig. 12B to continue until ~4.0 ka, though this must be regarded as an 581 

arbitrary point on the long-term declining trend. 582 

 583 

Phase 3: Fan surface stability (4.0–0 ka). – A phase of near-zero aggradation on the 584 

fan surface is the logical outcome of the exhaustion of sediment supply within the 585 

catchment, and is recognised at Kupegjelet from ~2.0 ka and at Kvamsdalen from 586 
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~4.0 ka (Fig. 12A). Fan surface stability may also follow from flows with decreasing 587 

sediment concentrations resulting from an increase in discharge during Late-Holocene 588 

climatic deterioration and the early stages of neoglacial glacier growth. Judged in 589 

terms of the non-existence of dated debris-flood deposits, stabilization of fan surfaces 590 

did not take place before ~4.0 ka, but evidence of older stable phases could be buried 591 

by later aggradation. 592 

 593 

The possibility of entrenchment introduces a further complication (cf. 594 

McEwen et al. 2020), which may itself be initiated in response to reduced sediment 595 

loads during the phase of reduced paraglacial aggradation. In this study, entrenchment 596 

is exhibited to some extent by the modern streams on the upper (proximal) parts of 597 

each fan (Fig. 4). This helps explain the tendency to asymmetrical development, at 598 

least during the later stages of fan evolution, and hence the persistence and survival of 599 

debris-flood deposits on the north side of each fan, as well as towards each fan toe. 600 

Each stream currently discharges to the south side of the fan, topographically-601 

controlled avulsions having followed the slope of the fan (cf. De Haas et al. 2019), 602 

which is in turn influenced by the direction of the trunk valley, thus diverting flows 603 

away from the north side of the fans. 604 

 605 

Phase 4: Neoglacial re-activation (4.0–0 ka). – Re-activation takes place in the Late-606 

Holocene in response to climatic deterioration and glacier growth, provided that 607 

sufficient sediment sources are available and accessible within the catchment. The 608 

onset of this final phase is placed at ~4.0 ka on the basis of dated debris-flood deposits 609 

at Kupegjelet and Erikstølsdalen (Fig. 12A). Small glaciers regenerating as early as 610 

~6.1 ka (Fig. 12C), and/or the associated climatic deterioration involving decreasing 611 

temperatures and increasing precipitation (Fig. 12D), are seen as unlikely to have had 612 

a major effect on aggradation initially. By ~4.0 ka, however, as neoglaciation 613 

intensifies, increasing discharge combined with greater potential for bedload 614 

generation and transport is consistent with renewed aggradation. 615 

 616 

Re-activation greatly increases the potential for burial of older deposits, which 617 

is inferred to account for the apparent absence of debris-flood activity after ~8.0 ka at 618 

Erikstølsdalen and Snoskreda. This argument is supported by the confinement of the 619 

debris-flood deposits at the latter fan to its extreme distal fringe, the remainder of the 620 
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fan surface being affected by more recent water-flood and snow-avalanche deposits.  621 

Neoglacial re-activation associated with an increase in water-flood and snow-622 

avalanches was even more effective at the Nystølen fan (Fig. 12A), where the whole 623 

of the fan surface dates from the Little Ice Age (Lewis & Birnie 2001; McEwen et al. 624 

2011).  625 

 626 

 627 

Conclusions 628 

 629 

• Boulder deposits from four subalpine alluvial fans in the SE Jostedalsbreen 630 

region of southern Norway were dated using SHD, demonstrating the 631 

usefulness of this technique for establishing the exposure-age of surface 632 

boulders in the context of the evolution of alluvial fans. The 47 SHD ages 633 

were established with 95% confidence intervals of ~700–900 years and were 634 

sufficient in number to determine a chronology of aggradational events during 635 

the Holocene based on age-frequency distributions and probability density 636 

functions.   637 

 638 

• SHD ages indicated that a major phase of alluvial fan aggradation commenced 639 

immediately following regional deglaciation at ~9.7 ka and peaked at ~9.0–8.0 640 

ka. This is attributed to paraglacial processes within unvegetated and only 641 

partially forested catchments. On three of the fans, later aggradation failed to 642 

bury the Early-Holocene deposits, which is consistent with a regional decline 643 

in the effectiveness of paraglacial processes through the Middle Holocene. The 644 

increase in glacierization of the catchments from ~6.0 ka (neoglaciation) and 645 

especially after ~4.0 ka, which accompanied climatic deterioration and 646 

culminated in the Little Ice Age of the last few centuries, accounts for the 647 

limited number of boulder deposits and reduced aggradation over the Late 648 

Holocene. Topography of the catchments, combined with differences in the 649 

timing and extent of glaciers in the catchments during deglaciation and later 650 

neoglacial glacierization, explains the local differences in fan evolution.  651 

 652 
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• Alluvial fan aggradation and boulder concentrations on fan surfaces are 653 

commonly attributed to fluvial activity (water floods) and/or debris flows. This 654 

study highlights the potential importance of debris floods, of which relatively 655 

little is known, especially in the context of alluvial fan evolution. The 656 

morphology of the boulder deposits on our fans is distinctive, consisting of 657 

broad, low ridges with distal splays but no evidence of the levées characteristic 658 

of debris flows. The degree of boulder rounding and crude sorting present in 659 

the boulder deposits, and the catchment characteristics also point to an 660 

intermediate flow-type between water flow and debris flow. Such flows 661 

require a debris concentration of 40-70% by weight, which we argue was 662 

attained during the paraglacial reworking of till deposits in these steep 663 

catchments. 664 

 665 

• Our results have led to the development of a conceptual model of alluvial fan 666 

evolution for glacierized catchments and recently deglaciated mountains SE of 667 

the Jostedalsbreen ice cap (Fig. 12). A phase of ‘intense paraglacial 668 

aggradation’ is succeeded by phases of ‘reduced paraglacial aggradation’, ‘fan 669 

surface stability’ and ‘neoglacial re-activation’. The model incorporates the 670 

timing of deglaciation, subsequent glacier activity, catchment topography and 671 

vegetation cover, sediment sources and climatic changes linked to the 672 

hydrological regime, all of which are effective controls on fan aggradation. 673 

The model should be applicable to some degree in other recently deglaciated 674 

mountain regions with small, steep catchments, if only as a template for 675 

comparison. 676 

 677 
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FIGURE CAPTIONS 1144 
 1145 
Fig. 1. Location of the study area SE of the Jostedalsbreen ice cap in southern 1146 
Norway. 1147 
 1148 
Fig. 2. The study area, the alluvial fans, their catchments, and the location of sites 1149 
used as ‘young’ (Y) and ‘old’ (O) control surfaces for SHD dating. Note also the 1150 
location of Fig. 4 A, B. 1151 
 1152 
Fig. 3. Kupegjelet fan, Austerdalen, from opposite valley side. Note extensive boulder 1153 
deposits on the fan surface, and the rugged catchment with exposed bedrock on its 1154 
upper slopes. 1155 
 1156 
Fig. 4. Aerial photographs of the alluvial fans flown in 2017 showing numbered 1157 
boulder deposits and fan outlines. A. Kvamsdalen and Erikstølsdalen. B. Snøskreda 1158 
and Kupegjelet (source: https://www.norgeibilder.no/). 1159 
 1160 
Fig. 5. Boulder deposits on fan surfaces. A. Typical wide boulder ridge (Kupegjellet 1161 
17, up-slope view). B. Narrow boulder ridge (Kupegjellet 13, down-slope view). C. 1162 
Typical boulder splay at the distal end of a ridge (Kupegjellet 16). D Boulder ‘fingers’ 1163 
extending from the distal end of a boulder splay (Kupegjellet 10). E. Steep-fronted 1164 
(lobe-like) boulder splay (Kupegjellet 8). F. Boulder ‘finger’ extending from a steep-1165 
fronted boulder splay (Snøskreda 1).  1166 
 1167 
Fig. 6. A. Frequency distributions of Schmidt hammer R-values for control points of 1168 
‘old’ (unshaded) and ‘young’ (shaded) control points. B. The calibration equation and 1169 
calibration curve. (A) and (B) are linked by the dashed vertical lines representing the 1170 
mean R-values of the control points. 1171 
 1172 
Fig. 7. Schmidt hammer R-value distributions for 47 boulder deposits from four 1173 
alluvial fans: Kvamsdalen (Kn), Erikstølsdalen (En), Kupegjelet (Kt) and Snøskreda 1174 
(Sa). Vertical lines indicate the mean R-values from the ‘old’ and ‘young’ control 1175 
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points. Sample size (n) was 100 boulders for each boulder deposit, except for Kn 1-4 1176 
where n = 150. 1177 
 1178 
Fig. 8. SHD ages and probability density distributions for boulder deposits from each 1179 
fan: Kvamsdalen (A), Erikstølsdalen (B), Kupegjelet(C) and Snøskreda (D). SHD age 1180 
for each boulder deposit is represented by the mean boulder exposure age (circled) 1181 
and 2σ confidence interval (horizontal line). The probability density function for each 1182 
boulder deposit is shown as a normal distribution; combined probability density 1183 
distributions are also shown for each fan (thick black lines). In (E), the frequency of 1184 
SHD ages in 500-year intervals for the combined data set is shown together with the 1185 
regional probability density distribution (thick black line). Regional deglaciation 1186 
followed the Erdalen Event (10.2-9.7 ka), which is shown by the shaded vertical band 1187 
across all parts of the figure. 1188 
 1189 
Fig. 9. Lichen size (mean of the five largest lichens) and lichenometric age for 47 1190 
boulder deposits from the four fans. Lichenometric age uses the 5.1 calibration 1191 
equation of Bickerton & Matthews (1991, 1992). 1192 
 1193 
Fig. 10. Mean roundness (mean of 25 boulders) for 37 boulder deposits from the four 1194 
fans. Mean roundness values for sub-angular (SA, 3.0) and sub-rounded (SR, 4.0) 1195 
clasts are indicated. 1196 
 1197 
Fig. 11. The largest boulders for 47 boulder deposits from the four fans. A. Maximum 1198 
boulder size B. Median size (D50) of the 10 largest boulders. 1199 
 1200 
Fig. 12. Regional conceptual model of alluvial fan evolution in recently-deglaciated 1201 
mountains related to Holocene glacier and climatic variations. A. Phases of fan 1202 
development since deglaciation in the Jostedalsbreen region. B. Schematic intensity of 1203 
paraglacial and neoglacial drivers of aggradation. C. Generalized size of the 1204 
Jostedalsbreen ice cap (based on Nesje 2001) and D. Smoothed mean annual air 1205 
temperature (MAAT) and annual precipitation (AP) anomalies for the normal period 1206 
AD 1961-1990 in western Norway (based on Mauri et al. 2015; Hilger 2019). 1207 
 1208 
 1209 


