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Abstract: The use of machine learning (ML) in anaerobic digestion (AD) is growing in popularity
and improves the interpretation of complex system parameters for better operation and optimisation.
This systematic literature review aims to explore how ML is currently employed in AD, with par-
ticular attention to the challenges of implementation and the benefits of integrating ML techniques.
While both lab and industry-scale datasets have been used for model training, challenges arise from
varied system designs and the different monitoring equipment used. Traditional machine-learning
techniques, predominantly artificial neural networks (ANN), are the most commonly used but face
difficulties in scalability and interpretability. Specifically, models trained on lab-scale data often strug-
gle to generalize to full-scale, real-world operations due to the complexity and variability in bacterial
communities and system operations. In practical scenarios, machine learning can be employed in
real-time operations for predictive modelling, ensuring system stability is maintained, resulting in
improved efficiency of both biogas production and waste treatment processes. Through reviewing
the ML techniques employed in wider applied domains, potential future research opportunities in
addressing these challenges have been identified.

Keywords: machine learning; deep learning; anaerobic digestion

1. Introduction

Anaerobic digestion (AD) is a biological process where microorganisms break down
biodegradable material in the absence of oxygen, resulting in biogas production—a mixture
of methane, carbon dioxide, and trace gases. This biogas serves as a renewable energy
source, and the digestate is a nutrient-rich fertilizer. The complexity of AD, influenced
by numerous variables such as substrate composition, temperature, pH levels, hydraulic
retention time, and microbial community dynamics, poses challenges in monitoring and
optimisation. Machine Learning (ML) has emerged as a pivotal tool in interpreting the
nonlinear relationships inherent in these AD systems, enhancing control, operational safety,
and performance forecasting [1,2]. Literature reviews in the domain of ML applications for
AD, such as those by Cruz et al. [3] and Gupta et al. [4], acknowledge the nascent stage of
ML-based solutions in AD. They focus on algorithm suitability, black-box challenges, data
limitations, and potential applications such as process optimisation and kinetic parameter
learning. These reviews also discuss integration challenges such as data demand and model
selection issues.

This paper extends these discussions by offering a comprehensive review of ML ap-
plications in AD. We compare these applications with those in other fields to identify
opportunities for cross-domain knowledge transfer. Our review addresses key research
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questions related to dataset characteristics, preprocessing stages, model selection, and op-
timisation strategies in AD contexts [3,4]. By identifying systematic gaps in the current
literature, this paper aims to enhance the understanding and application of ML in AD,
contributing to the advancement of this field.

Research Questions

This paper presents a systematic review of ML applications in AD. We focus on
identifying current ML trends, methods, and their impact on AD while examining the
challenges and benefits of this integration. Special attention is given to future directions,
including explainable ML and its role in assisting AD control. Distinct from broader
reviews, this study delves into practical implementation aspects and highlights unexplored
areas in ML for AD, as outlined in Table 1.

Table 1. Research Questions (RQs) and Rationales.

Reference Research Question Rationale

RQ1 How is ML being practically used in the This question aims to detail particular applications where

field of AD? the components of an AD system have been used to
train ML models and outlines the role these models play
in AD operation.

RQ2 What ML techniques have been selected in This research question was selected to understand how
the reviewed literature? researchers have selected and compared different ML tech-

niques and if this relates to the application domain and
data structure.

RQ3 What are the identified benefits of This aims to provide an up-to-date understanding of the
implementing ML techniques to assist with advantages of particular ML techniques have over tradi-
AD operation? tional statistical approaches.

RQ4 What challenges are faced in applying ML This question looks at the challenges/considerations
to improve the autonomy of AD which should be addressed in order to remove the need
applications and systems? for human-in-the-loop operation.

RQ5 What ML techniques have been successful The rationale behind this research question is to identify

in comparable process applications?

potential ML techniques that have been successful in other

fields but have not yet been applied in AD.

2. Materials and Methods
2.1. Research Design

The systematic literature review conducted in this study followed the procedure illus-
trated in Figure 1. Papers were screened using a keyword search related to the given topics,
as listed in Table 2. The initial search looked at journals from Science Direct detailing the
application of ML with data from AD systems. The papers gathered were then screened
based on predefined inclusion and exclusion criteria (highlighted in Table 3), using both
abstract and full-text reviews. Data from selected papers were then extracted and synthe-
sized to address the listed research questions shown in Table 1. Papers that demonstrated
the use of ML in a different relevant applied field were kept to enable an understanding
of how ML is being used in other applied applications and to determine potential future
research gaps in the AD field.



Bioengineering 2023, 10, 1410

30f21

Papersrelatingto | « - - ... o
applied ML

. Compare

Fllter data Data extractlon

Papers relating to
application of ML in _ | ﬁ Data analy5|s
the field of AD

Studies selected

Identify research
gaps

Figure 1. Research process diagram.

Table 2. Keyword search terminology.

Sub-Category Keyword

Machine learning ‘machine learning’, ‘learning’, ‘performance’,
rediction’, ‘intelligence
‘prediction’, ‘intell /

AD/MEC-AD/Waste Water  ‘gas’, ‘methane’, ‘anaerobic’, ‘digestion’, ‘waste’, ‘treatment’

Table 3. Inclusion/Exclusion Criteria.

Criteria Type  Point Rationale

Inclusion 1 Date of publication is after 2018  This criterion ensured that the studies con-
sidered were recent and focuses on the most
up-to-date techniques and technologies in

ML and sensing.

Inclusion 2 Poses an application The studies being considered were relevant
of ML in comparable to the research question and use ML in com-
research applications parable contexts.

Exclusion 1 Does not present primary This review considered primary research
research or is a review paper studies rather than reviews to ensure the

depth of analysis required to answer the re-
search question was met.

Exclusion 2 Duplicate of a previously Meta-analysis conducted was based on
evaluated document unique work and not incorrectly skewed by
duplicated studies.
Exclusion 3 Paper does not show the The studies being considered should be based
application of ML algorithms on empirical data rather than pure theory.

with subject-relevant datasets

2.2. Metadata Extraction

Table 4 details the information that was recorded from each paper meeting the inclu-
sion criteria. Each paper was assessed concerning the data extraction points listed DEP).
Some of the points included are for purposes of documentation; reasoning is referenced in
relation to the context of the related research question. To understand the pre-processing
requirements for datasets used in AD experiments, data were collected from the following
extraction points: DEP05 (Research field), DEP06 (Application Domain), DEP07 (Data
Source), DEP10 (Dataset variable structure), and DEPO8 (Experimental Scale). This was
important in order to understand the context of the AD operation.
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Table 4. Data Extraction Point (DEP) collection form, with their descriptions and corresponding

research contexts, linked to Research Questions RQ1-RQ4 (from Table 1) to inform the response

to RQ5.
Data Extraction  Field Description Research Context
Point
DEP01 Study Number The number assigned to the included papers For documentation purposes, to fa-
for reference cilitate easy identification and refer-
ence to the individual studies within
this review
DEP02 Paper Title Title of publication For documentation purposes to pro-
vide a brief overview of the study’s
focus and scope
DEP03 Publication Year The year in which the paper was published  To allow chronological development
of the research topic to be traced
over time
DEP04 Journal The publication venue To identify which outlets have pre-
dominantly published in this field
DEP05 Research Field Context of work (waste water, anaerobic RQ1
digestion, MEC-AD)
DEP06 Application Domain The role played by ML RQ1
DEP07 Data Source Where the dataset was obtained: Extracted RQ2
and Description from literature, provided by industrial scale
operation, data collected for study purpose
DEP08 Experimental Scale The size of AD operation from which data RQ1
were collected
DEP09 Performance How the ML optimised the overall RQ1
Optimisation AD operation
DEP10 Variable Structure Variables referenced in study dataset RQ2
DEP11 Machine-Learning What machine-learning algorithms have RQ2
Algorithm(s) been applied to an AD context
DEP12 Listed Optimal Model =~ The best-performing model identified in the = RQ2
given study domain
DEP13 Feature Engineering Pre-processing methods applied to dataset RQ2
Methods for viable ML training
DEP14 Highlighted Benefits Benefits that ML has brought to the RQ3
specified AD operation
DEP15 Challenges/Limitations Highlighted challenges and limitations RQ4

encountered when implementing ML
solutions in the AD application domain

3. Results

3.1. Dataset and Data Pre-Processing

Papers meeting the specified inclusion criteria have been listed in Table 5. Studies
on ML applications in AD have been conducted on various experimental scales, ranging
from lab-scale experiments to industrial applications. Lab-scale experiments explore the
fundamental principles of the AD process or technology and determine the feasibility
before scaling up to larger-scale systems. Industrial studies, on the other hand, involve the
deployment of AD processes and/or technology at a commercial scale. The large volume of
data collected provides practical insights into how ML can be applied directly to real-world
AD applications. As a result, the scale of the AD operation can determine whether the
dataset was collected for the purpose of an ML study or provided by an external AD plant
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to facilitate ML investigations. Table 6 gives an overview of the datasets used by the papers

reviewed in this study.

Table 5. List of papers included in the review.

Paper Number Title Year Journal

P1 Brewery wastewater treatment plant key-component estimation 2020 IFAC
using moving-window recurrent neural networks [5]

P2 Modelling and simulation of co-digestion performance with 2021 Fuel
artificial neural network for prediction of methane production from
tea factory waste with co-substrate of spent tea waste [6]

P3 Estimation of in situ biogas upgrading in microbial electrolysis cells 2021 Bioresource Technology
via direct electron transfer [7]

P4 Key waste selection and prediction improvement for biogas 2022 Sustainable = Energy  Technologies
production through hybrid machine-learning methods [8] and Assessments

P5 Integrated deep-learning neural network and desirability analysis 2020 Energy
in biogas plants [9]

P6 Ingredient analysis of biological wastewater using hybrid 2022 Computers and Chemical Engineering
multi-stream deep-learning framework [10]

P7 Modelling biogas production from anaerobic wastewater treatment 2021 Computers and Chemical Engineering
plants using radial basis function networks and
differential evolution [11]

P8 Constructing a smart framework for supplying the biogas energy in 2021 Energy Conversion and Management
green buildings using an integration of response surface
methodology, artificial intelligence, and petri-net modelling [12]

P9 Process modelling and optimisation of methane yield from palm oil 2023 Journal of Water Process Engineering
mill effluent using response surface methodology and artificial
neural network [13]

P10 Prediction of biogas production in anaerobic co-digestion of organic 2021 Water Research
wastes using deep-learning models [14]

P11 Integration of swine manure anaerobic digestion and digestate 2021 Journal of Environmental Management
nutrients removal/recovery under a circular economy concept [15]

P12 Plant-scale biogas production prediction based on multiple hybrid =~ 2022 Bioresource Technology
machine-learning technique [16]

P13 Exploring available input variables for machine-learning models to 2022 Journal of Cleaner Production
predict biogas production in industrial-scale biogas plants treating
food waste [17]

P14 Data-driven techniques for fault detection in anaerobic 2020 Process Safety and
digestion process [18] Environmental Protection

P15 Use of artificial neural network and adaptive neuro-fuzzy inference 2021 Fuel
system for prediction of biogas production from spearmint essential
oil wastewater treatment in up-flow anaerobic sludge
blanket reactor [19]

P16 Optimisation and performance evaluation of response surface 2022 Energy
methodology(RSM), artificial neural network (ANN), and adaptive
neuro-fuzzy inference system (ANFIS) in the prediction of biogas
production from palm oil mill effluent (POME) [20]

P17 Artificial intelligence-based modelling and optimisation of 2022 Biochemical Engineering Journal
microbial electrolysis cell-assisted anaerobic digestion fed with
alkaline-pretreated waste-activated sludge [21]

P18 Retraining prior state performances of anaerobic digestion 2021 Applied Energy

improves prediction accuracy of methane yield in various
machine-learning models [22]

It was noted from the reviewed literature that data from multiple variables collected in
AD experiments such as COD and TS are monitored offline, which can be time-consuming
and expensive. As a consequence, the rate of data collection from offline variables is signifi-
cantly lower than that of online parameters, such as gas composition and flow rate [14,22].
One challenge highlighted is acquiring all variable data at the same temporal intervals
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or taking complete measurements without missing any temporal-specific measurements.
Some variables can be measured quickly using in situ sensors and meters, while others
require time-consuming laboratory-based experiments. Datasets can be incomplete due to
issues such as equipment failure and measurement errors. This can result in non-aligning
data points in the training data, which is unsuitable for model training [10,14]. An impor-
tant stage is the inclusion or exclusion of outlier values; this can be common due to sensor
error (for example, an error reading may be negative or excessively out of the expected
range). Once removed, methods such as listwise deletion and other forms of imputation
can impede model accuracy if data trends are not properly captured.

Table 6. Overview of datasets used for ML model training and development in AD Studies. The table
summarizes the source of the database and the duration of the data collection period.

Paper Number Data Source Dataset Length

P1 Industrial-scale AD facility 19-day (10-day training, 9-day cross-validation)

P2 Lab data from AD experiment with tea factory waste 49-day bmp test

P3 Two datasets used from previous research 71-day and 138-day datasets, operating under a continu-

ously fed artificial waste stream
P4 Open source data from Industrial-scale AD facility 1340-day
P5 Lab experiment 24-day bmp test running co-digestion of food and
animal waste

P6 Industrial wastewater plant 5-day (10second interval with live sensors)

P7 Data provided by industrial paper mill 389-day (75%, 25% training cross-validation)

P8 AD operating with palm oil mill effluent Not explicitly stated

P10 Data provided by full-scale municipal wastewater 731-day and 27-day (used to demonstrate the use of DL
treatment plant for AD process optimisation)

P11 Concept modelled on SISTRATES® waste management system -

P12 Industrial food-waste treatment plant -

P13 Industrial food-waste treatment plant 360-day

P14 Data provided using simulated dataset using benchmark -
simulation model from international water association

P15 Lab experiment treating synthetic spearmint essential oil 141-day
wastewater with continuously fed reactor

P16 Industrial scale palm oil mill effluent AD facility -

P17 Data extracted from lab-based study reported in the literature 20-day batch experiment

P18 Lab-based AD reactor (working volume 18L), operating under 630 day

varied COD-based OLRs using food waste

Furthermore, datasets from biogas plants may encompass operational data unrelated
to the target prediction variable [23]. Discerning parameter correlations allows for their
exclusion in the data curation process, utilizing prior knowledge of the target wastewater
and variable relationships. In [8], researchers first eliminated fields unconnected to biogas
production attributes and removed variables indirectly linked to biogas (supplementation
for missing values was unnecessary in this case).

3.2. ML Techniques

A wide range of models were employed in the reviewed literature; some papers
conducted a detailed comparison between the performance of multiple ML models to
determine which approach yields the most accurate results, whereas others conducted a
more focused development of hybrid models (combining the strengths of multiple ML tech-
niques). This section looks to focus on DEP11 (ML algorithms used) and DEP12 (Optimal
models identified) to understand the pipeline required to use experimental/industrial AD
to develop ML-assisted functionality.
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3.2.1. Traditional Machine-Learning Methods

Figure 2a presents the ML models referenced in the reviewed studies, with neural
networks (NNs) being the most frequently mentioned. It is important to note that several
studies focused specifically on NNs and did not compare them to alternative ML model
types. Approximately 30% of the studies conducted comparative investigations of different
ML techniques for anaerobic digestion (AD) applications. Other literature supported the
decision to investigate and develop hybrid models by referencing comparative studies [5].

Support Vector Machines (SVMs), Random Forest, Gradient Boosting, and Decision
Trees were among the other popular ML models identified. These models have been widely
used in various ML-AD applications due to their ability to handle data with high dimen-
sionality, capture complex relationships, and provide accurate predictions. Furthermore,
these models can offer robust predictions, even with relatively small sample sizes [17].
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(a) Occurrence to which models have been referenced
in the reviewed literature

(b) 6 most common training features seen across the
reviewed literature

Figure 2. (a) Details the top-referenced ML models in the literature, highlighting the number of
papers citing each model. (b) Shows key variables commonly found across the ML-AD training
datasets, highlighting the number of papers citing each variable.

ANN

Table 7 presents ANN applications in various domains, prominently in biogas pre-
dictions. These examples not only demonstrate the varied applications of ANNSs but also
underscore the importance of network structure in achieving high model performance.
The careful tuning of network architecture is a critical factor in the success of ANNSs as it
directly influences their learning capacity and generalization ability [24].

Ref. [13] details a feedforward ANN with 3 input, 14 hidden, and 2 output neu-
rons. Input parameters—temperature, pH, and recirculation ratio—were selected via
ANOVA from a broader feature set. The model, trained on a 2-year time-series dataset
of pH and temperature, underwent hyperparameter optimisation in MATLAB, employ-
ing Levenberg—Marquardt for its fitting efficacy. Comparative analysis of Tansig, Purelin,
and Logsig activation functions indicated optimum performance, with Logsig in the hidden
layer and Purelin in the output layer, yielding an R? value of 0.9762. The study acknowl-
edges, however, ANNSs’ lower prediction efficiency compared to tree-based models.

Additionally, ref. [19] describes the application of an ANN in a UASB reactor treating
SEOW for biogas production prediction. The model, structured with specific neurons
in multiple layers, was developed to process variables such as influent chemical oxygen
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demand and pH. Over 141 days, the ANN model achieved an R? value of 0.975. While
this study does not detail specific activation functions or training algorithms as in [13], it
demonstrates the ANN'’s high predictive accuracy.

Table 7. Overview of the models assessed in the reviewed studies, highlighting the optimal model

and corresponding AD application context of ML implementation.

Nlrrg;; Models Listed 8}1;:;2?51::;1:;1651/Hybr1d Application Domain KPI Metrics
Application of moving Hybrid model development of an ANN to
P1 RBF-ANN ; provide time-series prediction of parameters -
window (MV-RBF-ANN) such as VFA and biogas composition.
P2 ANN No comparison listed Determining coA-dlAgestlon ratio (_)f 2 waste R
streams to maximise methane yield.
ANN, Linear regression, Tree, SVM, . . Predicting methane production from biogas
P3 Ensemble, Gaussian Process II;II}\’II;\rIl)d ANN (NARX-BP upgrading in MECs via direct electron RMSE, R?, MSE, MAE
Regression transfer (DET)
. Analysing the key components in wastes
P4 iF,r)é;?::SES?E/,[ SRI’[I'\TL"“"“ Hybrid RF+LSTM streams to improve biogas MSE, RMSE, MAE
& ’ ! generation predictions
P5 DNN No comparison listed Prediction of biogas response to R?, AR?, MSR
slurry properties
. Analysis of waste stream ingredients to
P6 DNN, LSTM, CNN DNN-LSTM hybrid inform purification controls RMSE, CORR
. . RBF-ANN (trained with . . Lo
SVM, GP, linear/quadratic . Modelling biogas production in a wastewater 2
r7 regression, CART, MLP, RBF-ANN ;};sl;crelrél atic fuzzy means) plant using industrial-scale data MAE, R
. . . CORR, MAE, RMSE,
P8 RT, RF, ANN, ANFIS ANFIS Forecasting accumulated biogas production RAE, RRSE
P9 BDD-RSM, ANN ANN Moc}ellmg met}}ane and hydrogen RSME, R?
sulfide production
P10 LSTM variations DA-LSTM-VSN Forecasting downstream methane production R?, NRMSE, MAE(%)
Implementation of classification to assist
P11 DT No comparison given human-in-the-loop decision-making in AD -
control operations.
P12 gll\d/[l\é?%/}){r;igaéihons using SMOTER-GA-ELM Forecasting biogas production R?, MAE
Forecasting up to 10 days downstream biogas
P13 XGBoost, RF ANN, SVM RF production using data concerning feedstock R?, RMSE
properties
Pl4 ENN, ELM, SVM SVM Predlgtmg total VFA for use in a system fault NRMSE, R?
detection framework
P15 ANN, ANFIS BP-ANN Modelling biogas production using data from R?, RMSE, RRMSE(%)
a lab-scale UASB reactor
Prediction of biogas production/methane
Pl6 RSM, ANFIS, ANN ANFIS yield and optimisation of controllable R2, MSE, MAE
parameters, to maximise gas
production/methane yield.
Use of an ANN (tuned using RSM) to generate
. . biogas predictions. PSO was used to optimise
P17 RSM, ANN, PSO No comparison given the potential difference applied to the MEC MSE
electrodes to maximise the energy output
1-step ahead with retraining method to
P18 RNN, XGBoost, RF, SVR RNN predict AD biogas production using data RMSE

detailing prior state in the time-series data

SVM

SVM, and its regression variant SVR (Support Vector Regression), were frequently
mentioned in the reviewed literature. They were identified in [18] as the most robust
models for use in developing a VFA (Volatile Fatty Acids) soft sensor. The study assessed
the models’ ability to predict VFA levels, particularly in cases of system faults such as
pH sensor drift. A grid search was conducted on the SVM, using a radial basis function,
to optimize the cost and gamma hyperparameters, resulting in values of 245.88 and 0.0030,
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respectively. Although the ELM (Extreme Learning Machine) and ENN (Evolving Neural
Network) models showed better results in the testing and validation phases, the SVM
model proved to be the most robust for soft sensor applications. The robustness calculation
is detailed under Equations (1) and (2).

lec\]:l (VPAf)ared o VFA?eoal)z
i = - M
where:
* 5, represents the robustness with respect to fault i;
. VFA;ared is the VFA predicted by soft-sensors during the faulty event;
e VFAYY, is the real VFA in the normal operation of the process;
* N is the number of all faulty samples.
m
§=).5i @)
i=1

Tree Models

RF, Gradient Boosting, and DT are all tree-based models, which work by splitting data
into subsets based on given feature values. The final output is obtained by aggregating
the predictions made at the last node [25]. These models operate by constructing a series
of decision trees during training. In RF, multiple decision trees are built and trained
on different subsets of the data. Each tree gives a prediction, and the final output is the
aggregation (typically the mode or mean) of these predictions [26]. Gradient Boosting builds
trees sequentially, where each new tree aims to correct the errors made by the previous
ones [27]. DT, on the other hand, involves creating a single decision tree with a set of binary
rules for decision-making, typically based on information gain or Gini impurity [28]. These
models have been commonly referenced in the reviewed literature as they are well suited to
non-linear relationships [29]. Additionally, the results can be interpreted, which is useful for
understanding the biological reasoning behind the predictions [28]. A comparison of RF and
XGBoost (among other models) is conducted in [22]. An overview of the hyperparameters
used to tune the model complexity is provided. RF focuses on the number of features used
for splits, while XGBoost manages tree depth and structure. Both models achieve similar
Root Mean Square Error (RMSE) in the prediction of (L — CH4/g — COD). RF had a slightly
better RMSE of 0.034 when using pH as a single training parameter, with XGBoost returning
a similar RMSE of 0.035. Alternatively, when training with multiple input parameters both
models achieved an RMSE of 0.032. In addition to this, ref. [8] lists the application of tree
models in biogas predictions, where 10-fold cross-validation was used to ensure accurate
model validation. Model parameters were selected using grid search. Compared to other
ML models such as SVM and LSTM, tree-based methods yielded lower prediction errors.
RF produced the lowest error, with a Mean Absolute Error (MAE) of 269 m? (volume biogas
measured at industrial plant scale).

The distribution of ML techniques over the reviewed studies is depicted in Table 8.
The table presents a categorization of the 18 research papers based on the ML techniques
employed, including traditional ML, deep learning, and traditional methods with novel
modifications (Studies P4 and P18 are listed twice as they fall under both traditional ML
and deep learning).
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Table 8. Categorization of the reviewed studies by ML Technique.

Evaluated ML Methods Paper Number

Traditional ML P2, P3,P4,P7, P8, P11, P13, P14, P15, P16, P17, P18
Deep Learning P4, P5, P6, P10, P18

Traditional ML with Novel

Modification P1, P9, P12

3.2.2. Deep-Learning Methods

Deep learning has emerged as a promising approach in the field of anaerobic digestion.
Of the reviewed papers, four studies listed the use of deep-learning variations, detailing the
model setup and optimisation. The parameters from the studies are listed in Table 9. Similar
to the ANN techniques discussed in this paper, the input neurons in DNNs represent
variables relevant to the AD process. Optimisation methods such as PCA have been
employed for this application, akin to their use in traditional ML applications. Additionally,
other hyperparameters in DNNSs, such as learning rate, batch size, optimizer, and dropout
rate, are explored in papers detailing DNN development. These studies emphasize the
application of methods such as Genetic Algorithms (GAs), grid search, and the Bayesian
optimisation Algorithm (BOA) for hyperparameter optimisation.

Table 9. Overview of NN configurations and optimisation parameters in DL studies on AD. Studies
which did not clearly detail the listed information were not included in the table.

Paper . Output Loss Hyperparamter
Number DNN Points of Interest Context Metric  Optimisation
e RF-LSTM
e Inputlayer = 10 neurons (key
operation variables) Biogas Grid search
P4 ¢ Training parameters = learning production MSE Cross-
rate (0.01), epochs (50), batch Validation
size (32), adam optimizer, drop
out rate (0.5)
e DNN-LSTM
¢  Inputlayer = 14 neurons Biogas
P5 (representing slurry properties) compound MSE GA
e Layer of neural network (%) prediction
fully connected
. DA-LSTM-VSN (no data Gas
P10 preprocessing required) prediction MSE BOA
® 17 neurons in the input layer
e LSTM (single-step ahead and
multi-step ahead comparison)
e  Comparison of 1 and 4 neurons
in the input layer, comparing
predictions using pH to a
model trained using pH, 10-fold cross-
P18 Alkalinity, COD removal, Methane Yield RMSE ..o

VFA concentration

*  Hyper-parameters included in
LSTM optimisation (final
values not included) = learning
rate, number of hidden nodes,
batch size
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Grid search is a computationally exhaustive method that ensures a thorough search
over a given set of hyperparameter combinations [30]. Alternatively, the Bayesian opti-
misation Algorithm (BOA) is a more intelligent and efficient method of hyperparameter
optimisation. Unlike grid search, BOA uses past evaluation results to form a probabilistic
model mapping hyperparameters to the model’s performance. This approach allows for the
prediction of optimal hyperparameters by balancing exploration (searching new regions
of the hyperparameter space) and exploitation (focusing on regions returning promising
performance) [31]. The application of BOA is detailed in [14], where the number of iter-
ations for optimized hyperparameters was set to 50 for deep-learning models. Similarly,
hyperparameter optimisation through GAs can be a more efficient tuning technique com-
pared to methods such as grid search, making it suitable for tuning DNNs with complex
search spaces. The application of tuning a DNN with a GA for the purpose of training
weights and biases is detailed in [9]. The optimisation procedure performed by the GA
was completed when the average relative change in the optimum fitness function attained
over 100 generations was <1 X 10710, the fitness attained the value of <1 x 1072, or the
generation was seen to increase. These optimisation methods can be used in conjunction
with cross-validation to ensure a robust assessment of the given parameter combination.

Hybrid deep-learning architectures, which incorporate a Variational Sequence-to-
Sequence (VSN) or attention mechanism, have been shown to be effective in training RNN-
based models on raw datasets without prior pre-processing for missing value imputation
or outlier elimination [14]. The Variational Seq2Seq mechanism enables models to better
manage the intricacies and correlations within datasets and can be trained on raw data that
has not been pre-processed for missing value imputation or outlier removal [32].

DNN s have proven effective in determining the relationship between water properties
and biogas composition. Ref. [9] details the use of a dataset gathered from laboratory ex-
perimentation. The model identified optimal slurry ranges with high accuracy. The dataset
used in this study was collected from a 24-day lab-scale BMP experiment. The input data
consisted of 30 sets of slurry characteristic measurements taken before and after the experi-
ment (each measurement consisting of 14 lab-monitored offline AD parameters). The target
biogas composition data were taken as an average of three measurements recorded over
the course of the BMP. To compensate for the small dataset size, the input data were
randomly broadcast into six datasets. In a comparable context of wastewater analysis, a
DNN-LSTM hybrid model was developed to predict NO, concentrations based on wastew-
ater properties [10]. Historical data lags of NO, were utilized for step-ahead predictions in
downstream time series analytics. Both slurry and wastewater analyses demonstrate the
potential of deep-learning techniques in addressing complex problems within the domain
of AD.

3.2.3. Time-Series Implementation

ML has been applied in various areas of AD, including water analysis, methane yield
prediction, system modelling, biogas yield prediction, biogas optimisation, and VFA pre-
diction. Sixty percent of the reviewed papers describe the use of ML to make time-series
predictions of methane/biogas production. This application domain uses regression models
to predict the future performance of the system based on feedstock/operational charac-
teristics. Similar time-series forecasting was implemented for VFA prediction in [5,15],
providing an operator with early fault detection signals. If the VFA becomes too high the
system will become unstable and stop producing biogas; use of fault detection can inform
the operator to take preventative action.

The utilization of step-ahead techniques for time-series prediction tasks have been
highlighted in [10] for biogas production and [22] for wastewater analysis. These ap-
proaches exhibited relatively high performance for downstream prediction tasks; a diagram
outlining the training structure is shown in Figure 3. Implementing these forecasting meth-
ods showed that the accuracy of the model predictions decreased when the forecast horizon
exceeded one day. Ref. [17] provides an explanation for this, attributing it to the rapid
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fluctuations in the feedstock. Consequently, downstream prediction may be less reliable
when the model training process does not account for the forecasted feedstock change.

In the application domain of system modelling, ML models were used to provide in-
sights into the AD process, support concept design, and aid system operations. Two papers
conducted an analysis on whether or not AD can be sustainably implemented to provide
bioenergy in a circular economy. Ref. [12] provides a method of waste stream viability
assessment to estimate energy at scale-up using a model trained on a dataset collected
from lab-scale testing. Alternatively, Ref. [15] assesses energy recovery, using decision
tree classification to assist human-in-the-loop decision-making in AD control operations.
The system was modelled using ML to generate desirable operational parameters and
inform the control of the AD system. Ref. [20] outlines the use of RSM to optimise an ANN
to predict AD conditions (reactor feed, recirculation, and temperature) optimal for methane
yield. In a similar context, Ref. [21] reports on the optimisation of an MEC-AD system.
An RSM was used to predict batch biogas production under three operating voltages.
Particle Swarm Optimisation (PSO) was subsequently used to identify the optimal voltage
that would result in maximum net energy production.

Single step ahead with cumulative retraining
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Figure 3. This figure illustrates two forecasting methods in anaerobic digestion from the literature.
‘Single-step ahead forecasting’ predicts one future point at a time, using an expanding training dataset.
‘Multi-step ahead forecasting” predicts several future points simultaneously.

3.3. Feature Assessment

Anaerobic digestion involves a complex interplay of multiple factors, such as tem-
perature, pH, feedstock composition, and microbial activity, which can influence the per-
formance and stability of the system. The data generated from such systems can have
high dimensionality, noise, and non-linearity, which makes it challenging to model using
theoretical /mathematical approaches when the system possesses a higher complexity [14].
Different feature reduction techniques have been used in several studies to enhance the
performance of ML models in the listed AD applications, with the most common being
Principle Component Analysis (PCA) and Analysis of Variance (ANOVA).

Figure 2b indicates the common variables used for model training. Figure 4 shows
how these variables relate to the overall AD operation. Papers which outline the use
of ML to predict energy production from the AD system use information surrounding
biogas generation as the target variable. In the context of this table, both biogas produc-
tion and methane production have been listed under the category of biogas production.
As mentioned in Section 1, biogas produced in AD consists of a mixture of different gas
compounds. Among these compounds, methane is the predominant gas used for energy
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production due to its flammable properties. Methane production is thus a key component
used to determine energy production in anaerobic digestion systems. Methane production
is calculated by measuring the gas composition and total gas production to infer the volume
of the individual gas component. In a healthy anaerobic digestion system, 55-75% of the
biogas produced is methane [33]. Consequently, methane production typically follows a
similar trend to biogas production. In the context of ML, these two variables will likely
exhibit high collinearity. Therefore, they have been grouped together for ease of reference
in this discussion.

A predicted drop in biogas can indicate that adjustment to parameters such as feed
metrics, temperature, or re-circulation is required in situations such as if the system is
showing signs of instability (resulting in energy drop) [34]. pH was the common variable
across the reviewed studies. Multiple studies which reviewed feature importance indicated
pH to have the highest feature importance when predicting biogas production. Model
performance when only using pH as the data input results in lower system complexity and
training time but additionally caused there to be a greater error in prediction results [22].
Reducing demand for the number of features required for model training can be beneficial
for AD applications where collecting/processing samples for lab processing can be time-
consuming and expensive.

(AD)
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Figure 4. Diagram illustrating AD dataset variables identified in the reviewed literature.

3.4. ML Techniques That Are Not Used in AD Applications but Can Be Found in Other Applied
ML Fields

A wider review of ML literature detailing non-AD related applications was conducted
to assess potential future developments in intelligent AD systems. This section outlines
the identified topics and gives a brief description of how the methods are currently being
utilised in alternative applications.
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3.4.1. Reinforcement Learning Application

Reinforcement learning (RL) algorithms are a branch of ML that learns through trial
and error, finding optimum rules/policies in the process [35]. The typical RL process
involves generating data by interacting with the environment, evaluating the agent’s
performance based on this data, and using it to improve the agent’s policy. The generated
data contains information about the actions taken, the state of the environment, and the
resultant reward. This approach imparts an exploratory nature to the system, where the
agent’s past experiences inform future decision-making and aid in preventing over-fitting.
The agent, utilizing a combination of parametric features and thresholds, receives an
aggregate score reflecting the effectiveness of its actions. This score guides the agent in
adjusting its strategies to minimize errors and maximize forecast accuracy.

To give an example of the application of RL, ref. [36] details the use of RL for crop
yield predictions using externally sourced data spanning over a 35-year period to train
a Deep Recurrent Q-Network (DRQN). This dataset included a wide range of features,
such as temperature, precipitation, soil pH, and nutrient content, among others. The RL
approach is compared to other ML methods, such as Deep LSTM, ANN, Gradient Boosting,
and Random Forest. Evaluation metrics such as R? and MAE are used to compare model
performance. The performance results indicate the superior performance of the DRQN
compared to other ML methods, achieving an R? of 0.87 and an MAE of 0.13, reflecting a
low average error in yield predictions. Alternatively, ref. [37] investigates the application
of RL for online energy management in smart grids for the purpose of optimizing energy
consumption schedules in buildings. The approach employs two RL algorithms, Deep
Q-learning and Deep Policy Gradient, both adapted for simultaneous multiple actions.
The effectiveness of these methods is validated using the Pecan Street Inc. database, which
includes data on photovoltaic power generation, electric vehicles, and building appliances.
The study demonstrates the ability of the proposed RL methods to adaptively and efficiently
manage energy consumption and costs in real-time, outperforming traditional methods in
terms of peak reduction and cost minimization.

In the context of an AD system, applying RL can be particularly advantageous for op-
timizing multiple objectives such as feeding, heating, and mixing [38]. These elements are
critical for the efficiency and effectiveness of AD processes. Multi-objective reinforcement
learning is a method for balancing control of multiple parameters and optimizing these
concurrent objectives within an AD system [39]. By integrating RL into AD systems, it is
possible to enhance decision-making processes, leading to more effective management and
operation of these systems. Similar methods may be implemented in AD-related appli-
cations to account for differences in operational parameters from lab-based experiments
to scale-up applications, allowing the systems to calibrate online and adjust to inevitable
parameter differences such as feedstock type and temperature. Initial investigation into
this work has been conducted in [40], where the approach is tested in simulation. This
study demonstrates the feasibility of RL for optimizing methane production in a simulated
anaerobic digestion system. However, barriers to real-world implementation are acknowl-
edged, such as a need for accurate modelling of built systems and accounting for real-world
feedback and parameters such as sensor noise and lag.

3.4.2. ML/IoT Practises

ML and IoT technologies are starting to have a significant impact on the farming
industry as this enables the monitoring of climate factors, soil characteristics, and soil
moisture to improve crop production [41]. Precision agriculture is a similar concept that
uses sensing and analysis tools to improve crop yields, reduce labour time, and effectively
manage fertilizers and irrigation processes. Precision agriculture employs data from
multiple sources to improve crop management strategies. Similar frameworks to what is
proposed can be applied to AD scenarios in ML tools and implemented at an industrial level.
The use of these tools is highlighted to assist analysis and decision-making. Applications
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using big data and data mining practises allows patterns to be identified which would not
be observable on a smaller scale.

3.4.3. Explainable Al

Al-based systems can be used to automatically recognize patterns in data and as-
sist subject matter experts in their evaluations, particularly in situations where complex
knowledge and strategies are involved [42]. However, for these Al-based systems to be
successfully integrated into industrial processes such as AD, they must be trustworthy and
comprehensible to decision-makers, who can provide analytical reasoning and explain the
decisions made by a system. This requires an advanced management process to develop
trust in the actions, inference mechanisms, and results of the Al-based systems. An example
of this is shown in [43], where the ensemble of 5 ML models is used to predict the distribu-
tion areas of seagrasses. The study introduces the explainable AI (XAI) method to provide
reasoning through systematic decomposition. The methodological framework reveals the
internal operation patterns of the model. This can provide explanations to assess the effects
of changes in the training variables (environmental factors) and provide an interpretation of
the prediction results given. Understanding the causes of the resulting impact on seagrass
allows for target measures to be given to promote sustainable conservation and restoration.
This can improve the understanding of AD system control where information provided by
the XAI enables relationships to be inferred, which would be difficult to interpret through
traditional analysis methods.

4. Discussion

It was highlighted in Figure 2a that Neural Networks (NN) were the most frequently
mentioned ML models for AD applications. However, other models referenced in the
reviewed literature, such as Support Vector Machines (SVMs), Random Forest, Gradient
Boosting, and Decision Trees, were also popular. These models were widely used due to
their ability to handle data with high dimensionality and provide accurate predictions, even
with relatively small sample sizes. It should be considered that multiple papers outline
ML-AD solutions by only detailing the development of NN solutions without providing a
comparison to other traditional ML techniques. The prevalence in this research field may
be due to their ability to effectively handle intricate relationships in dynamic data, making
them well-suited to model the interactions present in complex systems. Their success and
popularity in a variety of application domains further supports their widespread adoption
and effectiveness across diverse application contexts [44]. However, it should be noted
that the papers reported in this systematic review focused more on the development of
ML-AD technologies in the research domain. If these prediction and forecasting tools
were to be implemented at an industrial level, it would be important to interpret how
decisions are being generated. In this context, traditional techniques such as Decision Trees,
XGBoost, and Random Forest might be considered more feasible for implementation at
an industrial scale. The technique of implementation would also need to be considered
when assessing model viability with integration in AD operation at an industrial scale.
As implementation of an NN can be more computationally demanding and may limit
continuous retraining, this poses significant challenges for real-time, resource-constrained
industrial applications [45].

The most common variables identified in model training include temperature, pH,
biogas production, Chemical Oxygen Demand (COD), and reactor feedrate. Among these
factors, pH stands out as the most prevalent variable across multiple studies. While pH is
often recognized for its high feature importance in predicting biogas production, emphasiz-
ing its significance in the modelling process, the relationship between pH and biogas yields
is complex and sometimes ambiguous. This complexity stems from the pH'’s dependence on
the buffering capacity of the medium in the bioreactor [46]. Buffering capacity, which refers
to the medium’s ability to resist pH changes, depends on various factors, including the
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composition of the feed and operational conditions. This complexity presents challenges in
accurately measuring and incorporating these nuances into ML models [47].

In terms of AD operation, pH is regarded as a significant variable for AD predictions
as it directly relates to system stability and impacts microbial activity essential for biogas
production [48]. However, the efficacy of ML models in this context is potentially limited
by the difficulty in capturing the multifaceted interactions influenced by pH, including the
buffering capacity [49].

Furthermore, pH can have a direct relationship with other variables such as feedrate,
and subsequently, the COD of the feed. If the feedrate at which the organic matter is fed to
the system is too high, this can lead to an accumulation of VFA, causing a drop in pH. This,
in turn, can inhibit activity from the microorganisms responsible for methane production,
thereby directly impacting biogas yield [50]. On the other hand, COD is a measure of
organic matter in the feed and indicates the potential biogas that can be produced [38].
Feeding high COD to a digester can lead to VFA production (similar to the effects of a
high feedrate) [51]. As such, with the vast majority of ML-AD applications relating to the
prediction of methane/biogas production, it can be inferred why both parameters play a
crucial role in making such predictions.

The challenge in finding representative experimental data for training such formal
models further complicates the development of robust ML applications in AD. Future
research should focus on methods to better measure and incorporate factors such as
buffering capacity and feed composition into ML models, as well as on improving data
collection and representation to more accurately reflect the dynamics of AD systems.

4.1. What Are the Identified Benefits of Implementing ML Techniques to Assist AD Operation?

In the reviewed studies, several highlighted benefits of applying ML in AD were
repeated in multiple papers spanning the different specified application domains. One of
the most prominent benefits is the reduced hardware complexity and costs associated with
using ML as a ‘soft sensor” [18,52]. The use of ML algorithms to predict system behaviour
offers the potential to require less regular lab analysis and reduce demand for human
labour. The fault detection systems outlined in this section can enable operational issues to
be prematurely addressed prior to the system becoming unstable.

Another benefit prominently highlighted across the reviewed literature is the enhance-
ment in waste treatment modelling and control. ML algorithms aid in predicting gas yield,
which is crucial for managing the treatment and energy demands of the system efficiently.
Moreover, ML algorithms fortify system performance through the continuous identification
of operational anomalies, enabling early interventions to mitigate potential system failures,
which in turn can diminish operational costs. Additionally, by forecasting gas yield, ML
assists in assessing treatment demands and providing insight for operational adjustment,
thereby facilitating efficient biogas production. The perpetual monitoring driven by ML can
reduce the demand for manual oversight, which can enable more efficient system operation
and facilitate the implementation of more automation within the systems.

4.2. What Challenges Are Faced in Applying ML to Improve the Autonomy of AD Applications?

Several common trends were identified relating to the limitations of using ML in AD
applications. In relation to DEP15, a major limitation of this technology highlighted in the
literature is the lack of sufficient training data. ML algorithms require large datasets to
train on, and in many cases there may not be enough data available to effectively train
the model [53]. A common reason highlighted in the literature is difficulties in acquiring
all variable data at the same time-step intervals. Another challenge is the difficulty in
comparing different AD systems due to variations in operating conditions, making it
challenging to develop a universal model for multiple applications.

Table 6 highlights that the majority of lab-based experiments are conducted in batch
mode rather than using continuous flow. Operating under such conditions can limit
opportunities for automating a continuous system. Without validation on continuous flow
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systems, it is difficult to ascertain how ML technologies can be implemented to automate
aspects of control in industrial AD plants.

As mentioned, a lack of sufficient training data was a commonly highlighted issue
when approaching the development of ML-AD solutions [5,13]. An issue not extensively
covered in the literature is how models trained on an AD system may be re-implemented
on a different AD system, a process known as transfer learning [54]. Models trained on
one anaerobic digestion system may not be directly transferable to another digester if
the operational parameters do not align with the original model [20]. In addition to this,
differences in bacterial community composition in the systems will need to be accounted
for in the process of initial calibration [55]. Monitoring systems in biogas plants will need
to be assessed to ensure infrastructure can facilitate the data demand required for useful
predictions [17]. This is important when considering whether or not ML technologies can
feasibly be implemented in AD operations at an industrial scale.

4.3. ML Contributions to AD Practices

Assessing DEP07 and DEPO08 showed that a significant proportion of the reviewed
literature discusses and analyses data retrieved from industrial biogas facilities as opposed
to lab-based operations. The most common research methodologies focused on the use of
data from offline waste analysis variables (such as COD) and operation data (feed volumes)
to predict the biogas production from the AD system. DEP10 indicated that a wide variety
of models were used for this application domain, including traditional and deep-learning
techniques. Overall, this showed ML to be well-suited to processing the data used in
AD applications due to its ability to extract features from datasets of high dimensionality,
enabling it to predict the energy production expected from the AD. If implemented into a
live AD operation, this would enable the operator to adjust how the system is controlled
accordingly to prevent systems from entering an unstable state.

Of the reviewed literature, DEP11 indicated that a significant proportion of the papers
reviewed had selected a model based on literature/case studies, rather than directly com-
paring model performances with ranging complexities. This was often in the context of
developing and tuning deep-learning models or assessing how deep-learning models can
be further optimised through ensemble methods. If ML is to be used in a live AD system,
consideration may be necessary regarding how the model will be retrained and adapted,
as such computational demand will need to be compared to infer industrial feasibility [56].

5. Conclusions

This review reveals the challenges and potential of applying ML to AD, particularly
the scarcity of training data and the variability in AD systems. These issues hinder the
development of universal models, requiring system-specific approaches and adjustments
for bacterial community variations. Choosing models from the literature rather than
performance comparison calls for more rigorous evaluation for industrial use. The use
of established deterministic models to expand datasets in cases of scarcity or gaps due to
system downtime can offer a promising solution to these challenges [57]. Integrating such
models can alleviate data limitations and boost model robustness, underscoring the need
for thorough comparative analysis and evaluation to ensure ML’s industrial applicability
in AD.

Addressing these challenges requires investments in robust data acquisition frame-
works, closer academia-industry collaborations for faster validation of ML models in
continuous systems, and a more stringent evaluation of ML models to ensure their indus-
trial applicability. By tackling these focal points, future research can facilitate the effective
integration of ML into AD operations, steering the AD field towards enhanced efficiency
and automation.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Anaerobic Digestion

MEC-AD  Microbial Electrochemical Cell—Anaerobic Digestion
BMP Biochemical Methane Potential
COD Chemical Oxygen Demand
VFA Volatile Fatty Acids

TSS Total Suspended Solids

TS Total Solids

BOD Biochemical Oxygen Demand
ML Machine Learning

XAI Explainable Al

DT Decision Tree

PSO Particle Swarm Optimisation
RSM Response Surface Methodology
ANN Artificial Neural Network
RNN Recurrent Neural Network
ENN Evolving Neural Network
ELM Extreme Learning Machine
RBF Radjial Basis Function

GB Gradient Boosting

SVM Support Vector Machine

SVR Support Vector Regression

RF Random Forest

LST™M Long Short-Term Memory
CNN Convolutional Neural Network
DNN Deep Neural Network

MLP Multilayer Perceptron

ANFIS Adaptive Neuro-Fuzzy Inference System
GA Genetic Algorithm

RL Reinforcement Learning

PCA Principal Component Analysis
BOA Bayesian Optimisation Algorithm
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