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We have developed a new discrete-time algorithm of stiffness extraction from muscle surface electromyography (sEMG) collected
from human operator’s arms and have applied it for antidisturbance control in robot teleoperation.The variation of arm stiffness is
estimated from sEMG signals and transferred to a telerobot under variable impedance control to imitate human motor control
behaviours, particularly for disturbance attenuation. In comparison to the estimation of stiffness from sEMG, the proposed
algorithm is able to reduce the nonlinear residual error effect and to enhance robustness and to simplify stiffness calibration. In order
to extract a smoothing stiffness enveloping from sEMG signals, two enveloping methods are employed in this paper, namely, fast
linear enveloping based on low pass filtering andmoving average and amplitudemonocomponent and frequencymodulating (AM-
FM) method. Both methods have been incorporated into the proposed stiffness variance estimation algorithm and are extensively
tested. The test results show that stiffness variation extraction based on the two methods is sensitive and robust to attenuation
disturbance. It could potentially be applied for teleoperation in the presence of hazardous surroundings or human robot physical
cooperation scenarios.

1. Introduction

Physiological experiments have shown that human arm can
be stabilized by human motor control, mainly dependant on
mechanical impedance adaptation during interaction with
external environment [1]. Such behaviours have received
increasing research attention in biomimetic controller design
[2–4] and have been applied in human robot skill transfer, for
example, rehabilitation and manual training.

Conventional intelligent control could deal with sys-
tem uncertainties given the form of dynamics [5–7], while
“human-like” controllers could be designed without model
information. Human inspired control strategies [3] enable
robots to have some human motor features in an economical
perspective, and may have great potentials in compliant
human robot interactions especially in some physical human
robot coupling scenarios, for example, rehabilitation or daily
physical cooperation tasks. In addition, spring-like robot

joint actuators such as Serial Elastic Actuators (SEA) [8] or
Variable Impedance Actuators (VIA) [9] allow researchers
to adapt robot impedance parameters physically or pro-
grammably [10]. However, it is still difficult to select proper
impedance regulations for specific tasks due to complexity
and difficulty in human motor precise modelling [11, 12].

While there exist different kinds of methods and tech-
nologies for human robot skill transfer with various body
sensors, for example, vision based kinematic skill transfer
from human operator to robot [13–15]. Such methods are
effective for human robot kinematic skill transfer but diffi-
cult to transfer human stiffness regulations which represent
human learned skills [16, 17]. Another interesting method
is impedance learning by demonstration [18] which needs
a set of examples for the learning procedure while it may
be not efficient for teleoperation because of complexity of
environmental modelling. Haptic feedback may enable robot
adapt its stiffness in a better human-like manner [19] and
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Figure 1: Profile of arm control model and stiffness transfer from human to robot for antidisturbance test [34]: !!, !̇!, !̈! are planned posi-
tion, velocity, and acceleration, respectively. $" is feed-forward force. $# is feedback force. $$ is the external force. !, !̇, !̈ are output position,
velocity, and acceleration, respectively.

enhance human robot interaction performance, while it may
have limitations as well due to varying environment and
different user experience.

sEMG based skill transfer from human to robot may
be comparatively advantageous to bridge the gap between
human and robot interaction, as sEMG signals denote human
muscles activations and in proper muscle cocontractions,
sEMG signals have an approximately linear correlation with
human joint motion, force, stiffness, and so forth [20–23].
Moreover, sEMGsignals are easily accessible to build intuitive
human robot interaction interface [24–27]. It is also a feed-
forward way to decode human motion intention from sEMG
signals [28].

Because of these specific characteristics, sEMG signals
have already been employed in teleoperation scenarios. In
[26, 29, 30], a robot teleimpedance system was developed,
combined with stiffness estimated from sEMG signals and
kinematic motion tracked by vision markers adhered on the
human arm.

Efficient sEMG signal processing is essential for sEMG
based real time robot control in teleoperation, and discrete-
time based sEMG enveloping seems to fit for this require-
ment. In [31], there is a general review for sEMG processing,
which indicates that discrete-time filters are more efficient in
sEMG signal processing such as Discrete Wavelet Transform
(DWT). In [30], sEMG signals are processed to extract
incremental stiffness in discrete-time domain to reduce
nonlinear stiffness estimation residual errors and calibration
time. Its application was tested on robot for disturbance
attenuation for both posture control and motion control.
However, stiffness estimation in a smooth and robustmanner
is still a challenging work. For example, human limb stiffness
measurement is generally based on mechanical perturbation

[32], but it is not suitable for real time human robot interac-
tion, as large errors are generated in human arm continuous
stiffness estimation, which may eliminate the performance of
telerobot. Alternatively, sEMG based on stiffness estimation
could be classified into different types according to muscle
cocontraction levels, and several experiments have shown
that robot tends to be more stable using such discrete way,
which produces a better performance in real-world usage
scenarios [33].

In this paper, a profile of teleoperation control approach is
developed, based on stiffness variation estimation proposed
in our previous work [30]. The whole structure is shown in
Figure 1. Human arm control model is simplified as a feed-
forward force-dependant termand feedback force-dependant
term for compensating external force [34] or virtual external
force by visual feedback from robot environment. Human
operator arm stiffness variation is extracted from sEMG
signals during arm antidisturbance tasks. Two sEMG signal
enveloping methods are employed and their applications
on robot posture maintenance control and path following
control have been extensively tested on a Baxter Robot [35],
which will be described in detail in the following sections.

2. Methods

2.1. Human Arm Stiffness Variation Estimation. In this paper,
only muscle cocontraction force effect on the human arm
stiffness variation is considered, except from the effect of
arm posture [32], because we mainly focus on the variation
of stiffness in different sampling intervals. In addition, arm
posture does not change much in the experiment.Therefore,
the stiffness variation estimation model is comparatively
simplified.
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According to the approximate linear relationship between
joint force and sEMG signals, human arm joint force estima-
tion via sEMG can be depicted by (1).% = [' (] [ +%+anta] + -& (+) , (1)

where % ∈ 1' is a vector of torques in joint space. ' ∈1'×) and ( ∈ 1'×) denote agonist and antagonist muscle
force coefficients, respectively, 2 denotes the degree of arm
freedom, 3 denotes number of muscles measured by sEMG
device. Moreover, ' = [4*+], and ( = [5*+], where 4*+ and 5*+
denote each constant coefficients of agonist and antagonist
muscle, respectively. 6 = 1, 2, . . . , 2, 7 = 1, 2, . . . ,3. +% ∈ 1)
and +anta ∈ 1) denote antagonist and antagonist of muscle
cocontractions, respectively, which can be represented by
filtered sEMG signals. -&(+) is the nonlinear residual error.% = 8,ℎ $, 8ℎ ∈ 16×' is the Jacobian of human operator arm
and $ ∈ 16 is the force exerted on endpoint and can be
measured by force sensor. + can be extracted from sEMG
signals.Thus [' (] can be identified empirically by LS.

Correspondingly, human arm joint stiffness can be de-
picted as (2) according to [20], as follows:9ℎ = [' (] [ +%+anta] + -./ (+) , (2)

where ' = [|4*+|], ( = [|5*+|], 9ℎ ∈ 1' denotes the joint stiff-
ness generated by muscles involved, and -.(+) is the nonlin-
ear residual error.

In order to compensate possible nonlinear residual error,
we employ a differential method to estimate human arm stiff-
ness variation. So (2) can be modified, as follows:Δ=ℎ = [' (] [ Δ+%Δ+anta] + Δ-. (+) , (3)

where Δ=ℎ = =ℎ(6 + 1) − =ℎ(6) is stiffness variation between
sample instant 6 + 1 and 6, [ Δ!!Δ!anta ] = [ !!(*+1)−!!(*)!anta(*+1)−!anta(*) ] is the
enveloping variation extracted from sEMG signals between
sample instant 6+1 and 6. Note that ifΔ=ℎ is the vector of end-
point of Cartesian space, it needs to be transformed to robot
joint space which will be detailed in the following sections.
For simplification, in this paper, we assume Δ-.(+) = 0.
2.2. Identification of Human Arm Endpoint Stiffness Varia-
tion Coefficients. In this paper, human arm elbow stiffness
variation coefficients estimation is based on human endpoint
stiffness measurement. Estimation of force coefficients from
sEMG signals is prerequisite for stiffness variation coeffi-
cients, as the stiffness variation coefficients are the absolute
value of force coefficients as indicated in (2).

Generally, LS is a simple and efficient way to estimate
coefficients and has been used widely in human limb stiffness
measurements [36, 37]. Here, we use (4)-(5) to estimate
the stiffness coefficients. During the estimation, subject
wears MYO Armband [38] shown in Figure 2 (4 channels

Figure 2: Profile of MYO Armband with 8 channels of sEMG
electrodes and the sEMG sampling rate is 200Hz [38].
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Figure 3: Stiffness variation coefficients estimation procedure based
on force-sEMG linear relationship.

for agonist muscles and the other 4 channels for antag-
onist muscle) on the upper arm near elbow and exerts
force (±5?, ±10?, ±15?, ±20?, ±25?) in @, A, B, with 3
repeatable trails, respectively, with his/her wrist attached to
coupling mechanism in order to constrain wrist motion.
The coupling mechanism is properly designed embedded
with ATI mini45 force sensor [39] to couple human and
robot physically with hand free and wrist motion resistance
in human arm endpoint stiffness estimation. The force
amplitude and direction are monitored by force presentation
interface in the presence of dynamic color bar:

min CCCCDΔ+ − Δ$CCCC . (4)

In total, we can get differentiated force matrix 9 × 3 × 3
in each coordinate axis and corresponding sEMG signals,
which would be normalized to 100% Maximal Voluntary
Contraction (MVC) and then differentiated synchronously
usingMATLAB/Simulink [40]. Stiffness estimation proceed-
ing can be depicted in Figure 3:D̂ = (Δ+,Δ+)−1 Δ+,Δ$,CCCCCD̂CCCCC = [' (] , (5)

where D̂ is estimated coefficients, Δ+ = [ Δ!!Δ!anta ], and Δ$ =$ℎ(6 + 1) − $ℎ(6).
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2.3. Enveloping of sEMG Signals Based on Fast Smoothing
Algorithm. As mentioned above, sEMG signals are nonin-
vasive and generated in muscle activities, representing the
muscle tension, joint force stiffness variation, and so forth
[21]. sEMG signals are a linear summation of a compound
of motor-unit action potentials (MUAPs) trains triggered
by motor units [41]. Normally, 20–500Hz sEMG signals are
extracted for postprocessing [42]. While in this paper, it is
enough for us to implement the antidisturbance experiment
using sEMG sampling rate at 200Hz. Additionally, stiffness
estimated from sEMG should be smoothed in order to make
robot motion compliant. Based on [43, 44], a modified fast
sEMG envelopig algorithm is developed to extract amplitude
of sEMG signals as indicated in (8)–(10) assuming that there
is no time delay between procedures:

I1 (6) = I0 (6) − 1?2−1∑'=0I0 (6) , (6)

I2 (6) = K2−1∑'=0I1 (6)2 , (7)I3 (6) = LPF (I2 (6)) , (8)I4 (6) = 1?√KI3 (6), (9)I5 (6) = ZOH (I4 (6) ,?!) , (10)

where I)(6), 3 = 1, 2, 3, 4, denotes the procedure outputs
of sEMG signal smooth enveloping at simple constant 6; K >0 is coefficient of squaring sEMG signals; ? is the length
of sEMG array at simple constant 6; LPF denotes low pass
filter. ZOH(I4(6),?!) is the zero-order holder to generate the
same data dimensions?! with the reference position in robot
motion replication, while the experiment in this paper is
implemented under real time, so resampling is not necessary.
The whole procedure and example of sEMG enveloping is
shown in Figure 4. I5(6) is supposed to be the envelop of
sEMG signals and it is easy to calculate envelop variation
using differential method by (15):ΔI (6) = ΔI5 (6) = I5 (6 + 1) − I5 (6) . (11)

2.4. Enveloping of sEMG Signals Based on Multiband AM-
FM Model. According to [27], sEMG signals are viewed
as monocomponent amplitude and frequency modulating
(AM-FM) signals due to their multiple characteristic bands,
which can be depicted as in (12), so here the key point is to
extract smoothing '(2) features from sEMG signals:I (6) = ' (6) cos (Θ (6)) , (12)

where '(6) and Θ(6) are amplitude and phase of sEMG
signals, respectively. As mentioned above, sEMG signals are
the summation ofMUAP, which can be denoted in (13), so the
amplitude of sEMG signals can be enveloped by the primary
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Figure 4: sEMG enveloping procedure based on fast smoothing
algorithm and example of sEMG smooth enveloping with sampling
rate 200Hz.

AM-FMcomponents though the phase of sEMGsignals is not
considered in this paper.

N! (2) = 2∑*=1' * (2) cosΘ* (2) + O (2) , (13)

where N!(2) denotes the instantaneous summation of ?
MUAPs, O(2) denotes residual errors caused by disturbance,
modelling error, finite summation, and so forth. In detail,
envelop extraction of sEMG signals needs 6 steps as specified
in what follows:

(1) Preprocessing: raw sEMG signals are detected and
preprocessed as the same rate mentioned above.

(2) Signal segmentation: to get a smoothed envelop with
comparatively low time delay, sEMG signals are ex-
perimentally segmented into 200ms segments with-
out overlap.

(3) FIR filtering: a bank of 48th-order finite impulse
response (FIR) filters is utilised to get clean sEMG
signals. Functions implemented in MATLAB are as
follows:

window = hann (order + 1) ,
bandpass = fir1 (P1,P2,window) ,

signalband = filter (bandpass, 1,I2) , (14)

where order = 48, fir1 is designed as a bandpass filter,P1 = 2×19.99/200; P2 = 2×99.99/200, filter function
is designed as low pass filter, I2 is output from the
second step above.

(4) Multiband demodulation: instantaneous enveloping
(IE) of sEMG signals is based on Discrete-time
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Energy Separation Algorithm (DESA) proposed in
[45] which can be depicted in what follows:

I4 = √ RI [I (6)]1 − (1 − RI [I (6) − I (6 − 1)] /2RI [I (6)])2 ,RI [I (6)] = [I2 (6) − I (6 + 1)I (6 − 1)]S2 , (15)

whereI4 is the output from the 4th step of processing;RI is samples in one segment; I(6) is one sample at
sample instant 6; S is the length of one segment.

(5) Sequence smoothing: 21-pint of median filter is em-
pirically designed and employed to remove spikes in
the IE sequence.

The overall procedure and example of sEMG amplitude
envelop are shown in Figure 5.

2.5. HumanArm StiffnessMapping to Robot Joint and Variable
Impedance Interface Design. From the stiffness variation
estimation, we can obtain stiffness variation regulation of
arm, which can be transferred from Cartesian space to joint
space via the following:Δ9ℎ (6) = diag (8,3 O=4 (6) 83) , (16)

where O9ℎ(6) = diag(O=ℎ(6)) denotes estimated joint stiffness
at sample constant 6 and 83 ∈ 16×7 is human arm Jacobian.
In this paper, O=4(6) is estimated Cartesian endpoint stiffness
variation of operator’s arm. In particular, for single joint
stiffness estimation, Δ9ℎ(6) = T2=4, where T is the length of
link connected to the specific joint. Robot arm joint stiffness
is calculated by the following:=3 (2) = =03 + '∑*=1Δ=ℎ (6), (17)

where =3(2) and =03 are the current joint stiffness at sample
instant 2 and initial joint stiffness of robot arm, respectively,Δ=ℎ(6) is the variation of stiffness at sample point 6, and 2
is the sum of previous stiffness variations. Furthermore, it is
of importance to normalize the stiffness within the specified
stable region for stability during human robot stiffness
mapping; otherwise it will make the mapping nonconsistent
which may cost a lot of time to tune control parameters.
Here, robot arm stable region =max3 and =min3 can be obtained
experimentally.Thus, we can employ the following:

=33 (2) = (=3 (2)max − =3 (2)min) (=3 (2) − =min3 )(=max3 − =min3 )+ =min3 , (18)

where =33(2) denotes modified stiffness value based on esti-
mation from sEMG, =max3 is the maximum value of estimated
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joint stiffness regulations, =min3 is the minimum value of
estimated joint stiffness regulations, =max3 and =min3 are the
limit of stability of Baxter Robot, and =3 is the estimated joint
stiffness in each sample constant.

To sum up, the mapping model and impedance interface
design are shown in Figure 6 where the robot commanded
motion will be the reference trajectory or a fixed point. The
mapping stiffness will be the gain of position error in the
feedback loop and the gain for velocity is the damping which
will be simplified as (20), where U is chosen empirically. So
the overall experimental system can be seen as a human
robot integrated system which is illustrated in Figure 6. The
impedance interface is a PD control in each joint as described
in what follows:% = 95 (V̇ − V̇5) − 9! (V − V5) , (19)95 = U√96. (20)
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3. Experimental System Set-Up

The hardware set-up for stiffness variation coefficients esti-
mation is shown in Figure 8. Humanwrist is fixed by coupling
mechanism with force sensor assembled on the base. Human
subject elbow is adhered to a portable support to compensate
arm gravity. MYO is worn on the upper arm near elbow to
detect muscle (see Figure 9) activities.

The experimental robot platform in this work is Baxter
Robot which consists of a torso, 2 DOF head, and dual
7 DOF arms, torque sensors, joint encoders, and direct
programming access via a standard ROS (Robot Operating
System) interface, and so forth. Each joint of the Baxter
Robot arm is driven by a Serial Elastic Actuator (SEA),
which provides passive compliance to minimize the force
of any contact or impact. Baxter Robot shoulder joints N0
and N1 are employed in antidisturbance test, respectively.
Overall experimental system is shown in Figure 7. Static and
dynamic antidisturbance tests are implemented on Baxter
Robot, respectively, as follows:

(1) Antidisturbance control under posture maintenance:
as shown in Figure 10, N1 joint would respond for
external disturbancewith variable stiffness adaptation
while other joints will be kept in high stiffness mode
without external disturbance effect. During the test
implementation, the human subject (W1) would give
a randomdisturbance on the robot arm, while human
subject (W2) who wears MYO Armband on the
forearm would strengthen his arm when seeing robot
arm under disturbance by visual feedback.

(2) Antidisturbance control under path following: as
shown in Figure 11, N0 joint is chosen for antidistur-
bance dynamically. Baxter Robot N0 joint would fol-
low a reference trajectory from A to B, while human
subject (W1) would apply a random disturbance on
Baxter arm when the arm is moving from A to B and
the other subject (W2) does similar antidisturbance
task as the posture antidisturbance control test when
robot is exposed to disturbance.Other robot joints are

MYO ArmbandArm supportCoupling 

Figure 8: Stiffness variation estimation hardware set-up.

kept in high stiffness mode as well in order to clearly
identify the antidisturbance performance of Baxter
Robot single joint.

4. Results

4.1. Human Arm Stiffness Variation Coefficients Estimation.
As indicated in Figure 12, the relationship between force
and sEMG is estimated by linear model using LS method.
It can be concluded that the force and sEMG have an
approximate relationship according to both of two sEMG
enveloping methods depicted in Section 2. Figure 13 shows
the human arm stiffness coefficients estimation results using
the two methods. It indicates that both of two methods have
the similar properties for coefficients estimation. While fast
linear enveloping is faster than AM-FM enveloping, but the
later seems to be better in sEMG enveloping as shown in
Figures 4 and 5. It can be seen that the enveloping spline in
Figure 5 is smoother than Figure 4.

4.2. Antidisturbance Control under Posture Maintenance
Results. As shown in Figure 10, AM-FM based sEMG
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Figure 10: Robot arm antidisturbance test I for posturemaintenance
(the dash yellow line) control: robot arm imitates human arm
stiffness adaptive features in perturbation environment.Human arm
will get cocontracted to compensate the external disturbance and
this feature is transferred to robot arm by extraction of stiffness
variations from sEMG signals.

enveloping algorithm is employed for antidisturbance con-
trol under posture maintenance. Test results are shown
in Figure 14. There are 3 steps to test human operated
antidisturbance when doing robot posture control. Human
subject W2 strengths his elbow when the robot is exposed to
disturbance caused by subjectW1, and when the disturbance
disappears, human subject arm W2 returns relaxed. It can
be seen that human arm stiffness variation is sensitive and
successfully eliminates external disturbance. As indicated
from the disturbance force enveloping, when antidisturbance
strategy is introduced during the test, amplitude of oscillation
on Baxter joint N1 decreases dramatically even though the
disturbance force increases.

4.3. Antidisturbance Control under Path following Results. As
shown in Figure 11, antidisturbance control is implemented

A

B

Disturbance

Visual 
feedback

H1

H2

Reference
trajectory

Figure 11: Robot arm antidisturbance test II: Baxter Robot N0
joint will follow a reference trajectory while a random disturbance
imposes on Baxter Robot arm, and the human subject W2 would
strengthen his arm to reduce the external disturbance with the same
stiffness transfer interface as antidisturbance test I.

under robot path following scenario, based on fast sEMG
linear enveloping algorithm. Test results are shown in Fig-
ure 15. It can be seen that robot can follow the reference
trajectorywith no external disturbance, butwhen the external
disturbance is employed on the robot arm, robot joint N0 fails
to follow the reference path and even oscillation occurs in the
test. However, when human operator transfers his stiffness to
Baxter Robot joint N0, Baxter Robot tends to be more stable
and robust to the dynamic disturbance with a low position
error.

5. Conclusion

This paper proposes a new discrete-time algorithm for stiff-
ness extraction from surface electromyography (sEMG), the
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performance of which has been tested under teleoperation
antidisturbance experiment. We have used two methods
of sEMG enveloping methods to extract discrete stiffness
variations from sEMG, respectively. Experimental studies

show that both methods are efficient and robust to external
dynamic environment. The proposed method with these
features could be potentially applied in various teleoperation
and human robot interact tasks.
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