
ENGINEERING APPLICATIONS OF NEURAL NETWORKS 2018

A honeybees-inspired heuristic algorithm for numerical optimisation

Muharrem Düğenci1 • Mehmet Emin Aydin2

Received: 11 January 2019 / Accepted: 5 October 2019
� The Author(s) 2019

Abstract
Swarm intelligence is all about developing collective behaviours to solve complex, ill-structured and large-scale problems.

Efficiency in collective behaviours depends on how to harmonise the individual contributors so that a complementary

collective effort can be achieved to offer a useful solution. The main points in organising the harmony remain as managing

the diversification and intensification actions appropriately, where the efficiency of collective behaviours depends on

blending these two actions appropriately. In this paper, a hybrid bee algorithm is presented, which harmonises bee

operators of two mainstream well-known swarm intelligence algorithms inspired of natural honeybee colonies. The parent

algorithms have been overviewed with many respects, strengths and weaknesses are identified, first, and the hybrid version

has been proposed, next. The efficiency of the hybrid algorithm is demonstrated in comparison with the parent algorithms

in solving two types of numerical optimisation problems; (1) a set of well-known functional optimisation benchmark

problems and (2) optimising the weights of a set of artificial neural network models trained for medical classification

benchmark problems. The experimental results demonstrate the outperforming success of the proposed hybrid algorithm in

comparison with two original/parent bee algorithms in solving both types of numerical optimisation benchmarks.

Keywords Swarm intelligence � Numerical optimisation � Bee-inspired algorithms � Diversification and intensification �
Training feed-forward neural networks

1 Introduction

Collective intelligence is one of the approaches commonly

found useful for problem-solving in the modern times. This

is motivated by the fact that collective effort pays off better

than individual effort in the real life and has been bought in

by computer science researchers and implemented in var-

ious problem-solving approaches. Swarm intelligence is

known to be a family of collective problem-solving

frameworks such as ant colony optimisation, particle

swarm optimisation and artificial bee colonies imposing

use of population of solutions, here-forth called swarm of

individuals. The main benefit of population-based meta-

heuristic approaches, particularly swarm intelligence

algorithms, is that the algorithms nicely harmonise local

search activities around various neighbourhoods without

guaranteeing to cover the whole search space. Therein, the

local search is devised, to a certain extent, to intensify the

search and enhancement activities are facilitated to diver-

sify the search for managing change among

neighbourhoods.

Diversification plays a crucial role to arrange visiting

unseen regions of the search space as efficiently as possible

so that the search effort for optimum solution would not be

trapped in locality and be able to keep enough energy for

further search. On the other hand, intensification is required

to make the search algorithm as focus as possible so that

any particular local region would not remain under-exam-

ined. A balanced/well-featured search algorithm har-

monises the actions required for both diversification and

intensification, which is required for effective and efficient

search. In fact, individual solution-driven search algo-

rithms conduct more intensified search, while population-

driven algorithms are more diversifying by their nature.

& Mehmet Emin Aydin

mehmet.aydin@uwe.ac.uk

Muharrem Düğenci

mdugenci@karabuk.edu.tr

1 Department of Industrial Engineering, Karabuk University,

Karabuk, Turkey

2 Department of Computer Science and Creative Technologies,

University of the West of England, Bristol, UK

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-019-04533-x(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04533-x&amp;domain=pdf
https://doi.org/10.1007/s00521-019-04533-x


Hence, swarm intelligence algorithms do require intensi-

fication of the search in local regions as they deliver very

diverse search by default. This feature applies to the

algorithms developed inspired of the collective behaviour

of honeybees, where a number of bees algorithm (BA) [25]

and artificial bee colony (ABC) [12] variants have been

redesigned to manage/handle such a harmony among var-

ious search actions. In fact, variants of both BA and ABC

algorithms are devised mainly for these purposes, where a

variety of difficult problems can be solved with a more

generalised search that well-featured with diverse and

focus search activities, adequately [4, 22, 34]. However, it

is observed that the existing mechanics of BA and ABC

algorithms do not sufficiently support intensification,

which drives us to further investigations.

The main aim of this paper is to propose a hybridising

framework to merge the strong search capabilities of both

BA and ABC to seek for higher efficiency in problem-

solving. Both algorithms, BA and ABC, have been

reviewed first to identify the strengths and weaknesses with

respect to intensification in search. Next, revisions for

better granularity level in search are proposed for removing

the weakness identified in both of BA and ABC, accord-

ingly, where the revised versions demonstrated that they

offer better granularity level in search steps to facilitate

further intensification. Finally, a hybridisation approach is

introduced to merge the strengths of both into a new

algorithm for further intensification and improved diversi-

fication. In this respect, the contributions of this paper can

be listed as follows:

• Reviewing the properties of both standard BA and ABC

algorithms with respect to diversification and intensi-

fication of the search.

• Improve the intensification properties of both algo-

rithms with appropriate revisions,

• Device a hybridisation approach/framework in which

the strengths of the algorithms are aligned to help

improve diversification of the search.

The rest of this paper is organised as follows: Sect. 2

introduces swarm intelligence algorithms inspired of nat-

ural honeybee colonies, Sect. 3 introduces related works

and identifies how this work differs from the related ones,

while Sect. 4 introduces the proposed approach including

revisions envisaged for the parent algorithms (BA and

ABC) and the proposed new hybrid algorithm. Section 5

includes a comprehensive experimental study to test the

performance of all algorithms, while Sect. 6 provides the

conclusions.

2 Swarm Intelligence and honeybees-
inspired algorithms

Swarm intelligence is one of the cutting edge soft com-

puting technologies used for solving various optimisation

problems in more efficient ways. This is because the

approaches and frameworks proposed are adaptive, flexible

and robust in the way that the algorithms handle the

problems using various techniques of collectivism. Col-

lective effort by each individual within the swarms is

managed by sharing the information regarding search

activities towards the common targets. That helps divers

the search by its nature.

Figure 1 sketches the search idea metaphorically deliv-

ered by honeybees, where a typical function, which has

multiple optima points, is explored through for the opti-

mum points, while the search conducted within a neigh-

bourhood by a team of bees is also spotted out to reflect the

idea and its implementation. This metaphoric idea has been

borrowed from honeybees and their way of collective

search by mainly two algorithms, as explained above. Both

of the algorithms are detailed in the following subsections.

Fig. 1 Search metaphorically

delivered by honeybees

Neural Computing and Applications

123



2.1 Bees algorithm (BA)

Bees algorithm is one of the mainstream swarm intelli-

gence algorithms inspired of natural honeybee colonies

introduced by Pham and his associates [25, 33]. It looks

like a typical population-based optimisation algorithm in

which solutions are considered as individual bees and are

evaluated based on the fitness function-like evaluation

rules, which are usually of simple objective functions. The

algorithm imposes a search procedure inspired of food/

nectar exploration process by honeybees within the nature.

An elitist approach is followed to search through the most

fruitful regions of the search space so that the optimum or a

useful near-optimum can be found as fast as possible

without causing further complexities. This algorithm has

not only been used for solving numerical optimisation

problems, e.g. benchmark functions, neural network train-

ing, etc. but also been considered for solving a variety of

combinatorial optimisation problems [19, 34].

Let X be a population of solutions, which is considered

to be the bee colony, and let xi ¼ xi;jji ¼ 1; . . .;N; j ¼
�

1; . . .;Dg represent solution i within this population, which

is also called an individual bee as a member of colony/

swarm, where N denotes the size of bee colony, N ¼ Xj j;
and D is the size of input set. Suppose also that FðxiÞ is a
function defined (fi : xi ! R) to measure the quality/fit-

ness of solution xi. The initial population/swarm of bees is

generated using xi;j ¼ xi;min þ q � xi;max � xi;min

� �
; where

xi;j is a data point for jth input of xi solution initialised to be

a random value within the range of xi;min; xi;max

� �
nor-

malised with the random number of q.
After generating the initial swarm, each individual bee is

evaluated using the fitness function created based on the

main objective of the problem tackled. The bees are, then,

classified based on their performance/fitness; a set of elite

bees, E; where ye 2 E and ye ¼ ye;jje ¼ 1; . . .; Ej j; j 2 D
� �

;

a set of moderate search bees, M; where zm 2 M and

zm ¼ zm;jjm ¼ 1; . . .; Mj j; j 2 D
� �

, and a set of employee

bees, I ; where xk 2 I and xk ¼ xk;jjk ¼ 1; . . .;
�

N � Ej j � Mj jð Þ; j 2 Dg. Therefore,X ¼ E
S
M

S
I , where

Ne ¼ Ej j;Nm ¼ Mj j; and Ij j ¼ N � Ej j � Mj jð Þ. In order

for moving to the next generation, E 2 X and M 2 X are

preserved ahead and the rest of the population, which are

employee bees, are scraped.

The next step of producing the next generation is to

deploy supporting bees, which are not created initially, but

later while breeding the new generation in order for sup-

porting each elite, ye; and moderate, zm, bees within the

neighbourhood of each. Each individual elite bee, ye; is

supported with a team of bees to further explore within its

neighbourhood. This extends the size of elite bees’ set from

Ne to Ne � b while the moderate search bees are also

supported in the same way, but with different predefined

supporting teams of bees. This also increases the size of

moderate bee set to Nm � c, where b and c are predeter-

mined fixed numbers, to identify how many bees to be

recruited in the neighbourhood of each elite and moderate

bee, respectively. The supporting bees, which are deployed

in the search regions of elite and moderate bees, are created

with the rule of xi;j ¼ xi;j þ q � d, where q is a random

number generated within the range of (-1, 1) and d is

another predetermined fixed value to be the step size of

change in any input of a solution/a bee. This rule can be

specified for each of the bee types as follows: (1) sup-

porting bees for elite bees with yi;j ¼ yi;j þ q � d, while for

moderate search bees with zi;j ¼ zi;j þ q � d. Once support

teams of bees are deployed within corresponding search

regions, the majority of the swarm of the next generation

becomes complete. The remaining small portion of the new

colony (around 20%) is randomly generated in the way of

the initial random population.

Once the elite bees, moderate search bees and the others

are identified, and the predefined number of supporting

bees is sent to each neighbourhood of both types of these

bees. This procedure is repeated until a predetermined

stopping criterion is met.

2.2 Artificial bee colony algorithm (ABC)

Artificial Bee Colony (ABC) is another very popular

swarm intelligence algorithm developed inspiring of the

collective behaviours of honeybee colonies. Karaboga [12]

has first initiated this algorithm to solve numerical opti-

misation problems [14] and then extended the applications

with various combinatorial optimisation ones [16, 24].

ABC imposes considering individual solutions as sources

of food (nectar) for honey bees, and searching around each

solution is named to be collective activities of various types

of bees. There are mainly two bee types envisaged;

employed and unemployed, where unemployed bees can be

in two types; Onlooker and Scout bees. A set of search

activities is organised around the nectar sources by

recruiting various types of bees in various configurations.

Let xi
! be a solution, defined as an input vector of D size

considered as a source of nectar. A population of N dif-

ferent sources are initially generated using

xij ¼ xi;min þ q � xi;max � xi:min

� �
, where i ¼ 1; ::;N ; j ¼

1; ::;D; xi;min and xi:max are minimum and maximum values

of ith input of xi
! source. Once the whole population of the

sources is generated completely, and then, the nectar level

of each source is determined to identify the quality of each,

which becomes the fitness value of each solution. Fol-

lowing this step, the employed bees start operating on each

source to search for sources with better quality using

Neural Computing and Applications

123



tij ¼ xij þ /ij xij � xik
� �

, where vi
! is the new source found

following an interaction between xi
! and xk

!, which is a

randomly selected known source among many within the

colony of the generation. The difference calculated

between the two sources is normalised with a randomly

generated /ij 2 �a; að Þ. After the new source identified, a

decision is made whether or not to adopt the new source to

replace the original one. The ultimate fitness of a typical

source decision is calculated using:

F xi
!� �

¼
1

1þ f xi
!� � ; f xi

!� �
� 0

1þ f xð Þj j; otherwise

8
<

:

Onlooker bees start operations following complete by

employed bees. The main role of onlooker bees is to

monitor the employed bees and taking the search further

using a probabilistic process, where a probability of pi is

calculated using pi ¼
F xi
!� �

PN
i¼1

F xi
!� � for each individual can-

didate source and a roulette-wheel selection rule is used to

choose a solution for further explorations. The neighbour-

hood of a chosen source is conducted with tij ¼ xij þ
/ij xij � xik

� �
similar to employed bees. A small size

memory is associated with each further investigated source

if any progress is achieved or not. A counter for each

investigated source is created and run up to a predefined

threshold. If no progress accomplished, then the source is

removed from the colony.

Scout bees, then, follow onlookers to diversify the col-

ony, randomly inserting new sources using the initial rule

of source generation: xij ¼ xi;min þ q � xi;max � xi:min

� �
.

This generational process is repeated until a certain level of

satisfaction is reached. As part of the above-mentioned

process, each individual solution/source can be included in

the next generation via either of the following cases: (1) a

source would remain without any change, (2) an employed

bee would generate a new solution, (3) an onlooker bee

may bring a new solution, (4) a source would be found by

both employed or onlooker bees, or (5) an investigated

source is replaced with a new source as a result of non-

improvement decision. It is a fact that each solution is

attempted for improvement at least once, which would be

investigated with more attempts if its fitness remains high.

2.3 Relevant works

A variety of works have considered honey bee-inspired

algorithms for problem-solving purposes, attempting with a

variety of the problems including numerical optimisation

benchmarks. The benchmark functions provided in Table 1

are commonly used functions for performance evaluation

purposes. Kong et al. [22] use numerical optimisation

functions to test the success of their hybrid algorithm,

which uses an orthogonal initialisation. However, 60-di-

mensional problems, at most, are considered, and mostly

underperformed in comparison with our results. Hacibe-

yoglu et al. [9] produced the results for the same set of

benchmarks, but did not tabulate them so as to be com-

pared with our results, where the level of dimensions is

clearly lower than our case. Kiran and Gunduz [21] have

borrowed and embedded a crossover operator from genetic

algorithms to solve the numerical benchmark functions,

where they considered 50 dimensions at most and the

results seem to be very fluctuating as standard deviations

are higher than mean statistics in some cases. Karaboga

and Basturk [14] have first published their ABC algorithm

with the same set of benchmark numerical functions

solving them in relatively lower dimensions. However,

Karaboga and Akay [13] have presented the success of the

same algorithm providing extensive details of their com-

parative study, where they solved around 50 benchmarks

Table 1 Benchmark functions commonly used for performance evaluation of algorithms

Test Function Input range Equation number

Sphere (- 100,100)
f1 xð Þ ¼

PD

i¼1

x2i
(6)

Rosenbrock (- 2.048,2.048)
f2 xð Þ ¼

PD

i¼1

100 xiþ1 � x2i
� �2þ xi � 1ð Þ2

h i (7)

Ackley (- 32.768,32.768)

f3 xð Þ ¼ �20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffi
1
D

PD

i¼1

x2
i

r

� e
ð1
D

PD

i¼1

cos 2pxið ÞÞ
þ 20� e

(8)

Griewank (- 600,600)
f4 xð Þ ¼ 1

4000

PD

i¼1

x2i �
QD

i¼1

cosð xiffi
i

p Þ þ 1
(9)

Rastrigin (- 5.12,5.12)
f5 xð Þ ¼

PD

i¼1

x2i � 10 cos 2pxið Þ þ 10
� � (10)

Schwefel (- 500,500)
f6 xð Þ ¼

PD

i¼1

ðxi � sinð
ffiffiffiffiffiffi
xij j

p 	
Þ

(11)

Neural Computing and Applications

123



including our benchmarking problems. The algorithms

seem implemented very successfully for dimensions up to

30, noting that many other ABC implementations could not

hit that level of success. Kiran and Findik [20] present a

directed/adaptive ABC algorithm solving the benchmarks

with 10, 30 and 50 dimensions, where our results are

competitive with them at this level while we solve the

problems for much higher dimensions.

On the other hand, Pham et al. [25] introduce their BAs

algorithm with solving the same set of benchmarking

numerical function with rather very lower dimensions, e.g.

up to D = 10. Likewise, Yuce et al. [33] have also

attempted to solve a number of benchmark functions

including those considered in this study with up to 10

dimensions at most. Hussein et al. [11] have improved BAs

algorithm with a pre-processing of particular initialisation

algorithm and gained better results than both of [25] and

[33] in solving the same set of benchmarks with up to 60

dimensions, where our results apparently outperform for all

functions except Schwefel.

A number of other metaheuristic and/or swarm intelli-

gence algorithms have also attempted to solve the bench-

marks we considered, recently. Based on the relevance that

the same functions have been attempted, it is decided to

include these studies in the review to help grasp the diffi-

culty of the problems attended. Gong et al. [7], Liu et al.

[23], Zhao and Tang [35] and Xin et al. [32] have published

their results for the benchmark problems up to 30 dimen-

sions using different variants of particle swarm optimisa-

tion, differential evolution and a particular algorithm so-

called monkey algorithm. Their results are apparently

either not better than, or remain competitive with ours.

Likewise, Han et al. [10], Rahmani and Yusof [28] and

Alam et al. [1, 3] have introduced their approaches for 30

and 50 dimensions, where our approach usually outper-

forms them or remain competitive. None of the following

references have attempted dimensions larger than 50, but,

the majority of them have only considered up to 30, while

our approach outperform them in major [2, 5, 8, 17, 26].

These studies have mostly compared their result with those

produced by Suganthan et al. [31] in which a comprehen-

sive study is extensively reported on solving a number of

numerical optimisation benchmarks.

The algorithms reviewed and cited above propose var-

ious approaches to improve the performance of bee-in-

spired algorithms either (1) with extending the algorithms

through pre-processing or (2) introducing additional com-

putational activities into any stage of the algorithms or (3)

embedding local search procedures into the algorithms. To

the best knowledge of the authors, none of the works

related to this paper reviews the capabilities of the two

mainstream honeybees-inspired algorithms (BA and ABC)

and not propose hybridising the two to improve the

fundamental properties of the search. This paper introduces

an approach/framework to hybridise BA and ABC algo-

rithms for improving the performances via further inten-

sification and diversification in the search process, which

can be made transferrable to any variant of the algorithms

in this kind.

3 Proposed approach

The above-mentioned honeybees-inspired algorithms have

been examined with respect to the balance between

diversification and intensification of the search, and few

ideas have been put together for the purpose of improving

their performances in solving numerical optimisation

problems.

Following the structural and experimental analysis, both

of the algorithms, BE and ABC, introduced above have

been found with strengths and weaknesses with respect to

diversification and intensification of search process. Both

ABC and BA algorithms include freshly generated random

solutions into the new generations to a certain level, where

diversification of the search is achieved in this way. In

addition, BA algorithm intensifies the search on fruitful

sources, where further search attempts are organised

around highly fitted sources/solutions, which helps inten-

sification further, while ABC uses memory-like mechanism

to let scout bees intensify their search around certain

sources for a number of attempts until it is understood that

the source is dried out. Once a source is dried out, it is

deleted from the population.

On the other hand, both algorithms conduct search with

few shortcomings, which have been considered, in this

study, as the grounds of improvement to enhance the

capabilities of above-mentioned bee-inspired algorithms.

In this regard, BA algorithm uses a parameter to normalise

the step size, so-called environmental/neighbourhood fac-

tor and denoted with d, in the previous sections. It is set to

a fixed value at the initialisation stage and kept as it is to

the end of the search. This makes granularity of the step

size coarse-grained in approximating the optimum value,

which drifts intensification away, and prevents the search

to reach the optimum in most of the time. Another weak-

ness of BA algorithm is the diminishing probability of

having random solutions within the population, especially

during the late stages of the search. This can escalate to

disabling diversification at later stages. In the case of ABC,

the weaknesses arise in two points; (1) the sources taken

out of population are evaluated not based on the fitness,

but, improvability, which can cause disregard of useful

solutions, and (2) in addition to this, some useful and very

well-improved solutions can be decommissioned from the

population since their improvability is reduced to 0

Neural Computing and Applications

123



according to the criteria adopted. Both of these weaknesses

can drive the algorithm towards very unfertile region of

search space.

In the following two subsections, ideas are considered

and discussed to enhance the capabilities of both of the

bee-inspired algorithms following the above-mentioned

structural assessments. These will be used as bee operators

in the hybrid algorithm.

3.1 Intensification in bees algorithm (rBA)

The main revision envisaged for BA to improve intensifi-

cation, based on the shortcomings discussed above, is to

make step sizes more fine-grained. The granularity of step

size can be adjusted through the fixed-valued (constant) d
in the update rule, zi;j ¼ zi;j þ q � d, where zi;j is a single

dimension of a complete solution and q is a random

number within the range of [-1, 1]. It is important to note

that the parameter of d is selected at the configuration stage

the algorithms under consideration and kept constant

through out of the entire search process in original BA. The

parameter of d corresponds to shrinking constant (sc) in

[33], and to the parameter of h, so-called incremental size

in [34] as part of BA variant embedded with a hill-climbing

local search procedure in which the step size is calculated

with slope-angle approach. The embedded hill-climbing

procedure is not sufficiently explained to realise how the

step size is calculated through the gradient and the incre-

mental size parameter in [34].

This constant-valued parameter,d as declared in original

BA, manages the granularity level and leaves the approach

rather coarse-grained, which causes the step size not to be

easily adjustable in finer precisions and can take much

longer time to approximate. In order to avoid this short-

coming, the update rule is revised as follows:

zi;j ¼ zi;j þ q � d � zi;j, where d is made to be a rate within

the range of [0,1], and can be adaptive, too. Therefore, the

new step size calculated with d � zi;j will be more

adjustable and proportional to the range of (zmin; zmax) with

which the algorithm can approximate much faster than

before, and more preciously. The update rule is applied to

all types of bees recruited as part of the algorithm, while

the rest of the algorithm remains as original.

3.2 Intensification in ABC algorithm (rABC)

In order to ease the difficulties in approximation using

standard ABC, following the shortcomings identified and

discussed above, two revisions have been envisaged to

achieve ABC improvement; (1) one is to collect all results

from all employed and onlooker bees and then apply

roulette-wheel selection instead of original practice, and

(2) the other revision is to adopt a rank-based selection rule

for the next generation, where 25% of top ranked solution

from entire existing solution set, N þ E, where N denotes

original bee colony and E is the number of generated

solutions. The first revision widens the candidate set for

roulette-wheel operator to select a more fruitful solution to

enhance search while the second devises a greedier

approach towards the top best solutions.

3.3 Proposed hybrid algorithm (Hybrid)

This algorithm attempts at merging the strengths of both of

above-mentioned mainstream bee algorithms for better

search performance. It is a hybrid algorithm in which the

hybridisation process is managed based on the framework

of BA algorithm with implementing not only the bee

operators from BA algorithm but also all other above-

mentioned algorithms. The details of proposed Hybrid

algorithm are provided in Fig. 2. As can be seen, the main

structure of the algorithm is inherited from BE algorithm

and devised differently using a set of rules given below as

the set of equations; Eqs. (1)–(5). Each rule is a bee

operator used by one of the above-mentioned algorithms.

The Hybrid algorithm implies a systematic harmony/reuse

of Eqs. (1)–(5), adopted as bee operators used for gener-

ating new solutions/bees as well as neighbours for the

existing elite and fit bees. We should note that Eq. (1) is

used for generating the initial swarm and independent bees

exploring for better nectar sources while Eqs. (2)–(5) are

used to send supporting bees around each elite bee.

xi
!¼ x!min þ q!� x!max � x!min

� �
for 8i 2 N ð1Þ

xi
!¼ xi

!þ q!� d for 8i 2 N and d 2 R ð2Þ

ti
!¼ xi

!þ /i

!
xi
!� xk

!� �
k 2 N and for 8i 2 N ð3Þ

xi
!¼ xi

!þ q!� d � xi
! for 8i 2 N and d 2 0; 1½ � ð4Þ

ti
!¼ xi

!þ /i

!
xi
!� xk

!� �
k 2 fQ1ofNg and for 8i 2 N

ð5Þ

1. Initialise the Population/Swarm, , using : ( );

2. Evaluate the individuals/bees;

3. Classify bees into Elite, and Moderate, ; 

4. Conduct search:

a. Around each elite bee, , with β more bees, using randomly 

selected rule from Eq: (1)--(5);

b. Around each moderate bee, with γ more bees, using

randomly selected rule from Eq: (22)--(55); 

c. Generate | | independent bees, using : ( );;

5. Evaluate the complete swarm;

6. Identify the best solution so far, ∗;

7. If stopping criterion not met, Go to Step 3;

8. Stop.

Fig. 2 Pseudocode for Hybrid bee algorithm

Neural Computing and Applications

123



Equations (2), (3), (4) and (5) are the neighbourhood

rules used, respectively, by the ordinary BA algorithm, the

revised BA algorithm (rBA), ABC and revised ABC

algorithms (rABC) to explore around a local nectar source,

which means a local region of the search space in opti-

misation context. The hybrid algorithm randomly selects

one of these rules to generate a neighbouring solution of a

particular elite solution, each time, to complete up b sup-

porting bees for each elite so that Ne � b bees can be

placed in the new generation. The moderate search bees

randomly use Eq. (2) to (5) for generating their neigh-

bouring solutions to complete c number of supporting bees

so as to place Nm � c solutions in the next swarm while the

independent bees explore with Eq. (1) for further genera-

tions of randomly searched nectars. The rest of algorithmic

mechanics of this hybrid algorithm works in the same way

as the ordinary bee algorithm does until a certain satis-

factory level is achieved as indicated in the pseudocode

provided in Fig. 2.

It is important to note that this frame work can be

flexible with additional and different types of bee operators

to be employed as part of Step 4 for populating the new

generation of the swarm. In the following experimental

study, it is demonstrated that random selection of bee

operators among the set of operators/rules given with

Eqs. (1)–(5) can pay off better in comparison with the

original algorithms take part of Hybrid. It is also possible

that a bespoke selection policy can be adopted instead of

randomly selecting the operators for generating bees and

the neighbouring solution.

4 Experimental evaluations

The following section introduces a major experimental

study to demonstrate the performance of above-mentioned

well-known bee algorithms and the revisions envisaged to

enhance the capabilities via performances.

4.1 Functional optimisation

The first bit of this experimental evaluation is made with

functional optimisation benchmarks. The functions con-

sidered for testing purposes are multidimensional func-

tions, which can also be considered as many-dimensional

functions, where the tests have been conducted over their 5,

30, 60, 100 and 150 dimensions. The reason to opt with

these dimensions is that the literature [1, 14, 22, 33] reports

solving these problems with similar dimensions, where 100

and 150 dimensions are exercised first time in this study.

Two of the functions are known as uni-model (labelled as

(6) and (7) in Table 1), which means that they have only

single optimum points, while the other four are multi-

model functions meaning that they can have multiple

optimum points. These are all well-known and challenging

benchmark functions used to test optimisation algorithms

across the literature of this field. An extensive study on a

number of numerical optimisation benchmarks including

those considered below is reported in [31].

The parametric design details of the algorithms are

provided in Table 2, where the parameters of the main

three algorithms tabulated. It should be noted that the

revised versions of both BA and ABC algorithms, rBA and

rABC, have the same parametric values as the original ones

since they suggest more procedural rather than parametric

changes. As a matter of fact, the neighbourhood structures

of the algorithms, which is also a procedural difference, are

indicated as follows: all algorithms use fixed-sized local

neighbourhood, while BA has a rank-based random selec-

tion, ABC uses roulette-wheel selection and, in fact,

Hybrid adopts both in a systematic use. In addition, Hybrid

algorithm selects mate bees from top quartile when oper-

ating with revised ABC.

The initial populations/swarms have been randomly

generated with rather different seeds, and the experimen-

tations for each function with each variant of algorithm are

repeated 30 times. The experimentation has started with

rather lower dimensions and gradually increased up in due

course. The first set of experiments has been carried out

with a dimension of 5 and 30 for all benchmarks, just to be

in-line with the existing literature. The results are tabulated

in Table 3, where the results are recorded in two statistics,

mean and standard deviation, with the five algorithms

against each benchmark function. As part of investigating

the number of iterations, preliminary experiments with 200

and 1000 iterations have been conducted as plotted in

Fig. 3a, b. As suggested, the averaged differences between

the optimum and the results found are plotted for each

algorithm. Further performance details of the algorithms

are provided accordingly within Table 3 with 5000 itera-

tions for both 5-D and 30-D benchmark problems.

Table 2 Parametric details of the algorithmic configurations

BA ABC Hybrid

Population/swarm size N 100 100 100

Number of elite bees Ne 5 – 5

Number of moderate search bees Nm 20 – 20

Number of bees supporting elite bees b 40 40

Number of Independent bees Ij j 30 – 30

Neighbourhood factor d 0.1 – 0:1 � xi
!

Non-improvability threshold L – 200 –

Neural Computing and Applications

123



Figure 3a, b present the differences between known

optimum values and the achieved results averaged overall

benchmark problems categorised dimensions and the

number of iterations taken. Figure 3a, b include the results

for 200 iterations. All three figures clearly suggest that

Hybrid algorithm outperforms all others and its approxi-

mation goes closer to 0. On the other hand, revised algo-

rithms perform better than the original algorithms in the

same overall point of view, where rBA remains as the first

runner algorithm after Hybrid. It is also observed that ABC

performs much better when dimension is lower, but per-

forms not as good as the other rivals with growing

dimension. However, rABC, the revised ABC, is one of the

competitors with Hybrid regardless of the growing

dimensions.

As indicated above, the experimental results reported in

Table 3 are the performance of five algorithms for each of

the benchmark problems.

Sphere function is easily solved by almost all algorithms

with five dimensions over 5000 iterations, while the

function with 30 dimensions becomes a bit challenging,

where all four algorithms except ABC find the optimum,

and Hybrid hits the optimum with an ignorable difference

after 200 iterations, while the other significantly remain

distant. After 1000 iterations, BA and ABC only stay

struggling, but the other three solve the problem with exact

solution. ABC only remains a little bit distant after 5000

iterations while the rest solve it exactly.

Rosenbrock function is one of two functions found

challenging in this research. None of the algorithms have

found the optimum while the best with five dimensions is

by BA and with 30 dimensions by rABC. Algorithms’

performances improve with an increase the number of

iterations to 5000; however, the optimum is still not

achieved, although BA and rABC perform better for 5 and

30 dimensions, respectively, and Hybrid always follows as

the second best.

The best approximation for Ackley function is made by

Hybrid, while BA and rABC remain competing with

Hybrid to reach the exact optimum; however, both remain

in a very ignorable distance. It is observed that Hybrid

performs the best after 200 iterations for 5 dimensions

cases, but BA and rABC compete with Hybrid in other

cases of 30 dimensions.

Griewank function is best approximated by rABC and

Hybrid algorithms, even as early as 200 iterations in both

dimensions of 5 and 30. The other algorithms approximate

to the optimum level after 5000 iterations, noting that rBA

and ABC remain a little bit distant to the optimum. rABC

solves Rastrigin function to optimum in both dimensions (5

and 30) after 200 iterations, while the other algorithms

struggle to approximate even after 5000 iterations. It is

important to indicate that this function is attended by KongTa
bl
e
3

E
x
p
er
im

en
ta
l
re
su
lt
s
b
y
al
l
fi
v
e
b
ee

al
g
o
ri
th
m
s
w
it
h
5
0
0
0
it
er
at
io
n
s
fo
r
5
-D

an
d
3
0
-D

b
en
ch
m
ar
k
fu
n
ct
io
n
s

F
u
n
ct
io
n
s

O
p
ti
m
u
m

B
A

rB
A

A
B
C

rA
B
C

H
Y
B
R
ID

M
ea
n

S
D

M
ea
n

S
D

M
ea
n

S
D

M
ea
n

S
D

M
ea
n

S
D

D
=
5

S
p
h
er
e

0
.0
0
0

0
.0
0
0

0
.0
00

0
.0
00

0
.0
00

0
.0
1
2

0
.0
0
5

0
.0
00

0
.0
00

0
.0
00

0
.0
00

R
o
se
n
b
ro
ck

0
.0
0
0

0
.0
0
0

0
.0
00

0
.3
7
6

1
.0
5
8

1
.1
5
7

0
.5
6
8

2
.7
6
6

1
.0
4
3

0
.7
0
5

0
.2
7
0

A
ck
le
y

0
.0
0
0

0
.0
0
0

0
.0
00

0
.0
00

0
.0
00

0
.3
2
2

0
.1
0
4

0
.0
00

0
.0
00

0
.0
00

0
.0
00

G
ri
ew

an
k

0
.0
0
0

0
.0
2
7

0
.0
0
8

0
.1
2
4

0
.0
8
9

0
.8
6
4

0
.3
7
6

0
.0
00

0
.0
00

0
.0
10

0
.0
24

R
as
tr
ig
in

0
.0
0
0

0
.0
0
0

0
.0
00

2
.7
9
1

1
.6
0
1

2
.7
6
2

0
.5
1
2

0
.0
00

0
.0
00

0
.0
00

0
.0
00

S
ch
w
ef
el

-
2
0
9
4
.9
1
5

-
2
0
9
4.
9
1
4

0
.0
00

-
1
8
7
4
.5
3

1
5
0
.7
8
6

-
2
0
8
5
.4
4

3
2
.1
3
1

-
1
7
9
3
.6
4
8

6
3
.5
1
2

-
1
9
4
1
.6
2

1
1
8
.4
3
3

D
=
3
0

S
p
h
er
e

0
.0
0
0

0
.0
0
0

0
.0
00

0
.0
00

0
.0
00

4
.1
1
9

0
.3
0
2

0
.0
00

0
.0
00

0
.0
00

0
.0
00

R
o
se
n
b
ro
ck

0
.0
0
0

2
1
.6
2
6

0
.0
8
6

1
9
.4
1
4

5
.4
18

5
1
7
.1
6
8

5
0
.1
0
4

2
8
.7
1
0

0
.3
0
4

2
5
.2
4
4

0
.7
0
9

A
ck
le
y

0
.0
0
0

0
.0
0
0

0
.0
00

0
.1
5
9

0
.5
8
7

1
1
.5
0
0

7
.0
9
2

0
.0
00

0
.0
00

0
.0
00

0
.0
00

G
ri
ew

an
k

0
.0
0
0

0
.0
0
0

0
.0
00

0
.0
1
2

0
.0
1
4

0
.2
1
7

0
.0
2
2

0
.0
00

0
.0
00

0
.0
00

0
.0
00

R
as
tr
ig
in

0
.0
0
0

2
0
1
.5
4
5

1
0
.4
8
5

9
5
.0
4
2

6
3
.9
2
7

2
2
2
.5
5
0

1
0
.0
4
2

0
.0
00

0
.0
00

0
.2
3
9

1
.1
7
0

S
ch
w
ef
el

-
1
2
,5
6
9
.4
9

-
5
4
8
5
.7
7

2
9
1
.9
3
9

-
8
5
9
0.
5
6

6
8
2
.2
9
5

-
8
6
9
8.
1
4

2
6
8
.4
0
7

-
4
5
4
0
.7
5
8

3
2
8
.7
0
3

-
7
7
2
9
.9
8

7
3
9
.9
4
3

T
h
e
b
o
ld

v
al
u
es

in
d
ic
at
e
si
g
n
ifi
ca
n
ce

o
f
th
e
o
u
tp
er
fo
rm

in
g
re
su
lt
s

Neural Computing and Applications

123



et al. [22] with 5 and 10 dimensions only. Schwefel

function remains as the most challenging benchmark since

BA and ABC solve it with 5 dimensions after 200 itera-

tions, but none of the algorithms managed solving the

problems to the optimum with higher dimensions even

after 5000 iterations, where initial swarms/populations

escalate to very different results, each time.

Table 4 presents the performances of all five algorithms

for 60-dimensional benchmarks after 5000 iterations,

where it is clear that both ordinary BA and ABC algorithms

remain very underperforming in comparison with the

revised versions and the hybrid algorithm, although their

performance improves with more iterations as indicated in

the bottom (5000 iteration cases) section of the table. On

the other hand, rBA, rABC and Hybrid approximate to the

optimum in four functions after 1000 iterations, while

struggle in solving Rosenbrock and Schwefel functions,

despite that their performance improves in Rosenbrock

function. These results indicate that Schwefel function

clearly requires far more attention to better approximate. It

is also notable that the results after 5000 iterations deviate

from the optimum with very ignorable level.

The results in Tables 5 and 6 include the performance of

BA, ABC and the Hybrid algorithms only, since beyond

D = 60, the revised algorithms seem to underperform fol-

lowing their original versions. However, Hybrid remains

competitive and solving four functions to optimum out of

the six benchmarks. Tables 5 and 6 presents the results of

Hybrid in comparison with original BA and ABC for

D = 100 and D = 150 running the algorithms for 5000

iterations. Hybrid solves Sphere, Ackley, Griewank and

Rastrigin functions to optimum for all dimensions includ-

ing 60-D, 100-D and 150-D. However, the algorithms, BA,

ABC and the revised versions of these two, remain behind

this level of achievement with growing dimensions. The

algorithms other than Hybrid seem falling in a local opti-

mum around 20 while solving Ackley function for

dimensions of 100 and 150. Rosenbrock function is the

second challenging benchmark among all, where the

approximation of Hybrid remains just below 100 for 100-D

and below 150 for 150-D cases. Clearly, Schwefel function

is the most challenging one since the approximation of all

algorithms stays far apart of the expected optimum. This

hints that Schwefel function requires particular attention.

Both BA and ABC improve their performances with an

increase in iteration numbers, but the level of improve-

ment, apparently, remains rather weaker. That means that

the approximation of both algorithms approach to the

ultimate level of achievement, and beyond this level of

iterations a significant improvement is not expected.

Both Tables 5 and 6 include the results gained after

10,000 iterations for both large-dimensional cases, i.e.

100-D and/or 150-D. The results do not include any sur-

prise on that beyond a certain number of iterations; the

achievement is not improving significantly, where Hybrid

evidently out performs both of its competitors. In fact, both

of BA and ABC algorithms approximate very roughly,

while Hybrid approaches to the optimum values except the

cases of Rosenbrock and Schwefel functions.

In order to visualise and overview the overall perfor-

mances, Fig. 4a–f presents the overall performance indi-

cation of BA, ABC and Hybrid algorithms for the

dimensions of 100 and 150. Similar to the previous cases

depicted in Fig. 3a, b, the results of all the algorithms for

all functions have been further processed to calculate the

differences between the optima and the results produced

and then averaged accordingly. Figure 4a, c, e plot the

averaged differences for 100-D, while Fig. 4b, d, f plots for

150-D. It is observed that, as suggested in Fig. 4a–f, BE

significantly underperforms in comparison with both ABC

and Hybrid, while ABC does runs up after Hybrid, where

Hybrid significantly outperforms both rivals. The perfor-

mance of both ABC and Hybrid improves with an increase

in the number of iterations, while BA does not improve

significantly with the growing number of iterations for both

cases of D-100 and D-150. As seen, Fig. 4c, d presents the

performance excluding Schwefel function, which is the

most challenging one, while Fig. 4e, f shows the perfor-

mance excluding both challenging functions: Rosenbrock

and Schwefel. It is observed that Hybrid solves all

Fig. 3 Differences between the

optimum and the results found

by the algorithms for a D = 5,

b D = 30

Neural Computing and Applications

123



problems to optimum except Schwefel, while ABC

approximates better excluding Rosenbrock and Schwefel.

4.2 Conclusions for functional optimisation

Functional optimisation provided in the previous subsec-

tion helps demonstrate how to implement the proposed

Hybrid algorithm for functional optimisation benchmarks

and prove that the proposed algorithm outperforms two

mainstream honeybees-inspired algorithms. Tables 3, 4, 5

and 6 present the comparative results in both mean and

standard deviation statistics, where the outperforming

achievement of Hybrid can be observed. The standard

deviations show the steadiness of the mean results, where

the results by Hybrid and ABC seem not much fluctuating

while BA results fluctuate, meaning that BA is not fit

enough to tackle the algorithms. The overall performance

of all three algorithms is plotted in Fig. 4a–f to visualise

the outperforming success by Hybrid. Also, the marginal

achievement is plotted excluding the challenging bench-

mark problems, where BA does not improve, but both

Hybrid and ABC improve with exclusion of challenging

benchmarks as well as with the growing number of

iterations.

4.3 Neural network training

In this section, the Hybrid algorithm is tested with another

numerical optimisation case, which is used for optimising

the weights of feed-forward neural network models used in

classification problems.

Training NN models with search algorithms is not a

very new concept, but is under consideration for further

improvements with more powerful algorithms. Both ABC

and BA algorithms are, as mentioned above, relatively new

swarm intelligence algorithms attract further research

efforts as it proves success in various areas of applications,

especially in numerical optimisation problems. Dugenci

and Aydin [6] have recently demonstrated that the algo-

rithm is capable of solving high-dimensioned complex

numerical functions. On this basis, BA-based training is

devised for optimising the set of connection weights of

feed-forward NN models, so that they can predict and

classify more precisely and successfully [18, 29, 30]. In

order to achieve this, first an ANN model should be con-

figured, and then, the set of weights can be retrieved. A

typical feed-forward NN model with two inputs, few hid-

den nodes and one output is displayed in Fig. 5, where the

connection weights labelled with honeybees and the nodes

are signified with honeycombs. The total number of con-

nections is the size of a solution state, which is subjected to

optimisation process.

Ta
bl
e
4

E
x
p
er
im

en
ta
l
re
su
lt
s
b
y
al
l
fi
v
e
b
ee

al
g
o
ri
th
m
s
w
it
h
5
0
0
0
it
er
at
io
n
s
fo
r
6
0
-D

b
en
ch
m
ar
k
s

F
u
n
ct
io
n
s

O
p
ti
m
u
m

B
A

rB
A

A
B
C

rA
B
C

H
Y
B
R
ID

M
ea
n

S
D

M
ea
n

S
D

M
ea
n

S
D

M
ea
n

S
D

M
ea
n

S
D

D
=
6
0

S
p
h
er
e

0
.0
0

8
7
5
5
.6
9

1
0
7
4
.6
1

0
.0
0

0
.0
0

2
0
.2
3

1
.0
9

0
.0
0

0
.0
0

0
.0
0

0
.0
0

R
o
se
n
b
ro
ck

0
.0
0

2
0
7
7
.0
9

3
0
5
.5
3

2
6
0
.8
5

4
9
3
.8
5

3
5
2
4
.3
0

2
6
8
.8
7

5
8
.6
3

0
.4
1

5
6
.6
0

5
.2
8

A
ck
le
y

0
.0
0

1
3
.0
2

0
.5
5

2
.3
4

1
.5
1

1
9
.7
6

0
.1
1

0
.0
0

0
.0
0

0
.0
0

0
.0
0

G
ri
ew

an
k

0
.0
0

7
8
.9
9

1
0
.7
4

0
.0
2

0
.0
9

0
.5
6

0
.0
4

0
.0
0

0
.0
0

0
.0
0

0
.0
0

R
as
tr
ig
in

0
.0
0

6
1
4
.3
3

1
7
.3
9

3
0
5
.9
7

1
6
2
.4
1

6
2
0
.6
4

2
2
.1
6

0
.0
0

0
.0
0

0
.7
3

3
.5
7

S
ch
w
ef
el

-
2
5
,1
3
9
.0
0

-
7
5
6
3
.6
9

3
9
0
.9
6

-
1
4
,8
8
6
.1
0

3
8
4
2
.6
2

-
1
5
,0
2
1
.7
1

3
6
9
.8
5

-
6
2
9
9
.0
1

3
5
7
.4
4

-
1
6
,2
0
2
.9
5

1
1
0
0
.7
5

T
h
e
b
o
ld

v
al
u
es

in
d
ic
at
e
si
g
n
ifi
ca
n
ce

o
f
th
e
o
u
tp
er
fo
rm

in
g
re
su
lt
s

Neural Computing and Applications

123



Given the circumstances, a feed-forward NN model with

one hidden layer has I number of input nodes, H number of

hidden nodes and O number of output nodes. The number

of connections constituted between input and hidden layer

is I þ 1ð ÞH, while the number of connections required

between hidden layer and output layer is H þ 1ð ÞO, where
in each level 1 bias node is also considered as part of feed-

forward ANN to facilitate learning more smoothly. The set

of weights between I and H is

wI�H
i ¼ wI�H

i;j jj ¼ 1; . . .; I þ 1ð ÞH
n o

, while the weight set

for connections between H and O is

wH�O
i ¼ wH�O

i;j jj ¼ 1; . . .; H þ 1ð ÞO
n o

. The ultimate set of

weights is wi ¼ wI�H
i [ wH�O

i

� �
with the size of

wij j ¼ I þ 1ð ÞH þ H þ 1ð ÞO. For example, given the

model in Fig. 5, there are two input neurons,three hidden

Table 6 Experimental results for 100-D and 150-D cases with iterations of 10000

D = 100 Optimum BA ABC HYBRID

Mean SD Mean SD Mean SD

Sphere 0.00 73741.840 7178.359 55.730 2.159 0.000 0.000

Rosenbrock 0.00 10614.572 1015.702 11224.417 701.626 96.059 1.046

Ackley 0.00 18.759 0.230 20.179 0.071 0.000 0.000

Griewank 0.00 665.434 55.750 0.757 0.028 0.000 0.000

Rastrigin 0.00 1219.130 34.059 1172.028 40.949 0.000 0.000

Schwefel - 41898.29 - 10078.371 513.046 - 24766.810 625.801 - 25436.107 1410.357

D = 150 Optimum BA ABC HYBRID

Mean SD Mean SD Mean SD

Sphere 0.00 202242.026 13243.606 135.488 5.650 0.000 0.000

Rosenbrock 0.00 28221.044 2056.926 26233.178 1316.636 146.622 0.812

Ackley 0.00 20.542 0.102 20.457 0.033 0.000 0.000

Griewank 0.00 1814.381 91.636 0.945 0.017 0.000 0.000

Rastrigin 0.00 2044.323 28.582 1940.707 48.985 0.286 1.401

Schwefel - 62847.44 - 12233.336 530.825 - 36806.223 982.819 - 37797.404 1353.187

The bold values indicate significance of the outperforming results

Table 5 Experimental results for 100-D and 150-D cases with iterations of 5000

Optimum BA ABC HYBRID

Mean SD Mean SD Mean SD

D = 100

Sphere 0.00 82666.223 7305.573 62.287 2.926 0.000 0.000

Rosenbrock 0.00 11196.241 1082.235 12562.895 793.275 96.391 0.926

Ackley 0.00 18.980 0.216 20.237 0.059 0.000 0.000

Griewank 0.00 736.722 48.323 0.926 0.021 0.000 0.000

Rastrigin 0.00 1239.407 21.171 1198.287 32.504 0.000 0.000

Schwefel - 41898.29 - 9764.026 432.783 - 24552.068 716.374 - 25045.133 1529.901

D = 150

Sphere 0.00 212934.022 13039.447 158.882 7.217 0.000 0.000

Rosenbrock 0.00 29945.963 1879.910 28818.579 1189.044 146.507 0.906

Ackley 0.00 20.627 0.055 20.477 0.055 0.000 0.000

Griewank 0.00 1943.258 94.105 31.436 8.770 0.000 0.000

Rastrigin 0.00 2067.049 35.547 1979.598 35.096 0.663 3.249

Schwefel - 62847.44 - 12162.446 527.191 - 36306.258 769.194 - 37402.093 1285.558

The bold values indicate significance of the outperforming results

Neural Computing and Applications

123



layer neurons and 1 output neuron with bias nodes in each

layer of hidden and output level; hence, the total number of

connection weights is (2 ? 1) * 3 ? (3 ? 1) * 1 = 12.

Therefore, a typical bee will represent the whole NN with a

vector of 12 weights including nine wI�H
i and four wH�O

i

values. The total number of weights will change accord-

ingly if any of I or H or O changes.

The benchmark problems have been taken from UCI

data collection, one of well-known medical data collection

used for research purposes [27]. Table 7 tabulates the

results including all data types with the sizes of both

training and test sets alongside the configurations of neural

nets, where the models have multiple and many outputs;

each corresponds to one particular class to be identified.

The NN model is expected to produce one output much

higher than the others so as to consider that the highest

output to be the class-identified subject to given input data.

Table 7 introduces the data sets with the overall data size

in the second column, which is divided into the training

and test sets given in the third and fourth columns. The fifth

column in the table provides the configurations of feed-

forward NN models set up to classify corresponding data

sets indicated the rows. The form of data is introduced

in\I–H–O[ , where I, H and O stand for the number of

input nodes, hidden nodes and output nodes, respectively.

The last two columns show the comparative results in CEP

Fig. 4 Averaged overall achievements by BA, ABC and Hybrid; a all

comparative results in D-100 cases, b all comparative results in D-150

cases, c comparative results for benchmarks except Schwefel in

D-100 cases, d comparative results for benchmarks except Schwefel

in D-150 cases, e comparative results for benchmarks except

Rosenbrock and Schwefel in D-100 cases and f comparative results

for benchmarks except Rosenbrock and Schwefel in D-150 cases

Neural Computing and Applications

123



measure, mean and standard deviation in parenthesis,

where the column labelled ‘‘Hybrid’’ presents the results by

Hybrid algorithm while the one labelled with ‘‘ABC’’

contains the results by ABC algorithm which is taken from

Karaboga and Ozturk [15].

As mentioned above, the base ABC algorithm consid-

ered in this comparison is introduced by Karaboga and

Ozturk [15]. The performances are measured in an index

called classification error percentage (CEP), which is the

percentage of misclassification patterns over the total

number of test patterns. The configurations of each NN

model developed per data set are the same as those in the

Karaboga and Ozturk [15]. As suggested in table (Table 7),

the majority of the results by Hybrid are significantly better

than those produced by ABC with respect to mean and

standard deviation statistics, where the top four problem

cases are slightly better with Hybrid, but last five cases are

significantly better as suggested by rather lower standard

Fig. 5 Feed-forward NN model

configured and trained with

Hybrid BA

Table 7 Experimental results

by Hybrid and ABC algorithms

in mean of CEP and standard

deviation in parenthesis for

various medical data sets used

for training and testing neural

network models

Type of data sets Size of data sets NN-config Results (CEP)

Data Training Test Hybrid ABC

Cancer 699 525 174 9-5-2 1.14

(0.41)

1.14

(0.17)

Diabetes 768 576 192 8-6-2 20.31

(5.31)

24.84

(2.65)

Heart 920 690 230 35-5-2 18.69

(0.30)

19.48

(0.51)

Card 690 518 172 51-6-2 13.37

(0.56)

13.53

(1.30)

Gene 3190 2300 890 120-6-3 16.86

(2.49)

29.50

(5.37)

Glass 214 161 53 9-6-6 23.25

(3.85)

45.62

(9.57)

Horse 368 300 68 58-6-2 16.15

(2.35)

28.63

(7.85)

Soybean 683 513 170 82-6-19 21.17

(2.13)

38.63

(6.45)

Thyroid 7200 3772 3428 21-6-3 2.66

(0.39)

6.95

(1.23)

Neural Computing and Applications

123



deviations and much higher CEP means. This demonstrates

that the diversification and intensification operations han-

dled as the result of hybridisation pay off and prove the

superiority of Hybrid algorithm.

5 Conclusions

In this paper, a hybrid bee-inspired algorithm is proposed

with a comprehensive performance investigation through

two numerical optimisation problem types; (1) functional

optimisation benchmarks and (2) ANN training through

optimising the weights of connection links of feed-forward

NN models. Although a number of variants of both main-

stream bee-inspired algorithms, BA and ABC, have been

developed and used for a number of problem-solving

purposes, there was not attempt to merge the strengths of

both mainstream algorithms so that more efficient and

robust problem-solving can be achieved. This paper pre-

sents a novel bee algorithm which hybridises both BA and

ABC algorithms for better performance.

The properties of both algorithms are first reviewed to

identify the strengths and weaknesses, and then, remedies

are identified to cure the weaknesses, where revised ver-

sions of both algorithms, rBA and rABC, are developed.

Afterwards, a framework is devised to harmonise and reuse

the bee operators of all original and revised algorithms into

the search process. It is demonstrated that the existing and

improved capabilities of BA and ABC algorithms with

respect to diversification and intensification are pulled in

the Hybrid so that the strengths of all participating algo-

rithms can be merged in Hybrid framework. The Hybrid

framework has been comparatively tested with (1) solving

very high-dimensional numerical optimisation benchmarks

and (2) optimising the weights of feed-forward NN models

develop for classification purposes. The experimental

results clearly suggested that revised versions of both BA

and ABC (rBA and rABC) improve the performance by

large and more importantly the proposed Hybrid algorithm

significantly performs better in comparisons with the

original and revised versions of both algorithms, BA and

ABC.

This achievement is attained with better harmony

induced in the hybrid algorithm, where both of rBA and

rABC provided better intensification and randomly and

systematically use of operators helped achieve improved

diversification. This does not limit the Hybrid framework

to the set of equations proposed and used neither rules out

any selection policy other than random selection. It means

that further studies are needed to test the Hybrid framework

with variety of bee operators and selection policies to

identify the best configurations bespoke to the problems

under investigation. In addition, the hybrid framework

requires to be further investigated for combinatorial opti-

misation problems as the next step of this research.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Alam MS, Islam MM, Murase K (2012). Artificial bee colony

algorithm with improved explorations for numerical function

optimizationn. In: Intelligent data engineering and automated

learning-IDEAL 2012. LNCS 7435, pp 1-8. Springer Berlin

Heidelberg, Natal, Brazil

2. Alam MS, Islam MM, Yao X (2011) Recurring two-stage evo-

lutionary programming: a novel approach for numerical opti-

mizaiton. IEEE Trans Syst Man Cybern Part B Cybern

41(5):1352–1365

3. Alam MS, Islam MM, Yao X, Murase K (2012) Diversity guided

evolutionary programming: a novel approach for continuous

optimization. Appl Soft Comput 12:1693–1707

4. Aydin ME (2012) Coordinating metaheuristic agents with swarm

intelligence. J Intell Manuf 23(4):991–999

5. Dogan B, Olmez T (2015) A new metaheuristics for numerical

function optimization: vortex search algorithm. Inf Sci

293:125–145

6. Dugenci M, Aydin ME (2018) Diversifying search in bee algo-

rithms for numerical optimisation. Lect Notes Artif Intell

11056:132–144

7. Gong W, Cai Z, Jia L, Li H (2011) A generalized hybrid gen-

eration scheme of differential evolution for global numerical

optimization. Int J Comput Intell Appl 10:35–65

8. Guo L, Wang G-G, Gandomi AH, Alavi AH, Duan H (2014) A

new improved krill herd algorithm for global numerical opti-

mization. Neurocomputing 138:392–402

9. Hacıbeyoğlu M, Koçer B, Arslan A (2012) Transfer learning for

artificial bee colony algorithm to optimize numerical functions.

In: International conference on computer engineering and net-

work security (ICCENS’2012), Dubai

10. Han M, Liu C, Xing J (2014) An evolutionary membrane algo-

rithm for global optimization problems. Inf Sci 276:219–241

11. Hussein WA, Sahran S, Abdullah SN (2014) Patch-Levy-based

initialization algorithm for bees algorithm. Appl Soft Comput

23:104–121

12. Karaboga D (2005) An idea based on honey bee swarm for

numerical optimisation. Computer Engineering Department,

Erciyes University, Kayseri

13. Karaboga D, Akay B (2009) A comparative study of artificial bee

colony algorithm. Appl Math Comput 214:108–132

14. Karaboga D, Basturk B (2007) A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (ABC)

algorithm. J Glob Optim 39(3):459–471

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


15. Karaboga D, Ozturk C (2009) Neural networks tarining by arti-

ficial bee colony algorithm on pattern classification. Neural

Network World 19:279–292

16. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A

comprehensive survey: artificial bee colony (ABC) algorithm and

applications. Artif Intell Rev 42(1):21–57

17. Kashan AH (2015) A new metaheuristic for optimization: optics

inspired optimization (OIO). Comput Oper Res 55:99–125

18. Keskin TE, Düğenci M, Kaçaroğlu F (2015) Prediction of water

pollution sources using artificial neural networks in the study

areas of Sivas, Karabük and Bartın (Turkey). Environ Earth Sci

73(9):5333–5347

19. Keskin TE, Dugenci M, Kacaroglu F (2014) Prediction of water

pollution using artificial neural networks in the study areas of

Sivas. Environmental Earth Science, Karabuk and Bartin

(Turkey)

20. Kiran MS, Findik O (2015) A directed artificial bee algorithm.

Appl Soft Comput 26:454–462

21. Kiran MS, Gunduz M (2012) A novel artificial bee colony-based

algorithm for solving the numerical optimization problems. Int J

Innov Comput Inf Control 8(9):6107–6121

22. Kong X, Liu S, Ang Z, Yong L (2012) Hybrid artificial bee

colony algorithm for global numerical optimization. J Comput Inf

Syst 8(6):2367–2374

23. Liu Y, Niu B, Luo Y (2015) Hybrid learning particle swarm

optimizer with genetic disturbance. Neurocomputing

151:1237–1247

24. Pan QK, Tasgetiren MF, Suganthan PN, Chua TJ (2011) A dis-

crete artificial bee colony algorithm for the lot-streaming flow

shop scheduling problem. Inf Sci 181(12):2455–2468

25. Pham DT, Ghanberzadeh A, Koc E, Otri S, Rahim S, Zaidi M

(2006) The bees algorithm – a novel tool for complex optimi-

sation. In: Pham DT, Eldukhri EE, Soroka AJ (eds) Intelligent

production machines and systems. Springer, Berlin

26. Piotrowski AP (2015) Regardin the rankings of optimization

heuristics based on artificially constructed functions. Inf Sci

297:191–201

27. Prechelt L (1994) PROBEN1 – a set of benchmarks and bench-

marking rules for neural network training algorithms. Fakultat fur

Informatik, Universitat Karlsruhe, Karlsruhe, Germany

28. Rahmani R, Yusof R (2014) A new simple, fast and efficient

algorithm for global optimization over continuous search-space

problems: radial movement optimization. Appl Math Comput

248:287–300

29. Sarangi P, Sahu A, Panda M (2014) Training a feed-forward

neural network using artificial bee colony with back-propagation

algorithm. Intell Comput Network Inform Adv Intell Syst Com-

put 243:511–519

30. Senyigit E, Dugenci M, Aydin ME, Zeydan M (2013) Heuristic-

based neural networks for stochastic dynamic lot sizing problem.

Appl Soft Comput 13(3):1331–1338

31. Suganthan,PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A

et al (2005). Problem definitions and evaluation criteria for CEC

2005 Special Session on real-parameter optimization. Nanyang

Technological University, Computer Science, Singapore. Kan-

GAL, IIT, Kanpur

32. Xin B, Chen J, Peng ZH, Pan F (2010) An adaptive hybrid

optimizer based on particle swarm and differential evolution for

global optimization. Inf Sci 53(5):980–989

33. Yuce B, Packianather MS, Mastrocinque E, Pham DT, Lambiase

A (2013) Honey bees inspired optimization method: the bees

algorithm. Insects 4(4):646–662

34. Yuce B, Pham DT, Packianather MS, Mastrocinque E (2015) An

enhancement to the bees algorithm with slope angle computation

and hill climbing algorithm and its applications on scheduling

and continuous-type optimisation problem. Prod Manuf Res

3(1):3–19

35. Zhao R, Tang W (2008) Monkey algorithm for global numerical

optimization. J Uncertain Syst 2(3):165–176

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123


	A honeybees-inspired heuristic algorithm for numerical optimisation
	Abstract
	Introduction
	Swarm Intelligence and honeybees-inspired algorithms
	Bees algorithm (BA)
	Artificial bee colony algorithm (ABC)
	Relevant works

	Proposed approach
	Intensification in bees algorithm (rBA)
	Intensification in ABC algorithm (rABC)
	Proposed hybrid algorithm (Hybrid)

	Experimental evaluations
	Functional optimisation
	Conclusions for functional optimisation
	Neural network training

	Conclusions
	Open Access
	References




