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Bayesian Estimation of Human Impedance and
Motion Intention for Human-Robot Collaboration

Xinbo Yu, Wei He, Yanan Li, Chengqian Xue, Jianqiang Li, Jianxiao Zou, and Chenguang Yang

Abstract—This paper proposes a Bayesian method to acquire
the estimation of human impedance and motion intention in a
human-robot collaborative task. Combining with prior knowl-
edge of human stiffness, estimated stiffness obeying Gaussian
distribution is obtained by Bayesian estimation and human
motion intention can be also estimated. An adaptive impedance
control strategy is employed to track a target impedance model
and neural networks are used to compensate for uncertainties in
robotic dynamics. Comparative simulation results are carried out
to verify the effectiveness of estimation method and emphasize
the advantages of the proposed control strategy. The experiment,
performed on Baxterr robot platform, illustrate a good system
performance.

Index Terms—neural networks, adaptive impedance control,
human impedance, human motion intention estimation, Bayesian
estimation.

I. INTRODUCTION

Service robots are becoming more significant in our daily
lives and help human partners at home or in social environ-
ments [1]–[4]. Considering many tasks that need at least two
persons to complete, such as moving a table, one person finds
difficulties due to limits of the maximum extension of human
arm and human load ability, so it needs another person (“co-
operator”) to cooperate with him/her (“initiator”). To ensure
finishing the task successfully, the “initiator” should perceive
a precise ordered location and know prior task processes, but
more than that, the movement of this “cooperator” should be
compliant to the motion of “initiator” completely. It means that
“cooperator” will need to know motion intention of “initiator”
and adapt to movement and interaction force of ”initiator”.
Obviously, collaborative robots, which are centered on human
task requirement, have the ability to assist human partner and
supersede cooperator’s work in such kind of tasks [5]–[8].

Let us consider a classical physical human-robot interaction
(pHRI) scenario as in Fig. 1. Abundant control strategies
are developed for pHRI [9], [10] and various adaptive or
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learning control strategies also draw much attention from
scholars [11]–[16]. Impedance control, firstly proposed by
Hogan [17], is used to relate interactive force with deviations
from desired states. Adaptive impedance control methods
are proposed subsequently, e.g., [18]–[21]. Compared with
hybrid force/position control, impedance control shows better
robustness and does not need transitions between contact and
non-contact situations. Although traditional impedance control
has shown good performance in pHRI [22], it only enables
human to change the robot’s actual trajectory but not the
robot’s desired trajectory [23]. If robot has knowledge of
human motion intention [24], it can regard human motion
intention as its own desired trajectory and human will cost less
effort to accomplish the task. In [25], human motion intention
has been estimated by online neural networks (NNs) based
on available sensory information, an updating law is designed
and the robot moves to time-varying human’s intended position
actively. In [26], an inversion-based approach is proposed to
estimate the human intent by demonstration and it is used in
input updating for improving trajectory tracking accuracy. The
effectiveness of human guided iterative learning control has
been proven by human-in-loop trajectory tracking experiment.
[27] proposes a method to predict the next movement of the
human partner who is collaborating with robot by applying
inverse optimal control and goal set iterative replanning. In
[28], human motion intention is identified to enable the robot
to follow human compliantly in fast point-to-point tasks.

When robot interacts with human in a constrained motion
form, an estimation method of human impedance should be
considered for improving the system stability during pHRI
[29]–[32]. By tuning a target impedance based on human
impedance estimation, variable target impedance parameters
extend the robot learning skills beyond trajectory tracking, in
which robot is gifted with submissive performance and more
advanced skills that involve, among others, contacting with
human partner. Some common contact impedance estimation
methods are analyzed in [33], which include recursive least
squares method, model reference and indirect adaptive method
and signal processing method. Using information extracted
from programming by human demonstration, [34] proposes a
method to estimate environmental stiffness which is obtained
according to covariance of Gaussian mixture model. In [35],
the tutor transfers a specific sawing skill to the robot success-
fully, by using electromyography (EMG) signals to estimate
tutor stiffness in pHRI. In [36], desired impedance parame-
ters are obtained based on gradient-following and betterment
methods. In [37], the optimal desired stiffness is designed by
using human operator’s electromyography (EMG) signals in
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an upper limb robotic exoskeleton application. In [38], [39],
in order to estimate human impedance characteristics, a small
external perturbation to the human arm is required in the
cooperative task.

The abundant control strageties of nonlinear systems are
proposed in recent years [40]–[45]. Model-based control s-
trategies have more precise tracking capacities than classical
PID control. In addition it can avoid spending time finding
proper PID values of gains. The researches on adaptive control
also draw much attention [46]–[48]. However, uncertainties in
model dynamics are ubiquitous [49], [50] and have attracted
attention of researchers [51]–[55]. In [56], radial basis function
neural networks (RBFNN) are used to handle uncertainties
in robotic dynamics, and the back-stepping method is used
to design a stable controller. This RBFNN method has been
used in applications of robotic flexible joints [57], output and
input constraints [58]–[63] and teleoperation [64]. In [65], NN
are employed to compensate for uncertainties in the presence
of unknown dynamics of both the grasped object and dual
robotic manipulators. A switching method is integrated into
controller to achieve global stability. In [66], an adaptive robust
control design is proposed for multiple mobile manipulators,
a common object in contact with a rigid surface is grasped by
multiple mobile manipulators and they show robustness not
only to parametric uncertainties but also to external distur-
bances. Some observer-based adaptive control strategies are
also proposed for solving unknown disturbance or unknown
states [67]–[72].

Bayesian estimated methods are widely utilized in dealing
with uncertainties in robot motion planning [73] and robot
visual tracking [74]. Some works have been done about tactile
perception in recent years [75]. In this paper, a Bayesian
method is proposed for human impedance and motion inten-
tion estimation, and neural impedance control strategy is used
to achieve efficient human-robot cooperation.

The construction of this paper is described as follows: in
Section II, the dynamics of human and robot are presented
and the task objective is introduced; in Section III, a Bayesian
estimation method is employed in human stiffness estimation,
and the human motion intention is estimated according to
the dynamic relationship between human stiffness and motion
intention; in Section IV, impedance control is analyzed, NNs
are used to handle model uncertainties in control design,
and stability analysis is proved by constructing Lyapunov
function candidates; in Section V, comparative simulations
are carried out to show the advancement of our proposed
method; in Section VI, an experiment is designed to evaluate
the performance of our controller design on Baxterr robot
platform; in Section VII, conclusion is presented.

II. PROBLEM FORMULATION

In this paper, we consider an object transporting task as
shown in Fig. 1. In this task, human will lead by applying an
interaction force to the object and robot will cooperate with
human to lift the object on the other side.

A. Dynamics
I. Robot’s Dynamic Model

Human Robot

Human-robot cooperative object transporting task

Human target position

object

Robot desired position

Fig. 1: A scenario where human and robot collaborate to
perform an object transporting task. Human is an “initiator” of
the task, i.e., human will lead the task and he/she knows the
task target position, and robot will be obedient completely to
help human to finish the task, i.e., robot will be a “cooperator”.

We consider the robot as an m-DOF rigid manipulator, so
the robotic dynamics in joint space can be described as follows

M(q)q̈ + C(q, q̇)q̇ +G(q) = JT (q)fr + τ, (1)

where q, q̇, q̈ ∈ Rm are the joint angle, velocity and acceler-
ation vectors, respectively. M(q) ∈ Rm×m is the symmetric
and positive definite inertia matrix, C(q, q̇)q̇ ∈ Rm is Coriolis
and centripetal vector, G(q) ∈ Rm denotes gravity vector,
τ ∈ Rm denotes control input vector, fr ∈ Rh is the vector
of the interaction force between the robot and the transferred
object, J(q) ∈ Rh×m is the Jacobian matrix, where h denotes
the dimension in Cartesian space. The forward kinematics of
the robot is given by x = Φ(q), differentiating x with respect
to time we get ẋ = J(q)q̇. Based on inverse kinematics, q̇ and
q̈ in joint space can be described as

q̇ = J−1(q)ẋ

q̈ = J̇−1(q)ẋ+ J−1(q)ẍ, (2)

where J−1(q) denotes the inverse of J(q), x, ẋ, ẍ ∈ Rh denote
the position, velocity and acceleration vectors in Cartesian
space, respectively. By substituting (2) into (1), we obtain
robot’s dynamic model in Cartesian space as follows

Mr(x)ẍ+ Cr(x, ẋ)ẋ+Gr(x) = u+ fr, (3)

where the inertia matrix Mr(x) ∈ Rh×h, the Coriolis and
centripetal force vector Cr(x, ẋ)ẋ ∈ Rh, the gravitational
force vector Gr(x) ∈ Rh and the control force vector u ∈ Rh

in the Cartesian space in (3) can be calculated as

Mr(x) = J−T (q)M(q)J−1(q)

Cr(x, ẋ) = J−T (q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q)

Gr(x) = J−T (q)G(q)

u = J−T (q)τ. (4)

II. Human’s Dynamic Model
In pHRI, the dynamic model of human in Cartesian space

in h dimension can be simply described as a spring model

fh = Kh(xh − x), (5)

where Kh ∈ Rh×h denotes human’s stiffness matrix, xh ∈ Rh
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denotes human’s target position vector in h dimension, i.e.,
human motion intention, x ∈ Rh denotes actual position, and
fh ∈ Rh denotes the interaction force vector between human
and transferred object.

B. Task objective

In this task, the most important problems are how to acquire
human stiffness and how to obtain human motion intention
in (5). If robot knows human motion intention and human
stiffness, it will be convenient to design impedance controller
for efficient human-robot interaction. In our task, we want
to make human and robot act with a same behavior for
performing tasks successfully. If they have different behaviors
during a cooperative task, the task will be inefficient or
unsuccessful. The same behavior means that the robot and
human have a same initial position and a same moving target
position, and the human’s stiffness matrix Kh should be same
as the robot’s stiffness matrix Kd. Therefore, we firstly design
a target impedance model for the robot, which is described as
below:

−fr = Λd(ẍd − ẍ) +Dd(ẋd − ẋ) +Kd(xd − x). (6)

where Λd is the desired inertia matrix, Dd is the desired
damper matrix, Kd is the desired stiffness matrix, and xd

denotes the robot’s desired target position. Considering a slow
speed human-robot interactive process, (6) can be simplified
as

−fr = Kd(xd − x), (7)

because ẋ and ẍ are close to zero. The simplified target
impedance model (7) shows dynamic relationship between
displacement and interaction force clearly. As it can be seen
from (5), in this cooperative object transporting task, we
should design the robot desired target position xd as human
motion intention xh and design Kd as human stiffness Kh.
However, human motion intention xh and human stiffness
Kh are unknown to robot. Therefore, we need to propose
an estimation method to obtain an estimate of human motion
intention x̂h and an estimate of human stiffness K̂h. We can
write the estimate of (5) in one dimension as below

f̂h1 = K̂h1(x̂h1 − x1), (8)

where K̂h1, x̂h1 and f̂h1 denote the estimates of human
stiffness parameter, human target position and interaction force
between human and object in one dimension, respectively.

In this paper, we regard the transporting object as a mass
point of which the tiny mass and volume can be ignored.
Therefore, the interaction force between human and transferred
object fh is the same as the interaction force between robot and
transferred object fr. This leads to a scenario where human
and robot has a direct physical contact. When we measure fr
by the force sensor mounted on the end-effector of robot, fh
can be obtained.

The control architecture is shown in Fig. 2. In the following
two sections, we first explain how to estimate human’s target
position and stiffness, and then design a controller to achieve
desired robot’s impedance.

-

Human motion 
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Neural Network 

Impedance Control
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Dynamics
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ˆ
d hK K=
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+

Fig. 2: Control Architecture

III. HUMAN STIFFNESS LEARNING AND MOTION
INTENTION ESTIMATION

Bayesian parameter estimation method is an important
method to estimate unknown parameters. We use this method
to get the estimation of Kh1 and xh1.

First, we establish a quadratic cost function to evaluate the
estimation accuracy as below:

λ = (
f̂h1(t− 1)− f̂h1(t)

ẋ1(t)
− fh1(t− 1)− fh1(t)

ẋ1(t)
)2. (9)

Remark 1: fh1(t−1)−fh1(t)
ẋ1(t)

can be regarded as Kh accord-
ing to (5), so we can use (9) to evaluate the estimation accuracy
of Kh. fh1 and ẋ1 can be measured by force and velocity
sensors, respectively.

Remark 2: Similar idea has been used in [76] for estimating
human stiffness in real-time.
We assume that fh1(t−1)−fh1(t)

ẋ1(t)
follows the Gaussian distribu-

tion, so the random variable set κ1 of fh1(t−1)−fh1(t)
ẋ1(t)

obeys
the following distribution:

κ1 ∼ N(µ, σ2), (10)

where N(∗) denotes the Gaussian distribution function, µ
denotes the mathematical expectation, and σ2 denotes the
variance of random variable set κ1. Regarding that the actual
human stiffness parameter Kh1 can be deemed as µ, we
can estimate Kh1 according to Bayesian parameter estimation
method if σ2 is known to the control designer. We rewrite the
cost function (9) as follows

λ = (µ̂− µ)2, (11)

where µ̂ is the estimate of µ. We can obtain the predictor
probability distribution of stiffness parameter p(µ) as follows

p(µ) ∼ N(µ0, σ
2
0), (12)

where µ0, σ2
0 denote predictor expectation and variance of µ,

and their values can be found based on the literature about
human stiffness measurement [77]. We can obtian the updater
probability distribution p(µ | κ) as follows

p(µ | κ) = p(κ | µ)p(µ)∫
p(κ | µ)p(µ)dµ

, (13)

where p(κ | µ) denotes the joint probability distribution, and
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it can be calculated as

p(κ | µ) =
n∏

i=1

p(
fh1i(t− 1)− fh1i(t)

ẋ1i(t)
| µ), (14)

where fh1i(t−1)−fh1i(t)
ẋ1i(t)

is the i-th element of a set κ. Substi-
tuting (12), (14) to (13), we can obtain the updater probability
distribution p(µ | κ) as follows

p(µ | κ) = αp(κ | µ)p(µ), (15)

where α is introduced to absorb the irrelevant terms about
µ. Considering that p(κ | µ) and p(µ) follow the Gaussian
distribution, we can rewrite (15) as

p(µ | κ) = α
n∏

i=1

1√
2πσ

exp(−1

2

( fh1i(t−1)−fh1i(t)
ẋ1i(t)

− µ)2

σ2
)

1√
2πσ0

exp(−1

2

(µ− µ0)
2

σ2
0

)

= α1exp(−
1

2
(

n∑
i=1

( fh1i(t−1)−fh1i(t)
ẋ1i(t)

− µ)2

σ2

+
(µ− µ0)

2

σ2
0

))

= α2exp(−
1

2
((

n

σ2
+

1

σ2
0

)µ2

−2(
1

σ2

n∑
i=1

fh1i(t− 1)− fh1i(t)

ẋ1i(t)
+

µ0

σ2
0

)µ)

(16)

where α1 and α2 are parameters used to absorb the irrelevant
items of µ. Note that p(µ | κ) follows the Gaussian distribu-
tion, so we can conclude that

p(µ | κ) = 1√
2πσn

exp(−1

2

(µ− µn)
2

σ2
n

) ∼ N(µn, σ
2
n). (17)

Because the coefficient in exponential term in (17) equals its
counterpart in (16), we can obtain

1

σ2
n

=
n

σ2
+

1

σ2
0

µn

σ2
n

=
n

σ2
µ̂n +

µ0

σ2
0

, (18)

where

µ̂n =
1

n

n∑
i=1

fh1i(t− 1)− fh1i(t)

ẋ1i(t)
. (19)

We can conclude that

µn =
nσ2

0

nσ2
0 + σ2

µ̂n +
σ2

nσ2
0 + σ2

µ0

σ2
n =

σ2σ2
0

nσ2
0 + σ2

. (20)

If we use the quadratic cost function like (9), the Bayesian
parameter estimation µ̂ can be described as the conditional

expectation when κ is given and µ can be estimated as follows

µ̂ =

∫
µp(µ | κ)dµ =

∫
µ

1√
2πσn

exp(−1

2

(µ− µn)
2

σ2
n

)dµ

= µn. (21)

Thus, the Bayesian estimation of µ can be rewritten as:

µ̂ =
nσ2

0

nσ2
0 + σ2

µ̂n +
σ2

nσ2
0 + σ2

µ0

(µ̂n =
1

n

n∑
i=1

fh1i(t− 1)− fh1i(t)

ẋ1i(t)
),

σ̂2 = σ2
n =

σ2σ2
0

nσ2
0 + σ2

. (22)

From (22) we can conclude that the estimate of human
stiffness parameter K̂h1 remains in the interval from (µ̂− σ̂)
to (µ̂+ σ̂), i.e.,

Kh1min = µ̂− σ̂,

Kh1max = µ̂+ σ̂. (23)

Then, we can obtain the corresponding human motion inten-
tion estimate x̂h1 as follows

x̂h1 ∈ (
fh1

Kh1max
+ x1,

fh1
Kh1min

+ x1). (24)

Since K̂h1 obeys Gausian distribution, the corresponding
human motion intention estimate x̂h1 also obeys Gausian
distribution, i.e.,

x̂h1 ∼ N(µx, σ
2
x), (25)

where µx and σx are the expectation and the variance of x̂h1,
respectively. They can be described as

µx =
fh1

Kh1max
+ x1 +

fh1

Kh1min
− fh1

Kh1max

2
,

σx =

fh1

Kh1min
− fh1

Kh1max

2
, (26)

where x1 denotes the position in one dimension.
Along with increasing n, σ̂ converges to a small value, and

µ̂ converges to µ̂n. µx converges to fh1

µ̂n
+x1 and σx converges

to zero. Using this method we can estimate Kh1 and xh1 in
one dimension. In a similar way, human stiffness matrix K̂h

and motion intention vector x̂h can be obtained by Bayesian
parameter estimation.

IV. CONTROL DESIGN

After x̂h and K̂h are obtained, we set xd as x̂h, and set
Kd as K̂h to achieve the task objective. We set Dd as Dd =
diag[ℓ

√
Kd1, ℓ

√
Kd2, ..., ℓ

√
Kdn], where ℓ denotes a proper

coefficient between 0 and 1. We set inertia matrix Λd close to
the robot’s inertia matrix Mr. According to (6), we construct
the error signal ϖ as

ϖ = Λd(ẍd − ẍ) +Dd(ẋd − ẋ) +Kd(xd − x) + fr

= Λdë+Ddė+Kde+ fr, (27)

where e = xd−x, and if we want to achieve the relationship in
(6), we should make ϖ converge to zero. To facilitate analysis,
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we define another impedance error ω as

ω = Kfϖ = ë+Kcė+Kke+Kffr (28)

where Kf = Λ−1
d , Kc = Λ−1

d Dd, Kk = Λ−1
d Kd. We choose

two positive-definite matrices A and B as

A+B = Kc

Ȧ+BA = Kk. (29)

And we define

ḟrl +Bfrl = Kffr. (30)

According to (29) and (30), we rewrite (28) as

ω = ë+ (A+B)ė+ (Ȧ+AB)e+ ḟrl +Bfrl. (31)

Similar in [78], we define an auxiliary variable z as

z = ė+Ae+ frl, (32)

so we can rewrite (31) as

ω = ż +Bz. (33)

When z converges to zero, we can conclude that ż → 0 if its
limit exists. We define a virtual state variable vector xr as

ẋr = ẋd +Ae+ frl, (34)

so z can be rewritten as

z = ẋr − ẋ, (35)

In the following, we employ z to design an impedance
controller and analyze control stability.

Consider the following Lyapunov function candidate as

V1 =
1

2
zTMr(x)z. (36)

Differentiating V1 with respect to time, we have

V̇1 =
1

2
zT Ṁr(x)z + zTMr(x)ż, (37)

matrix θT (2Cr(x, ẋ) − Ṁr(x))θ = 0,∀θ ∈ Rn, where
(2Cr(x, ẋ)−Ṁr(x)) is skew-symmetric. Thus, we can rewrite
V̇1 as

V̇1 = zTCr(x, ẋ)z + zTMr(x)ż. (38)

Considering (35), we rewrite (1) as

Mr(x)ż + Cr(x, ẋ)z = −u− fr +Mrẍr + Crẋr +Gr, (39)

so V̇1 can be written as

V̇1 = zT (−u− fr +Mrẍr + Crẋr +Gr), (40)

and the model-based impedance controller u can be designed
as

u = Kgz +Mrẍr + Crẋr +Gr − fr. (41)

Where Kg is a positive definite matrix, when u is designed as
(41), we can obtain

V̇1 = −zTKgz < 0. (42)

To address uncertainties in robot’s dynamic model, i.e.,
Mr(x), Cr(x, ẋ) and Gr(x) are unknown in practical situ-
ations, an adaptive impedance control is designed in this part.
The adaptive law is designed as

˙̂
Wi = Γi[Si(Zi)zi − δiŴi], i = 1, 2, ..., n, (43)

where Ŵi is the weight estimate of NN, Γi = ΓT
i is a positive

gain matrix and δi is a small positive constant which is used
to improve the system robustness. Zi=[xT , ẋT , ẋT

r , ẍT
r ] is

the input of NN. ŴTS(Z) is used to estimate W ∗TS(Z) as
below

W ∗TS(Z) = Mrẍr + Crẋr +Gr − ϵ(Z), (44)

where W ∗
i is the actual weight of NN, S(Z) denotes the basis

function, the estimation error ϵ(Z) stays in bounds over the
compact set Ω, ∀Z ∈ Ω, ||ϵ(Z)|| < ϵ̄, with ϵ̄ as a positive
constant.

Assumption 1 [79]: There exist ideal weight vectors W ∗

such that |ϵ(Z)| ≤ ϵ̄ with constant ϵ̄ > 0 for all Z ∈ ΩZ .

The NN impedance controller can be designed as

u = Kgz + ŴTS(Z)− fr. (45)

We consider another Lyapunov function V2 as

V2 =
1

2
zTMr(x)z +

1

2

n∑
i=1

W̃i
T
Γ−1
i W̃i. (46)

We define the weight error W̃i = Ŵi − W ∗
i . Differentiating

V2 with respect to time, we have

V̇2 = zT (−u− fr + (Mrẍr + Crẋr +Gr))

+

n∑
i=1

W̃T
i Γ−1

i
˙̂
Wi. (47)

Substituting (45) to (47), we can obtain

V̇2 = zT (−Kgz − ŴTS(Z)− fr + fr + (Mrẍr

+Crẋr +Gr)) +

n∑
i=1

W̃T
i Γ−1

i
˙̂
Wi, (48)

Substituting (43) to (48), we have

V̇2 = zT (−Kgz − ŴTS(Z) +W ∗TS(Z) + ϵ(Z))

+
n∑

i=1

W̃T
i Γ−1

i {Γi[Si(Zi)zi − δiŴi]}

= −zTKgz − zT ŴTS(Z) + zTW ∗TS(Z) + zT ϵ(Z)

+

n∑
i=1

ziW̃
T
i Si(Zi)−

n∑
i=1

W̃T
i δiŴi. (49)

We can obtain

V̇2 ≤ −zT (Kg −
1

2
In×n)z +

1

2
||ϵ(Z)||2

+
n∑

i=1

δi
2
(||W ∗

i ||2 − ||W̃i||2)

≤ −ρV2 + C, (50)
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Fig. 3: A two-link revolute joint robot: human partner is
holding the handle on its end-effector, and an interaction force
is applied to the force sensor.

where

ρ = min(min(
2ςmin(Kg − 1

2I)

ςmax(Mr(x))
,min(

δi

ςmax(Γ
−1
i )

)),

C =
1

2
||ϵ̄||2 +

n∑
i=1

δi
2
||W ∗

i ||2. (51)

where ς denotes the eigenvalue of a matrix, ϵ̄ denotes the
bound of ϵ. For ensuring ρ > 0, we should make ςmin(Kg −
1
2I) > 0, ςmax(Γ

−1
i ) > 0.

Theorem 1: For each compact set Ω0, the initial conditions
z0 and Ŵ0 are in bounds, the controller (45) guarantees that
the closed-loop error signal z remains in the compact set Ωz ,
and the weight error W̃ remains in the compact set ΩW̃ , i.e.,

Ωz = {zϵRn| ||z|| ≤

√
D

ςmin(Mr(x))
}

ΩW = {W̃ ϵRl×n| ||W̃ || ≤

√
D

ςmin(Γ−1)
}, (52)

where D = 2(V2(0) + C)/ρ with positive constants C and ρ
is given in (51).

V. SIMULATION

In this section, we consider a scenario where a human
partner is holding hand grasp on robotic end-effector with a
force sensor. A two-link revolute joint robot shown in Fig. 3
is considered and an interaction force is applied to the end-
effector by the human partner.

In Fig. 3, m1, m2 and l1, l2 denote the mass and length of
link 1, 2, respectively. lc1, lc2 denotes the distance from joint 1,
2 to the mass center of link 1, 2, and I1, I2 denotes the moment
of Inertia of link 1, 2. The simulation parameter values
are chosen as: m1=2.0kg, m2=0.85kg, l1=1.40m, l2=1.24m,
lc1=0.70m, lc2=0.62m, I1=0.980kgm2, I2=0.953kgm2.

In simulations, robot’s dynamic model parameter matrices
M(q), C(q, q̇), G(q) in the joint space in (1) can be calculated

as

M(q) =

[
mt1 mt2

mt3 r(2)

]
(53)

C(q, q̇) =

[
ct1 ct2
ct3 0

]
(54)

G(q) =

[
gt1
gt2

]
, (55)

where mt1 = r(1) + r(2) + 2r(3)cos(q(3)), mt2 =
r(2) + r(3)cos(q(3)), mt3 = r(2) + r(3)cos(q(3)), ct1 =
−r(3)q(4)sin(q(3)), ct2 = −r(3)(q(2)+q(4))sin(q(3)), ct3 =
r(3)q(2)sin(q(3)), gt1 = r(4)gcos(q(1)) + r(5)gcos(q(1) +
q(3)), gt2 = r(5)gcos(q(1) + q(3)).

The system state variables q = [q(1); q(3)], q̇ = [q(2); q(4)],
q(1) and q(3) denote first and second joint angle, respectively,
q(2) and q(4) denote first and second joint angular velocity,
respectively. The variables r(1) = m1l

2
c1 +m2l

2
1 + I1, r(2) =

m2l
2
c2+I2, r(3) = m2l1lc2, r(4) = m1lc2+m2l1 and r(5) =

m2lc2. The Jacobian matrix in (1) can be obtained according
to l1, l2 and q as follow

J =

[
J11 J12
J21 J22

]
, (56)

where J11 = −l1sin(q(1)) − l2sin(q(1) + q(3)), J12 =
−l2sin(q(1) + q(3)), J21 = l1cos(q(1)) + l2cos(q(1) + q(3)),
J22 = l2cos(q(1) + q(3)).

If M(q), C(q, q), G(q) and J are obtained, we can calculate
robot’s dynamic parameter matrices in the Cartesian space
Mr(x), Cr(x, ẋ) and Gr(x) in (4).

We consider that a human partner applies interaction force
to the hand grasp on the end-effector from initial position
[0.85m, 1.05m] at the initial velocity [0m/s, 0m/s] to the target
position [0.75m, 0.75m].

A. The estimation of human stiffness and motion intention

We suppose that human’s real dynamic model in X-direction
can be described as fh1 = −300(x(1) − 0.75), where the
actual human stiffness in X-direction Kh1 = 300Nm, and
human motion intention in X-direction xd1 = 0.75m. We
use Bayesian method to estimate human stiffness Kh1 in X-
direction, and the same method is used for estimating Kh2 in
Y-direction. Firstly, we set a predictor probability distribution
of human stiffness parameter p(µ1) as follows

p(µ1) ∼ N(200, 102),

p(µ1) ∼ N(200, 152),

p(µ1) ∼ N(100, 102),

p(µ1) ∼ N(400, 102). (57)

In the random variable set κ1 that obeys the distribution
κ1 ∼ N(µ, 102), using the proposed method in Section III,
different predictor probability distributions of human stiffness
parameter Kh1 can be estimated as shown in Fig. 4(a). From
this figure, we can conclude that Kh1 can be estimated with
different mathematical expectations or different variances of
p(µ1). In Fig. 4(b), we can see that by setting different stiffness
parameters 200N/m, 300N/m, 400N/m, respectively, Kh1
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Fig. 4: human stiffness estimation in X-direction.
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Fig. 5: human motion intention estimation in X-direction.

can be successfully estimated by our proposed method in
the same predictor probability distribution of human stiffness
parameter.

In Fig. 5, human motion intention estimation x̂d1 and
variance of x̂d1 have been obtained by dynamic relationship
between xd1 and Kh1. Different human motion intentions
have been set as 0.45m, 0.75m and 0.90m when p(µ1) ∼
N(200, 102). We can see that with the proposed method,
different human motion intention can be estimated.

B. Impedance control with neural networks

As discussed in Section II, we set the target impedance
model as a simplified spring model fr1 = −Kr1(x(1)−xd1),
fr2 = −Kr2(x(3) − xd2) for convenient analysis, where
Kr1 = K̂h1, xd1 = x̂h1, Kr2 = K̂h2, xd2 = x̂h2. We use
NN to compensate for uncertainties in control design. The
RBFNN centers are chosen in the region of [−1, 1]× [−1, 1]×
[−1, 1] × [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1], the
number of NN nodes is chosen as 28, and the initial value of
NN weight is set as 0. Γ1 and Γ2 are selected as 100I, and
δi=0.002. And two important matrices A and B are calcu-
lated based on (29). In this human-robot interactive process,
human’s real model is described as fr1 = −300(x(1)−0.75),
fr2 = −300(x(3) − 0.75), human partner applies interaction
force fh = [fh1, fh2] to the hand grasp on the end-effector
from initial position [0.85m, 1.05m] at the initial velocity
[0m/s, 0m/s] to the target position [0.75m, 0.75m].

Fig. 6(a) shows the position and the position error in X-
direction between x(1) and xd1, Fig. 6(b) shows the velocity
and velocity error in X-direction between x(2) and ẋd1. Note
that when there exists no interaction force, the position error
and velocity error will converge to zero according to the
dynamical relationship in (6). Fig. 7(a) and Fig. 7(b) show the
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Fig. 6: position and velocity value and error in X-direction.
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ẋd2

x(4)

0 2 4 6 8 10
−10

−5

0

5

ve
lo

ci
ty

 e
rr

or
 [m

/s
]

t [s]

(b) velocity and velocity error.

Fig. 7: position and velocity value and error in Y-direction.

position and position error, the velocity and velocity error in
Y-direction, respectively. Fig. 8(a) shows the tracking perfor-
mance of velocity x(2) in X-direction, and Fig. 8(b) shows the
tracking performance of auxiliary variable z1 in X-direction.
We can conclude that under the proposed method, the error
signal ϖ converges to zero. Fig. 9 shows the interaction force
between human and object fr1 in X-direction.
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Fig. 9: interaction force in X-direction.
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Fig. 10: Baxterr robot experimental platform: there are two
computers and one Baxterr robot.

(a) the experimental results of impedance control without estimation: seen
from A-a to A-e, a human partner operates the robot to the target position 1;
seen from A-f to A-j, the interaction torque disappears and the robot moves
back to the initial position.

(b) the experimental results of impedance control with human motion intention
estimation: seen from B-a to B-e, a human partner operates the robot to the
target position 1; seen from B-f to B-j, the interaction torque disappears and
the robot still remains in the current position.

Fig. 11: the experimental results.

VI. EXPERIMENT

In this section, we consider a scenario where an interaction
force is applied to the arm of a robotic manipulator by a human
partner. We use the S0 shoulder joint on the right arm of dual-
arm humanoid robot Baxterr in our experiment. A human
robot interactive experiment is developed to prove the validity
of our proposed control method.

A. Experiment settings

Baxterr robot has torque sensors in every joint of both two
arms. Angle, angle velocity and torque information can be read
from its dedicated controller. Seen from Fig. 10, there are two
computers (A and B) for controlling robot and calculation in
this experiment. Computer A is used to calculate the neural
network compensation by Matlab Simulinkr and transform
the compensation value to the computer B by UDP. Computer
B is used to receive the robot state signals and generate control
signal to control the robot by Baxter Robot Operating System
SDK (RSDK) in Ubuntu 14.04 LTS. We rewrite the target

(a) angle with a target angle of 0.2rad. (b) interaction torque with a target angle
of 0.2rad.

(c) angle with a target angle of 0.8rad. (d) interaction torque with a target angle
of 0.8rad.

Fig. 12: angle and interaction torque when human moves the
robot to 0.2rad and 0.8rad considering that the human motion
intention and stiffness estimation are not involved.

impedance model in joint space as τfr = KS0(x − xd), and
we consider human impedance model in joint space as τfh =
Kh(x − xh). KS0 , Kh denote S0 and human joint stiffness
parameter, respectively and xh denotes the human target angle,
x denotes the current angle, and τfh denotes the interaction
torque.

B. Case 1. No estimation

In this part, we consider a scenario that a human partner
operates S0 shoulder joint of Baxterr robot’s right arm to the
human target angle. We design robot target impedance stiffness
parameter KS0 as 3Nm/rad, but different human target angles
xh: 0.2rad and 0.8rad. Fixed desired angle xd of robot is
considered in this experiment and the robot initial position
is set as 0rad. An interaction force is applied to the robot arm
from 3s to 13s. Seen from Fig. 11(a), the robot moves from
0rad to 0.5rad driven by human partner and back to 0rad under
the impedance control method. Fig. 12 shows that when KS0

is fixed, the interaction torques have proportional relationships
with the error between current angle x and desired angle xd.
Larger error between current position and xd will generate
greater interaction torque.

C. Case 2. Motion intention estimation

Motion intention estimation x̂d is involved in this part.
In Fig. 11(b), the robot moves from initial angle 0rad to
target angle of 0.5rad driven by human partner, an interaction
torque is applied to the robot arm from 3s to 8s, and the
robot will remain the current angle after 8s when motion
intention estimation based on Bayesian esitmated method is
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(a) angle with a target angle of 0.2rad. (b) interaction torque with a target angle
of 0.2rad.

(c) angle with a target angle of 0.8rad. (d) interaction torque with a target angle
of 0.8rad.

Fig. 13: angle and interaction torque when human moves the
robot to 0.2rad and 0.8rad considering that the human motion
intention estimation is involved.

involved. Fig. 13 shows relationships between the interaction
torques and x − xd when human moves robot to 0.2rad
and 0.8rad. As can be seen from Fig. 14(b) and 14(d), we
can conclude that the interaction torque under our proposed
method is smaller than the torque under impedance control
when motion intention estimation is not involved. And the
robot will remain in the position when interaction torque
disappears as can be seen Fig. 14(c). In this part, we also
utilize NN method to estimate human motion intention for
comparison with our proposed method. Indicated from Fig.
14(e), the convergence of NN estimation method is slower than
our proposed Bayesian estimation method. NNs rely on on-
line sensor information which will bring heavy computational
burden to influence convergence.

D. Case 3. Impedance estimation

In this part, the target angle impedance stiffness value is
set as 3Nm/rad and 15Nm/rad, respectively. The experiment
process is same as the process in Case 1. Indicated from Fig.
15, we can see the proportional relationships with K̂h and
interaction torque, i.e., larger stiffness will generate greater
interaction torque at the same angle displacement. We also
consider the human stiffness estimation based on Bayesian
method in Fig. 16, from which we can conclude that the
joint stiffness can be estimated by our proposed method.
In Fig. 17, we set the predictor probability distribution of
joint stiffness parameter as p(µ) ∼ N(1, 0.12), N(5, 0.12),
respectively. Joint stiffness can be estimated successfully con-
sidering different probability distributions of human stiffness
parameter.

(a) angle without human motion inten-
tion estimation.

(b) interaction torque without human
motion intention estimation.

(c) angle with Bayesian estimation
method.

(d) interaction torque with Bayesian es-
timation method.

(e) angle with NN estimation method. (f) interaction torque with NN estima-
tion method.

Fig. 14: angle and interaction torque when human moves the
robot to 0.5rad.

E. Case 4. Simultaneous estimations

In this part, we use Bayesian method to estimate joint
stiffness and human target angle simultaneously, where the
predictor probability distribution of stiffness parameter p(µ) is
set as p(µ) ∼ N(1, 0.12). The experiment process is divided
into two phases. In the first phase it is the same as the process
(S0 joint) in Case 2, where human partner moves the robot to
the target position 1. In the second phase, we utilize the joint
S1 to lift the robot to the target position 2. The mean and
standard deviation of the above measures are computed using
50 data points (10 human subjects × 5 repetitions). Each of
10 human subjects (P1, P2, ..., and P10) repeats the task for
5 times (T1, T2, T3, T4 and T5). Indicated from Fig. 18, we
can see that both human motion intention and joint stiffness
can be estimated successfully, which show the robustness
of the proposed method. We provide statistical analysis of
estimated stiffness of one human subject for 5 repetitions
when interacting with the robot’s S0 and S1 joints. Indicated
from Figs. 18(b) and 18(d), we can see that all estimated
stiffness parameters converge to a constant value. Table 1
shows that the convergence values are ”8.78± 0.13Nm/rad”
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(a) angle when K=3Nm/rad. (b) interaction torque when K=3Nm/rad.

(c) angle with when K=15Nm/rad. (d) interaction torque when
K=15Nm/rad.

Fig. 15: angle and interaction torque when K=3Nm/rad, 15N-
m/rad, respectively.

(a) angle when K is estimated. (b) interaction torque when K is estimat-
ed.

(c) K estimation.

Fig. 16: angle, interaction torque and stiffness estimation when
K is estimated.

(a) angle when predictor probability dis-
tribution p(µ) ∼ N(1, 0.12).

(b) angle when predictor probability dis-
tribution p(µ) ∼ N(5, 0.12).

(c) interaction torque when predic-
tor probability distribution p(µ) ∼
N(1, 0.12).

(d) interaction torque when predic-
tor probability distribution p(µ) ∼
N(5, 0.12).

(e) estimated stiffness when predic-
tor probability distribution p(µ) ∼
N(1, 0.12).

(f) estimated stiffness when predic-
tor probability distribution p(µ) ∼
N(5, 0.12).

Fig. 17: angle, interaction torque and estimated stiff-
ness when predictor probability distribution p(µ) ∼
N(1, 0.12), N(5, 0.12), respectively.

and ”9.33 ± 0.11Nm/rad” in S0 and S1 joints, respectively.
In Table 2, we can find that the stiffness of 10 human subjects
can be estimated successfully, and all estimated parameters
converge to constant values in reasonable times.

TABLE I: estimated stiffness value for human subject P1 when
interacting with robotic joints S0 and S1 for 5 repetitions (T1-
T5).

repetition S0 value (Nm/rad) S1 value (Nm/rad)
T1 8.67 9.33
T2 8.71 9.21
T3 8.78 9.19
T4 9.02 9.46
T5 8.70 9.45

mean 8.78 9.33
standard deviation 0.13 0.11

And the experimental results in a 7-degree-of-freedom are
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TABLE II: convergence mean time (within the 10 percent
range of convergence value) and stiffness value when human
subjects (P1-P10) interacting with robotic joint S0.

human subject mean time (s) stiffness (Nm/rad)
P1 15.10 8.78± 0.13
P2 6.28 6.47± 0.16
P3 7.50 10.19± 0.23
P4 11.25 13.23± 0.26
P5 5.25 5.78± 0.14
P6 4.50 7.92± 0.21
P7 10.25 15.32± 0.26
P8 9.75 8.32± 0.12
P9 5.75 9.93± 0.20
P10 6.08 7.28± 0.18

(a) interaction torques in joint S0. (b) estimated stiffness in joint S0.

(c) interaction torques in joint S1. (d) estimated stiffness in joint S1.

Fig. 18: interaction torque and estimated stiffness when human
subject P1 interacting with robotic joint S0 and S1 for 5
repetitions when predictor probability distribution p(µ) ∼
N(1, 0.12).

shown in Fig. 19, the proposed controller and Bayesian
estimation method are utilized in this task. Experiment results
on a Baxterr robot platform illustrate good performance.

VII. CONCLUSION

In this paper, a Bayesian method has been proposed to
estimate human impedance and motion intention in a human-
robot collaborative task. Estimated stiffness obeying Gaussian

Fig. 19: 7-degree-of-freedom experiment.

distribution has been obtained by Bayesian estimation com-
bining with prior knowledge of human stiffness. According
to the dynamic relationship, human motion intention can
be also estimated. NNs have been used to compensate for
uncertainties in robotic dynamics and an adaptive impedance
control strategy has been employed to track a target impedance
model. Comparative simulation and experimental results have
been carried out to verify advantages of the proposed control
strategy and the effectiveness of estimation method.
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