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ABSTRACT Future generation of Electric Vehicles (EVs) equipped with modern technologies will impose
a significant burden on computation and communication to the network due to the vast extension of onboard
infotainment services. To overcome this challenge, multi-access edge computing (MEC) or Fog Computing
can be employed. However, the massive adoption of novel infotainment services such as Augmented Reality,
Virtual Reality-based services will make the MEC and Fog resources insufficient. To cope with this issue,
we propose a system model with onboard computation offloading, where an EV can utilize its neighboring
EVs resources that are not resource-constrained to enhance its computing capacity. Then, we propose to
solve the problem of computational task offloading by jointly considering the communication, computation,
and control in a mobile vehicular network. We formulate a mixed-integer non-linear problem (MINLP)
to minimize the trade-off between latency and energy consumption subject to the network resources and
the mobility of EVs. The formulated problem is solved via the block coordination descent (BCD) method.
In such a way, we decompose the original MINLP problem into three subproblems which are resource block
allocation (RBA), power control and interference management (PCP), and offload decision problem (ODP).
We then alternatively obtain solutions of RBA and PCP via the duality theory, and the third sub-problem
is solvable via the relaxation method and alternating direction Lagrangian multiplier method (ADMM).
Numerical results reveal that the proposed solution BCD-based algorithm performs a fast convergence rate.

INDEX TERMS Multi-access edge computing (MEC), collaborative V2Vs-assisted MEC system, tasks
offloading, resource allocation, alternating direction method of multipliers (ADMM), interference manage-
ment, V2V communication.

I. INTRODUCTION
Next-generation vehicles will be equipped with advanced
computing, caching, communications, and control resources
to meet the stringent requirements of safe driving,
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automation, and infotainment services. By connecting these
resourceful vehicles with the wireless network to devise
the Internet of Vehicles (IoV), an efficient, cost-effective,
safe, autonomous, and intelligent transportation system will
be created. However, such massive connectivity with wire-
less networks is non-trivial and may overwhelm the net-
work. Moreover, meeting the coverage, communication,
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and computation demands of a massive number of vehicles
in a wide geographical area is challenging. Even though
the deployment of road side units (RSUs) has contributed
well to alleviating the network traffic load in congested
locations, they lack to provide coverage to all roads in
an area. To address this problem, an independent, cellular
coverage-free network of vehicles is required where the
vehicles can collaborate, share, trade, and exploit redundant
resources efficiently. Indeed, neighboring vehicles sharing
the road vicinity can collaborate, cooperate, and share their
redundant computation, power, and caching resources for
their mutual benefit. The collaboration among the vehicles in
a road segment uncovered by the cellular networks becomes
significant to offload, process, and retrieve the computation-
intensive tasks. However, such resource sharing pertains to its
own challenges of managing the limited resources, meeting
the QoS requirements, having very short points of con-
tact among the vehicles, and guaranteeing task completion.
Therefore, a sophisticated design of collaborative sharing
of resources for task completion in the absence of cellular
coverage is strongly desired.

Task offloading among the moving vehicles is particularly
challenging to meet the latency, task completion, and limited
point of contact among vehicles. Moreover, the unavailability
of resources in the neighborhood to perform the desired task
makes efficient task management challenging. Another chal-
lenge of task offloading among the vehicles is the design of a
suitable incentive mechanism for the vehicles performing the
task. Moreover, executing the task according to the desired
order is critical to streamlining the application flow of the
requesting vehicle. Moreover, selecting suitable vehicles to
perform the task and optimal offloading decisions becomes
challenging under dynamic channel conditions and speed
variations of vehicles. In addition, to meet the strict latency
requirements of the tasks for vehicular networks, another
challenge is to balance the task offloading under the limited
energy resources. By allocating high computation and com-
munication resources to a task, the latency requirements can
be fulfilled at the cost of high energy consummation. There-
fore, it is desired to design a balanced scheme for managing
the trade-off between energy and latency constraints.

In the literature, a number of task management schemes for
vehicular networks have been proposed. An intuitive solution
can be the reduction of task sizes instead of offloading the uni-
fied larger tasks. In this way, the slices of tasks are executed at
local, neighboring vehicles or the MEC servers. The authors
in [1] proposed a destination selection framework from the
neighboring vehicle or the MEC server to offload the task.
However, the authors do not consider energy management in
task offloading. The same problem of V2X task offloading is
addressed by [2] where the authors proposed a task offloading
scheme in the vehicular networks under the task latency
requirements. The authors in [3] proposed a task partition-
ing scheme to offload the slices of tasks to different MEC
servers such that the latency requirements are fulfilled. How-
ever, these works do not consider the energy management

of vehicles in their framework. To address the challenge
of task offloading under the limited energy resources in
vehicular networks, the authors in [4] proposed the selection
of a MEC server according to the availability of energy
resources. To manage the energy-latency trade-off efficiently,
the authors in [5] proposed an energy-aware task offload-
ing scheme for vehicular networks. Similarly, the authors
in [6] and [7] investigated the problem of mobility-aware
task offloading and latency without the problem of inter-
ference management and the trade-off between energy and
latency. Most of the aforementioned works lack involvement
of latency-energy trade-off in the task execution at local,
neighboring, and MEC servers. Moreover, they have not con-
sidered the power control problem and interference manage-
ment for V2V communication.

To this end, we propose a hybrid collaboration on the road
scheme to efficiently manage the computation and communi-
cation resources, and interference management of the vehic-
ular networks while optimizing the task offloading decisions
to local, neighboring vehicles and MEC servers. To do this,
we develop a system model containing two sets of vehicles:
(i) resource-constrained vehicles and (ii) vehicles that have
available resources. In which, the resource-constrained vehi-
cle generates a latency and computation-intensive task to be
executed. This can be a computing task generated by passen-
gers for using infotainment services [8], or an image process-
ing task for road tracking of EVs [9]. Typically, these tasks
can be executed locally or can be offloaded to a resourceful
neighboring vehicle, and MEC server. To formulate the opti-
mization problem, we design the mobility model of the vehi-
cles using the kinematic equations. Then, the corresponding
communication, computation, offloading, and latencymodels
are designed. We formulate the optimization problem with
the objective of a trade-off between the latency and energy of
the vehicular network. The optimization problem is solved
through the block coordinate descent technique (BCD) by
decomposing the problem into three subproblems. To the best
of our knowledge, this is the first paper that considers joint
communication, computation, and control in terms of latency-
energy trade-off, including power control and interference
management for V2V communication and computing task
offloading in EVs-assistedMEC. The following is a summary
of our main contributions:
• We propose a system model of Electric Vehicles (EVs)-
assisted MEC for task offloading in which EVs are
allowed to offload the computing task either to the MEC
server or close vicinity EVs, which have the available
resources to process the task.

• We formulate the joint optimization problem w.r.t. the
trade-off between latency and energy consumption.
In which we consider the problem of communication
resource allocation, interference management, and task
offload decision. The formulated problem falls into
Mixed-Integer Non-Linear Programming (MINLP) cat-
egory. It is intractably NP-hard and time-consuming for
a large and practical scale setting.
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• By employing the Block Coordination Descent (BCD)
technique, we then decompose the formulated problem
into three subproblems named Resource Block Allo-
cation problem (RBA), Power Control problem (PCP)
for Vehicle-to-Vehicle (V2V) communication and EVs
offload decision problem (ODP).

• RBA problem is solvable via an alternative method
named dual decomposition with duality and sub-
gradient methods. The second subproblem of PCP is a
bi-convex, and thus we employ the Lagrangian multi-
plier method to distributively obtain a sub-optimal solu-
tion. Furthermore, we solve the third problem via the
alternating direction method of multipliers (ADMM) to
obtain the optimal of the relaxed problem.

• Finally, we validate our proposed model with compre-
hensive numerical results. We have verified the conver-
gence rate as well as the performance of each algorithm
for solving each sub-problem.

The rest of this paper is structured as follows: Section II
covers related works. Section III describes the system model.
The proposed problem formulation and solution approaches
are presented in Sections IV and V, respectively. Simulation
results are provided in Section VI. Finally, Section VII con-
cludes the paper.

II. RELATED WORKS
A. MULTI-ACCESS EDGE COMPUTING
The recent developments of high-performance applications
have overwhelmed the resource-limited vehicular networks.
A number of works tried to address this issue by proposing
the task offloading to cloud servers [10], [11], [12], [13],
[14], edge server, and neighboring vehicles. For instance, the
authors in [10] proposed a cloud-based architecture for vehic-
ular networks to efficiently manage the computation, storage,
and spectrum resources. However, the proposed architec-
ture covers the standard vehicular data, e.g., navigation and
surveillance. The authors in [11] proposed a decentralized
clustering of vehicles near the traffic signals to alleviate the
load from the cloud server. However, they did not consider
the edge server in their V2I architecture. The authors in [12]
proposed a task scheduling scheme for vehicular clouds.
They developed a polynomial-time approximation scheme
for single-task scheduling. However, this work is limited to
only a single task scheduling with the cloud server. The
authors in [13] proposed a joint cloud and MEC-based task
offloading scheme for the vehicular network. They adopted
a game-theoretic approach for the task offloading decision
and the Lagrange multiplier method for resource allocation.
However, the authors did not consider the task of offloading to
the neighboring vehicles. The authors in [14] proposed a task
handover scheme to the cloud server for the vehicles, which
are leaving the network without completing the task.

The cloud-based computation schemes lack to meet the
latency requirements of time-intensive tasks. To address this
challenge, edge server-based task offloading for vehicular

networks has been proposed [15], [16], [17], [18], [19]. For
instance, the authors in [15] proposed a MEC and a backup
computing server-based task offloading scheme for vehicular
networks. They devised a Stackelberg game for the multilevel
offloading of vehicular tasks to maximize the utilities of edge
servers and mobile users. The authors in [16] exploited edge
computing to design a resource-sharing scheme among the
vehicles. In the proposed two-stage mechanism, the resource
requirements from nearby vehicles are gathered by the edge
server to compute the optimal prices, and then resource allo-
cation according to the task requirements is performed in
the second stage. The authors in [17] proposed a scheme
for the efficient placement of an edge server at an optimal
location in an urban environment to meet the computational
and latency requirements of vehicles. The authors in [18]
proposed an energy management scheme for cellular users in
vehicles to offload their workload to MEC. They formulated
the optimization problem to minimize power consumption
under latency constraints and power budgets and solved it
using ADMM. However, they did not consider the allocation
of computing resources for each device in their formulation.
The authors in [19] devised a contract and matching-based
resource allocation scheme in vehicular fog networks. They
designed a contract-based incentive mechanism to increase
the BS utility.

B. V2Vs-ASSISTED MULTI-ACCESS EDGE COMPUTING
A number of works have investigated the collaboration
among the vehicles for content delivery and task alloca-
tion [20], [21], [22], [23], [24], [25], [26]. For instance, the
authors in [20] proposed a task allocation scheme in which
a generated task by a vehicle is allocated to the neighbor-
ing stationery and mobile fog nodes. They also performed
experimental analysis for different mobility settings of the
network. The authors in [21] proposed a probabilistic task
prioritizing scheme in which the contents in the other vehicle
are estimated beforehand. However, the scope of this work
is limited to content sharing only. A similar content dissemi-
nation scheme is proposed in [22] where advertising content
is broadcast to all vehicles in an urban area by exploiting
the V2V communication. To further reap the benefits of
available resources in a vehicle, a contract-based scheme is
proposed in [23] to incentivize resource-sharing vehicles. The
work in [24] also proposed a contract-based task allocation
scheme among the vehicles where the participating vehicles
are encouraged to maintain a relative acceleration to guar-
antee task completion. The authors in [25] proposed a com-
munication and computation resource management scheme
for autonomous vehicles. However, the scope of this work is
to handle the propulsion and control of autonomous vehicles
only. The authors in [26] proposed a task offloading scheme
in a vehicular fog network where tasks of different priority
are handled accordingly.

The works mentioned above have not investigated the
power control and interference management problem for
V2V communication, which significantly affects V2V, V2I
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FIGURE 1. Illustration of our system model.

communication, and task offloading. Therefore, in this work,
we combine communication which is resource block allo-
cation, computation which is computational resource allo-
cation, and control which is task offload decision, power
control, and interference management.

III. SYSTEM MODEL
As illustrated in Fig. 1, we consider a vehicular network
that consists of a MEC server and two sets of EVs; O =
{1, 2, . . . ,O} is a set of resource-constrained EVs (SEVs);
and D = {1, 2, . . . ,D} is a set of EVs which have available
resources to assist the resource-constrained EVs (DEVs);
and a Road Side Unit (RSU) enabled MEC (REC). In this
work, we assume that EVs are traveling on the road under
the coverage radius of the RSU. Each EV i ∈ O has a
latency-sensitive computation task Ai that can be expressed
by a positive tuple Ai = (Si,Ci, δi), where Si is the task
size, Ci is the CPU cycles per second per bit that is requires
to compute a unit data of the task, and δi is the worst case
execution of the task. For instance, EV passengers are using
onboard infotainment services, and some of the requested
content is missing in its cache storage. However, it has similar
content which the requested one but is stored in a different
format, i.e., the requested content is 720p, and the cached
content is 360p. Thus, EV needs to transform cached content
into the requested format by using a certain method such as
transcoding, low-resolution, or supper-resolution [8]. In this
case, the size of task Si is the size of cached content, Ci is
the CPU requirements to transform the cached content to the
requested one, and δi is the maximum latency. Due to the
limited computation capacity of the EV and the latency con-
straint of the tasks, it is challenging for the EV to compute its
tasks locally. Therefore, EVs need to offload a fraction of the
task or the complete tasks to the associated RSU via wireless
links to perform remote computing. However, the RSUmight
be overloaded due to the high number of tasks offloaded by
the EVs. Therefore, we propose a hybrid offloading system

model in which EVs are allowed to offload their associated
tasks either to the MEC server or another close vicinity EVs
that are not resource-constrained. To cope with this chal-
lenge, we propose a hybrid offloading systemmodel in which
EVs are allowed to offload their associated tasks either to
the MEC server or another close vicinity EVs that are not
resource-constrained.

A. EV MODEL
For simplicity we denote EV i ∈ O as source EV (SEV)
and EV j ∈ D as destination EV (DEV), and the set of
all EV in the system as K = O ∪ D. Inspired by our
previous work [24], we extend the mobility modeling of EVs
as follows. In this work, we assume that EVs are moving with
a positive velocity denoted as vk ,∀k ∈ K, vk [t] denotes the
instantaneous velocity at time t , and initial location lk [t0] =
{ϕk [t0], φk [t0]},∀k ∈ K , where ϕk [t0], and φk [t0] represents
the initial longitude, and latitude of EV k at time t0, respec-
tively. Longitude ϕk represents the location, and latitude φk
represents the lane shifting of an EV k . Let vi∈O[t0], vj∈D[t0]
be the instantaneous velocity of SEV, and DEV at time t0,
respectively. Similarly, let ai[t0], and ai[t0] be the acceleration
of SEV, and DEV at time t0, respectively. Based on the
kinematic equation, we can measure the location of any EV
k ∈ K after some time duration 4t = t − t0 as follows:

ϕk [4t] = ϕk [t0]+
1
2

∣∣∣∣ 14t
( t∫
t0

ak [u|ϕ]∂(u)
)∣∣∣∣, ∀k ∈ K,

φk [4t] = φk [t0]+
t∑

u=t0

φk [u], ∀k ∈ K. (1)

Based on (1), the relative distance between a pair of SEV and
DEV, e.g., i ∈ O, j ∈ D at time t is given by:

di,j[t] =
√
(ϕi[t]− ϕj[t])2 + (φi[t]− φj[t])2,

∀i ∈ O, ∀j ∈ D. (2)

Note that, the mobility of an EV affects the performance of
the offloading process due to the availability of a pair in the
communication range of V2V denoted as dmax. Therefore,
it is indispensable to consider the Relative Acceleration (RA)
between SEV and DEV. In this paper, we assume that SEV
and DEV are moving in the same direction, and thus, RA of
SEV and DEV can be modeled as follows:

4ai,j[t] = |aj[t]− ai[t]|, ∀i ∈ O, ∀j ∈ D. (3)

Therefore, the relative distance between any pair of EVs after
some time duration 4t can be measured at follows:

di,j[4t] = di,j[t0]+
1
2
ai,jt2, ∀i ∈ O, ∀j ∈ D. (4)

For instance, let4t be the offloading time period, during this
time, the relative acceleration between the SEV and DEV
is significantly large resulting in a larger distance between
them. This will then hinder the performance of the offloading
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TABLE 1. Summary of notations.

process due to violation of the maximum range of V2V
communication threshold di,j[4t] > dmax. The SEV and
DEV will not be able to communicate with each other, thus,
the offloading service will be interrupted. Next, we present
the communication model for EVs.

B. COMMUNICATION MODEL
This subsection presents our communication models that
include communication between SEVs and the RSU, and
the communication between SEVs and DEVs. Similar to
our work in [8], [24], we consider Long-Term Evolu-
tion (LTE) and the fifth generation (5G) based commu-
nication technologies in this work. The LTE or 5G has
higher stability than Dedicated short-range communications
(DSRC)/IEEE802.11p in terms of bandwidth features suiting
the purpose of the task offloading service as opposed to
the other technologies.Then, we assume that the total com-
munication system bandwidth W is divided into β resource
blocks (RBs), each of bandwidth Wb∈β . To begin with,
we present the communication model between the SEV and
the RSU in which the SEV’s task is offloaded to the RSU
using the vehicle-to-infrastructure (V2I) communication fol-
lowed by the resource-constrained SEV offloading its task
to close vicinity DEVs via the vehicle to vehicle (V2V)
communication.

1) SEV TO RSU COMMUNICATION VIA V2I
In this case, the communication takes place between a SEV
and the RSU. Thus, the signal-to-interference-plus-noise
ratio (SINR) of a SEV i is given by:

0bi,0 =
pbi,0g

b
i,0d
−α
i,0∑

k∈�b,k 6=i p
b
kg

b
k,i + I0

, (5)

where pi,0 and gi,0 are the transmit power, and channel power
gain between SEV i and the RSU, respectively. di,0 is the
distance between SEV i and RSU, α is path-loss coefficient.∑

k∈�b,k 6=i p
b
kg

b
k,i is the interference from other SEVs that

use the same RB b, �b is the set of SEVs that are allocated
the same RB b. I0 is the Additive Gaussian White Noise
(AGWN). Next, we describe the scenario of SEV to DEV
communication.

2) SEV TO DEV VIA V2V
In this case, the communication takes place between SEV i
and DEV j. Thus, the SINR of EV pair (i, j) is given by:

0bi,j =
pbi,jg

b
i,jd
−α
i,j∑

k∈�b,k 6=i p
b
kg

b
k,i + p

b
0g
b
0,i + I0

, (6)

where pbi,j and g
b
i,j are the transmit power, and power channel

gain between SEV i and DEV j, di,j is the distance between
SEV i and DEV j. pb0g

b
0,i is the interference from SEV that

communicate with RSU using the same RB b.
Let ζ be the association decision variable with each ele-

ment ζ bi representing if the RB b is either assigned to SEV i
or not.

ζ bi =

{
1, if RB b is allocated to SEV i ,
0, otherwise.

(7)

Consequently, the achievable data rate of SEV i under both
scenarios can be formulated as follows:

Rbi =

{
Wb log2(1+ 0

b
i,0)ζ

b
i , V2I scenario,

Wb log2(1+ 0
b
i,j)ζ

b
i , V2V scenario.

(8)

Note that, we consider the relative distance between EV at
initial slot t = 0, and resulting time slot t = τ , thus, we omit
the time slot subscription in (5), (6), and (8). Next, we present
the computing model of our work.

C. COMPUTING MODEL
In this section, we present the computation model. In our
work, the computation of a task can be performed either
locally at the SEV or remotely by offloading the task. Next,
we present both scenarios of computations.
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1) LOCAL COMPUTING MODEL
In our model, we assume that each SEV i ∈ O is also
equipped with a small computing server that can provide
some light computing services. Let xi be the decision variable
indicating whether SEV i can execute the task locally or not.

xi =

{
1, if SEV i is executing the task,
0, otherwise.

(9)

Moreover, we assume that the computational resource of the
SEV is also limited and represented by Hmax

i (CPU cycle
per second). Thus, the EV has to guarantee the efficiency of
computing capacity abiding by the following constraint:

CiSi ≤ hixi ≤ Hmax
i , ∀i ∈ O. (10)

2) REMOTE COMPUTING MODEL
In the remote computation model, we consider a hybrid
offloading in which SEV i ∈ O is either offloading to DEV
j ∈ D or MEC server. Therefore, we have two scenarios
of offloading: i) V2V offloading; ii) V2I offloading. Next,
we define each scenario of offloading.

a: V2V OFFLOADING MODEL
Let yi,j be the offloading decision variable of SEV i to DEV j.

yi,j =

{
1, if DEV j executes the task of SEV i,
0, otherwise.

(11)

In our model, if the computational resources of SEV i is
insufficient, it can offload the task to close vicinity DEVs
via V2V links. On the other hand, the DEV j ∈ D also
has a limit on computing and energy capacity. Thus, DE
j also needs to guarantee the computational capacity Hmax

j
and energy capacity Emax

j in order to handle the offloading
task of SEV i. Then, the following constraints need to be
considered for successful task offload and execution. For the
energy constraint:∑

i∈O
κ(hi,j)2yi,j ≤ Emax

j , ∀i ∈ O, ∀j ∈ D, (12)

where hi,j is the computational resources that DEV j allocates
to process the computing task of SEV i. Similarly for compu-
tational capacity constraint:∑

i∈O
CiSiyi,j ≤

∑
i∈O

hi,jyi,j ≤ Hmax
j , ∀j ∈ D. (13)

b: V2I OFFLOADING MODEL
In this case, SEV i is offloading computing taskAi to the RSU.
We assume that the RSU has to handle all of the offloading
tasks of EVs. However, the latency depends on the arrival rate
of the demand. The higher the demand, the more increase in
latency.Moreover, the RSU is using grid electricity, therefore,
we do not have the energy constraint in the case of the V2I
offloading model. Then, let zi be the decision variable for the

computing task of SEV i.

zi =

{
1, if RSU executes the task of SEV i,
0, otherwise.

(14)

The RSU’s computational capacity constraint can be formu-
lated as follows: ∑

i∈O
h0,iz0,i ≤ Hmax

0 . (15)

Next, we discuss the energy and latency models in the follow-
ing subsections.

D. ENERGY MODEL
Firstly, we consider the case of local energy consumption of
SEV i. In the case of processing its local computing, SEV i
needs to consider its energy capacity constraint given by:

Ecomp
i = κ(hi)2xi ≤ Emax

i , ∀i ∈ O, (16)

where κ = 5.0 × 10−27 is a constant which depends on the
chip architecture of the server at SEV, hi is the computational
resource that SEV i allocates to process the task Ai. And, the
required transmission energy when SEV i offloads its task to
DEV j is given by:

E tx
i,j = pi,j

Si
Rbi,j

yi,j, ∀j ∈ D. (17)

Similarly, the energy consumption when SEV i offloads its
task to the RSU is given by:

E tx
i,0 = pi,0

Si
Rbi,0

zi, ∀i ∈ O. (18)

Next, we define the energy consumption of DEV j. The total
energy consumption of DEV j is calculated based on the total
computing task of SEVs that are being executed at its server.
Thus, the energy consumption of DEV j is given by:

Ecomp
j =

∑
i∈O

κ(hi,j)2yi,j, ∀j ∈ D. (19)

Consequently, the energy constrain for any EV k ∈ K is given
by

Ecomp
k + E txk + E

base
k ≤ Emax

k , (20)

where Ebase
k is the base load energy of EV k .

E. LATENCY MODEL
In this work, we assume that the output of a computing task
in terms of task size is always smaller compared with its input
size. Therefore, it is negligible in terms of latency impact
on feedback the results from DEV to SEV [24]. The latency
in our model considers both transmission and computation
latency. Communication latency of SEV i:

L txi =
∑
j∈D

Si
Rbi
yi,j +

Si
Rbi
zi, ∀i ∈ O, ∀j ∈ D. (21)
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Let Lcomp
i be the latency of local computing of SEV i:

Lcomp
i =

SiCi
hi

xi, ∀i ∈ O, (22)

Similarly, the latency for remote computing at neighbor DEV
be given as: Lcomp

i,j is given by:

Lcomp
i,j =

∑
j∈D

SiCi
hi

yi,j, ∀i ∈ O. (23)

If the computational resources of SEVs and DEVs are insuf-
ficient. The task is forwarded to the RSU. Let Lcomp

i,0 be the
computing latency at RSU. Lcomp

i,0 is represented as follows:

Lcomp
i,0 =

SiCi
hi

zi,0, ∀i ∈ O. (24)

Consequently, the total latency of a computing task of SEV i
can be formulated using the following:

Li = L txi + L
comp
i +

∑
j∈D

Lcomp
i,j + Lcomp

i,0 , ∀i ∈ O. (25)

On the other hand, we also consider the mobility of SEVs and
DEVs in order to guarantee the success of offloading services
while moving. Therefore, the latency is bound to either the
worst-case execution of offloading task or the time that SEV
and DEV are moving out of the acceptable communication
range dmax. Consequently, let τi,j be the maximum latency
threshold for EV pair i, j. τi,j can be modeled as follows:

τi,j = min{δi,
2dmax

ai,j
}, ∀i ∈ O, ∀j ∈ D. (26)

Intuitively, the V2V offloading latency is bounded using
the following constraints:

Li,j ,
∑
j∈D

(
Si
Rbi
+
SiCi
hi

)
yi,j ≤ τi,j. (27)

As shown in (26), if the relative acceleration between SEV i
and DEV j is too high, thus, the minimum latency is strictly
low. Consequently, DEV j must allocate more computational
resources to guarantee the feasibility of latency constraint
in (27). As a result, total energy consumption is significantly
increasing. Therefore, we consider mobility as a constraint
in our optimization problem to guarantee the feasibility of
our solution. It must be noted that, in practice, an EV’s
velocity varies over time, which might lead to the problem

of interruption due to inter EV’s distance exceeding the max-
imum acceptable range dmax for V2V communication. One
viable solution is that both SEV and DEV can synchronously
increase or decrease their velocity. This has been done in
our previous work in [24], where the RSU offers a reward
to motivate SEV and DEV synchronously take the same
action, such as increase or decrease velocity to keep the inner
distance at an acceptable value. By doing so, we can avoid
interruption during the offloading process.

Next, we present our problem formulation and proposed
solution approach.

IV. PROBLEM FORMULATION
The goal of task offloading is typically to minimize the total
latency and energy consumption. However, there is a con-
flict between latency and energy consumption. For instance,
to minimize latency, we need to reduce transmission latency
by increasing transmit power to achieve a higher data rate; and
thus, it is increasing the total energy consumption. Similarly,
reducing computation latency by allocating more compu-
tational resources to process the offloading tasks increases
energy for computing. To overcome this challenge, we pro-
pose an objective function that is a trade-off between energy
consumption and latency. The detail of the objective function
is presented in (28), as shown at the bottom of the page,
where ψ is a trade-off coefficient, and8 is the normalization
parameter due to the different scale of latency in milliseconds
(ms) and energy in milliwatt (mW).

To the best of our knowledge, this is the first study to take
into account the trade-off of latency and energy consump-
tion minimization problem in the collaborative EVs-assisted
RSU-enabled MEC server, by jointly optimizing offloading
decisions, communication resource allocation, power control,
and computational resources allocation.

Our optimization problem is formulated as follows:

min
ζ,p,h,x,y,z

F(ζ, p, h, x, y, z) (29a)

s.t.:
B∑
b=1

ζi,b ≤ 1, ∀i ∈ O, (29b)

0 ≤ pi ≤ pmax
i , ∀i ∈ O, (29c)

Ri ≥ Rmin, ∀i ∈ O, (29d)

F(ζ, p, h, x, y, z) =
∑
i∈O

[
ψ8

(
κih2i xi︸ ︷︷ ︸

local energy

+

∑
j∈D

(
κjh2i,j + pi,j

Si∑
b∈β

Rbi,jζ
b
i,j

)
yi,j

︸ ︷︷ ︸
V2V energy

+

(
κ0h2i,0 + pi,0

Si∑
b∈β

Rbi,0ζ
b
i,0

)
zi,0

︸ ︷︷ ︸
V2I energy

)

+ (1− ψ)
(

Si
hi
xi︸︷︷︸

local latency

+

∑
j∈D

(
Si
hi,j
+

Si∑
b∈β

Rbi,jζ
b
i,j

)
yi,j

︸ ︷︷ ︸
V2V latency

+

(
Si
hi,0
+

Si∑
b∈β

Rbi,0ζ
b
i,0

)
zi,0

︸ ︷︷ ︸
V2I latency

)]
. (28)
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∑
i∈O

pbi g
b
i,0ζi,b ≤ I

max
b ,∀b ∈ β, (29e)

0 ≤ hixi ≤ Hmax
i , ∀i ∈ O, (29f)∑

i∈O
hi,0zi,0 ≤ Hmax

0 , ∀i ∈ O, (29g)

∑
i∈O

hi,jyi,j ≤ Hmax
j , ∀j ∈ D, (29h)

Ei ≤ Emax
i , ∀i ∈ O, (29i)

Ej ≤ Emax
j , ∀j ∈ D, (29j)

Li ≤ Lmax
i , ∀i ∈ O, (29k)

Li,j ≤ τi,j, ∀i ∈ O, ∀j ∈ D, (29l)

xi +
∑
j∈D

yi,j + zi,0 = 1, (29m)

hi,j, hi,0 ≥ 0, ∀i ∈ O, ∀j ∈ D, (29n)

xi, yi,j, zi,0 ∈ {0, 1}, ∀i ∈ O, (29o)

ζi,b ∈ {0, 1}, ∀i ∈ O, ∀b ∈ β, (29p)

where ζ ∈ {0, 1}|β|×|O| is the RBs allocation variable,
p ∈ R|O| is the transmit power variable, h ∈ R|O| is the
computational resource allocation variable, x ∈ {0, 1}|O| is
the decision variable local EVs, e.g., SEVs, y ∈ {0, 1}|O|

is decision variable of neighboring EVs, e.g., DEVs, and
z ∈ {0, 1}|O| is the decision variable of MEC. Constraint
(29b) guarantees that an EV is allocated in at most one RB b.
Constraint (29c) represents that the transmitting power level
of EVs does not exceed the maximum transmit power level.
Constraint (29d) guarantees the QoS for a SEV with a min-
imum achievable data rate threshold Rmin. Constraint (29e)
represents the protection of the RSU’s user that is allocated in
RB bwith maximum interference threshold Imax

b . Constraints
(29f), (29g), and (29h) are computational capacity constraints
of SEVs, DEVs, and RSU, respectively. Similarly, constraints
(29i) and (29j) are the energy constraint of SEVs and DEVs,
respectively. Constraint (29k) represents the upper bound of
latency with Lmax

i while the constraint (29l) is representing
latency constraint concerning mobility between SEV i, and
DEV j. Constraint (29m) guarantees the success of offloading
tasks. The resource allocation variable is linear in (29n) while
offload decision and RB allocation variables are binaries in
(29o), and (29p).

The problem in (29) is a Mixed-Integer Non-Linear Pro-
gramming (MINLP) problem due to binary decision variable,
e.g, x, y, z, and ζ . Thus, it falls into the NP-hard category.
Obtaining a solution for such kind of problem requires a
huge amount of computing resources and results in huge
time complexity. Moreover, due to the huge dimension of
the feasible space in problem (29), it is unsolvable via the-
oretical analysis, and thus, there is no optimality condi-
tion guarantee for the optimal solution. Therefore, to cope
with this issue, we employ the Block Coordinate Descent
(BCD) technique [27], [28] to obtain an approximate solution

FIGURE 2. Proposed framework.

for the problem (29). BCD is also known as the Gauss-
Seidel method, an iterative algorithm for non-convex, block
multi-convex, and smooth objective functions under con-
straints optimization problem [27]. In such a way, the orig-
inal problem is decomposed into multiple sub-problems and
solved sequentially, then composed solutions to the original
problem.

Intuitively, we decompose our original problem (29) into
three subproblems: Resource Block Allocation problem
(RBA), Power Control problem (PCP) for Vehicle-to-Vehicle
(V2V) communication and EVs offload decision problem
(ODP).

Then, these decomposed subproblems provide us the flex-
ibility through which they can be either bi-convex, e.g., PCP
problem, or transformed into convex problems, e.g. ODP, and
solved alternatively. In which, solutions of RBA and PCP are
exchanged with each other to obtain a stationary solution.
Then, the final results of RBA and PCP are input for the ODP
problem.

Next, we present our proposed solution approaches.

V. PROPOSED SOLUTION APPROACHES
This section presents our solution approach in which we
decompose and solve the aforementioned problems. To begin
with, we derive the solution approaches for RBA and PCP
that couple with each other. Then, we design the solution
approach for ODP problem based on the output of RBA and
PCP. Our proposed approach is sequentially updating the
solution at each EV and exchanging it with the others until
each reaches a stationary solution. This can be done by fixing
two blocks and solving the remaining block. This proposed
algorithm is alternatively processed until reached a stationary
solution. Furthermore, we have concrete our proposed model
with the convergence condition in [27] and [28]. Therefore,
it always exists at least a stationary solution. The detail of
these processes is described in Fig. 2.Moreover, our approach
aims to obtain solutions in a distributed manner. In such a
way, each EV makes a decision locally and exchanges it
with others. Therefore, in order to aggregate the solution
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of EVs, the RSU is assumed to be the global controller,
where decisions of EVs are exchanged and balanced via some
auxiliary variables [29], [30]. Furthermore, to successfully
exchange this information, we assume that EVs are able to
communicate with the RSU via wireless links. Moreover,
the resources allocation variable h is binding as constraint
in (29f), (29g), and (29h), and is considered as a projection
function for the feasible solution [8].

Next, we present our solution approach for the first block
RBA.

A. RESOURCE BLOCK ALLOCATION PROBLEM (RBA)
In this subsection, we present a solution approach for the
RBA block, while fixing the other two blocks, e.g., PCP
and ODP. For a given transmit power levels vector p, EVs
offload decision x, z, and DEVs decision y, the RSU have to
allocate RB for EVs that maximize the total achievable data
rate of RSU users (RUEs) and V2V users (VUEs). In which,
RUE and VUE are the set of SEVs that preferred to offload
to the MEC or offload to nearby DEVs, respectively. The
RB allocation for RUE has been proposed in many exist-
ing works [31], [32], [33], [34], [35]. Moreover, the task
transmission scheduling has been considered in [36], [37],
and [38]. Therefore, in this work, we focus more on the
VUEs resource allocation problem. Let �S be the set of
SEVs that preferred to use V2V offloading. The optimization
problem for V2V resource allocation can be formulated as
follows:

RBA : max
ζ

F(ζ ) =
∑
i∈�S

∑
b∈B

Ri,bζi,b (30a)

s.t.
B∑
b=1

ζi,b ≤ 1, ∀i ∈ �S , (30b)

∑
i∈�S

pi,0,bgi,0,bζi,b ≤ Imax
b , ∀b ∈ β,

(30c)

ζi,b ∈ {0, 1}, ∀b ∈ β. (30d)

The problem in (30) falls out as a combinatorial problem
due to the binary variable ζ . Therefore, it needs to use an
alternative algorithm to solve this optimization on the RSU
side. Based on the proof of convergence using a sub-gradient
based technique in [39] and [29]. We propose an algorithm
based on duality theory to solve RBA in (30). The detail of
the algorithm is stated in Alg. 1.

B. POWER CONTROL PROBLEM FOR V2V
OFFLOADING (PCP)
For a given RB b allocated to EV i, EV i has to carefully
choose a transmit power level by considering the interference
effect on RSU’s users and other V2V users that use the
same RB b. The optimization problem can be formulated

Algorithm 1 Duality-Based Resource Block Allocation for
V2V Communication

1: Initialize: t = 0; γ (0)
i,b ≥ 0, step-size θ (0)b > 0, εS =

1e−4,
2: repeat
3: t ← t + 1;
4: The RSU updates ζi,b for SEV i and dual variable γi,b

as follows:
5: Finding the optimal RB index for each SEV:

b∗ = argmax
b

{∑
i∈�S

∑
b∈B

(
Ri,b − γ

(t)
i,bgi,bpi,b

)}
.

(31)

6: RB allocation decision:

ζi,b =

{
1, if b = b∗,
0, otherwise.

(32)

7: The RSU updates the dual variable according to step-
size θ (t)b :

γ
(t+1)
i,b =

[
γ
(t)
i,b − θ

(t)
b

(∑
i∈�S

pi,bgi,0,bζi,b − Imax
b

)]+
.

(33)

8: until |θ (t+1) − θ (t−1)| ≤ εS ;
9: Then, set ζ as the desired solution.

as follows:

PCP : max
p

F(p) =
∑
i∈O

∑
b∈β

F(pi,b) = Rbi (34a)

s.t.: 0 ≤ pbi ≤ p
max
i , (34b)

Rbi ≥ Rmin, (34c)∑
i∈O

pbi g
b
i,0ζi,b ≤ I

max
b . (34d)

The PCP problem is non-convex nor concave due to the
properties of the objective function (5), and (6). Therefore,
we approximate the objective function of problem PCP into
an equivalent function as follows:

F(pi,b) = α
Ri,b
Rmax
i,b
− (1− α)

pi,b
pmax
i,b

, (35)

where α is a trade-off coefficient between transmit power
and achievable rate in an RB. Then, the problem PCP can
be rewritten as follows:

PCPE : max
p

F(p) =
∑
i∈O

∑
b∈β

F(pi,b) (36a)

s.t.: 0 ≤ pbi ≤ p
max
i , ∀i ∈ O, (36b)

Rbi ≥ Rmin, ∀i ∈ O, (36c)
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∑
i∈O

pbi g
b
i,0ζi,b ≤ I

max
b , ∀b ∈ β. (36d)

Lemma 1: The problem PCPE is a bi-convex problem.
Since PCPE is a bi-convex problem. It always exists

at least a stationary solution. Therefore, we have derived
the general form of solution for (36) in the following
proposition.
Proposition 2: According to the Karush-Kuhn-Tucketer

(KKT) conditions [29], the optimal solution of transmit power
level for EV i for PCPE is as follows:

p∗i,b =

(
31,i + λ

∗

3,i

)
Wb ln(2)

32,i + λ
∗

1,i + λ
∗

2,i − λ
∗

4,ig
b
i,0

−

∑
j∈�b,j6=i

pbj g
b
j,i + IRSU + I0

gbi
. (37)

Proof: Please refer to appendix.
Based on aforementioned lemma, and proposition,

we now apply dual decomposition method to alterna-
tively get a approximate solution [29] for PCPE stated in
(36). The detail of the proposed algorithm is described
in Alg. 2.

Algorithm 2LagrangianMultiplier-BasedDistributed Power
Control for V2V Communication
1: Initialize: t = 0, α = 0.5, step-size θ2,i, θ3,i, θ4,i ≥ 0,
2: repeat
3: Each SEV i ∈ O alternatively updates transmit power

according to (37).
4: After receiving the transmit power level of all SEVs,

the RSU updates the dual variable as followings:

λ
(t+1)
2,i

=

[
λ
(t)
2,i+θ2,i

(
p(t+1)i,b −pmax

)]+
(38a)

λ
(t+1)
3,i

=

[
λ
(t)
3,i+θ3,i

(
Wb log2(1+ξi,bp

(t+1)
i,b )−Rmin

)]+
(38b)

λ
(t+1)
4,i

=

[
λ
(t)
4,i+θ4,i

(∑
i∈�b

p(t+1)i,b gi,0,b−Imax
b

)]+
(38c)

5: After updating all of the variables, the RSU then
informs all SEVs by broadcasting the value of dual
variables.

6: until |p(t+1) − p(t)| ≤ εp;
7: Then, set p as the desired solution.

C. SEV OFFLOAD DECISION PROBLEM (ODP)
For a given RB allocation ζ , and transmit power level p the
ODP can be formulated as follows:

ODP : min
x,y,z

F(x, y, z) (39a)

s.t: 0 ≤ hi ≤ Hmax
i , (39b)∑

i∈O
hi,0 ≤ Hmax

0 , (39c)∑
i∈O

hi,jyi,j ≤ Hmax
j , ∀j ∈ D, (39d)

Ei ≤ Emax
i , ∀i ∈ O, (39e)

Ej ≤ Emax
j , ∀j ∈ D, (39f)

Li ≤ Lmax
i , (39g)

Li,j ≤ τi,j, ∀i ∈ O, ∀j ∈ D, (39h)

xi +
∑
j∈D

yi,j + zi,0 = 1, (39i)

hi,j ≥ 0, (39j)

hi,0 ≥ 0, (39k)

xi ∈ {0, 1}, (39l)

yi,j ∈ {0, 1}, (39m)

zi,0 ∈ {0, 1}, . (39n)

The problem in (39) falls into the combinatorial category due
to the binary variables x, y and z. Therefore, it is an NP-hard
problem. In such a case, obtaining solution for ODP is time
consuming and intractable. Thus, in order to solve ODP,
we firstly relax the binary variables into continuous variables.
Note that this yields an interesting scenario in which the task
now can be offloaded distributively between DEVs and RSU,
thus, forming partial offloading between the remote servers.
In other words, a part of the task can be processed at DEVs
and the remaining parts are processed at the RSU. Intuitively,
we reformulate the problem ODP to an equivalent problem
ODPE as follows:

ODPE : min
x,y,z

F(x, y, z) (40a)

s.t: (39b)− (39k), (40b)

0 ≤ xi ≤ 1, (40c)

0 ≤ yi,j ≤ 1, (40d)

0 ≤ zi,0 ≤ 1. (40e)

The problem in (40) turns out to be convex due to linear objec-
tive, and either linear or close convex set constraints [29].
However, due to the coupling constraint (39i), it is required
an alternative method to obtain the solution for ODPE. There-
fore, we apply ADMM [30], to obtain the solution for ODPE.
Firstly, we define a feasible set of solutions at each SEV,DEV,
and RSU, respectively, which aims to reduce the number of
information exchanges between EVs, and RSU. By taking
the constraint that respects each EV such as computational
capacity, and energy capacity. Let �i be the feasible set of
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SEV i. �i is defined as follows:

�i ,

{
xi ∈ R V 0 ≤ xi ≤ 1, hixi ≤ Hmax

i ,Ei ≤ Emax
i ,

×Li ≤ Lmax
i ,Li,j ≤ τi,j

}
. (41)

Similarly, let�j be the feasible set of DEV j.�j is defined as
follows:

�j ,

{
yj ∈ R|O| V yj � 0,hTj yj ≤ H

max
j ,Ej ≤ Emax

j

}
.

(42)

Finally, the feasible set of the RSU �0 is defined as follows:

�0 ,

{
z ∈ R|O| V z � 0,hT0 z ≤ H

max
0

}
. (43)

Consequently, the problem in (40) can be rewritten as follows:

ODPE : min
x,y,z

F(x, y, z) (44a)

s.t. xi +
∑
j∈D

yi,j + zi,0 = 1, ∀i ∈ O,

(44b)

xi ∈ �i, yi ∈ �j, zi ∈ �z, (44c)

where 1 is a -vector with all elements equal to one. Following
the ADMMmethod, we can drive the augmented Lagrangian
function of the problem in (44) as follows:

Lρ(x, y, z, λ) = F(x, y, z)+ λT (x+
∑
j∈D

yj + z− 1)

+
ρ

2

∣∣∣∣∣∣∣∣x+∑
j∈D

yj + z− 1

∣∣∣∣∣∣∣∣2
2
, (45)

where || · ||22 is the norm-2 squared, λ is a Lagrangian mul-
tiplier of the constrain (44b), and ρ is any positive number
considered as a penalty term for the Lagrangian function.
By taking the partial derivative w.r.t. each variables x, y
and z, based on the result of [29]. The solution of ODPE
can be obtain by sequentially updating each primal and dual
variable. The problemODPE is always guaranteed an optimal
solution due to the convexity of F(x, y, z), and either linear or
closed convex set constraints [29]. In this work, we assume
that SEV i will be the first one who makes the decision for
offloading and informing its neighbors. Next, after receiving
the decision of SEVs, DEVs are going to make decisions w.r.t
to its feasible set and feedback on the result to SEVs, and
RSU. The RSU will now have the information about SEVs
and DEVs decisions. Then, it might make a decision to accept
and process the task or not. Then, it will update the dual
variable λ. The detail of updating scheme is stated as follows.
Each SEV i ∈ O in parallel update the primal variable x as
follows:

x(t+1)i = argmin
xi

{
F(xi)+ λ

(t)
i

(
xi +

∑
j∈D

y(t)ij + z
(t)
i − 1

)

Algorithm 3 ADMM-Based EV-Assisted MEC Decision
Input: O, D;
Output: x, y, z;
1: Initialize: t ← 0; x(0)← 0 , y0← 0, z(0)← 0, λ(0)←

0, and ρ = 1.0;
2: repeat
3: SEV i updates x(t+1),∀i ∈ O according to (46) ;
4: Each neighbors EV j ∈ O update its decision yj∈D

paralelly according to (47)
5: The RSU update the value of its decision z(t+1) accord-

ing to (48), and Lagrangian multiplier λ according to
(49) ;

6: The RSU and Neighbor EVs feedback the information
about its decision to EV i;

7: After receiving the information about the neighbors
and RSU, the EV i then update the dual Lagrangian
variable according to (49);

8: t ← t + 1;
9: until ||(x(t+1) + y(t+1) + z(t+1))− (x(t) + y(t) + z(t))|| ≤
εpri ∩ ||λ

(t+1)
− λ(t)|| ≤ εdual ;

10: Then, set x∗, y∗, z∗ as the desired solution.

+
ρ

2

∣∣∣∣∣∣∣∣xi +∑
j∈D

y(t)ij + z
(t)
i − 1

∣∣∣∣∣∣∣∣2
2

}
, ∀xi ∈ �i.

(46)

After receiving the information of SEVs, neighboring DEVs
j ∈ D will update the variable yj as follows:

y(t+1)j

= argmin
yj

{
F(yj)+λ

(t),T
(
x(t+1)+yj+

∑
j′∈D,j′ 6=j

y(t)j′ +z
(t)
−1

)

+
ρ

2

∣∣∣∣∣∣∣∣x(t+1) + yj + ∑
j′∈D,j′ 6=j

y(t)j′ + z
(t)
− 1

∣∣∣∣∣∣∣∣2
2

}
, (47)

Finally, the RSU will make decision and update dual vari-
able and then broadcast it to all EVs in the system. The update
primal variable of RSU is given as:

z(t+1)

= argmin
z

{
F(z)+ λ(t),T

(
x(t+1) +

∑
j∈D

y(t+1)j + z− 1

)

+
ρ

2

∣∣∣∣∣∣∣∣x(t+1) +∑
j∈D

y(t+1)j + z− 1

∣∣∣∣∣∣∣∣2
2

}
, (48)

and the update of dual variable λ is given by:

λ(t+1) = λ(t) + ρ

(
x(t+1) +

∑
j∈D

y(t+1)j + z(t+1) − 1

)
. (49)

The detail of proposed algorithm is stated in Alg. 3.
Based on the aforementioned solution approach, we then

integrated them together in order to compose the solution
equivalent problem of the problem stated in (29). The detail
of the proposed algorithm is presented in Alg. 4.
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Algorithm 4 BCD-Based Algorithm for Joint Communi-
cation, Computation, Interference Management for Vehicle-
Assisted MEC
1: Initialize: t ← 0; x(0) ← 0 , y0 ← 0, z(0) ← 0, p =
pmax, z = 1, λ(0)← 0, and ρ = 1.0, εbcd = 1e− 4;

2: repeat
3: t ← t + 1;
4: Observe x(t+1), y(t+1), z(t+1) by solving ODP
5: Observe ζ t+1 by solving RBA
6: Observe pt+1 by solving PCP
7: until |F(x(tC1), y(tC1), z(tC1), p(tC1), ζ (tC1)) −

F(x(t), y(t), z(t), p(t), ζ (t))| ≤ εbcd ;
8: Then, set x∗, y∗, z∗ as the desired solution.

VI. NUMERICAL RESULTS
In this section, we evaluate the performance of our proposed
algorithm in the considered collaborative EV-assisted MEC
system. The proposed system model aims to use parallel pro-
cessing. However, due to the limitation on physical devices,
we evaluate our proposed framework on a single computer
with specifications: Intel Core i5-4690, 16 (GB), GPU GTX
1060 - 3(GB). We use Python3.8 as our simulation tool
combined with CVXPY.

A. SIMULATION SETUP
In order to demonstrate the numerical results for our proposed
approach, we choose a network consisting RSU-enabled
MEC server with a computational capacity of 3.9 (GHz).
We let the number of SEVs be in the range [10 ∼ 40], and
the number of DEVs is in the range [5 ∼ 20]. Each SEV
has a task to offload which represents a tuple containing the
task’s size is random in the range [100.0 ∼ 500.0] (MB)
with the median at 265.5 (MB) and mode at 271.5 (MB).
Similarly, the CPU requirement of the task is random in range
[1.0 ∼ 4.0] (kHz) with median at 2.2 (kHz) and mode at
2.5 (kHz). The location of EVs is assumed to follow the
Homogeneous Poison Point Process (HPPP) in this work. The
main parameter is presented in Table. 2.
Furthermore, in our simulation, we set the convergence

criteria of each algorithm at 10−4, and the acceptable conver-
gence rate of a primal variable at 10−3 [8]. Moreover, there
is no existing real dataset to demonstrate the practicality of
our approach and limitation on physical devices to deploy
a test-based performance evaluation, we can only provide
comprehensive numerical results by takingmultiple runs such
as at least 50 runs per result in our works, where input data
are totally random for each run, and the final results are taking
the average value.

B. PERFORMANCE BENCHMARKS
In this paper, we compare our proposed Alg. 3 which
deployed in distributed manner with below mentioned base-
line schemes named asGreedy Approach, Exhaustive Search,

TABLE 2. Simulation parameters.

and Centralized. The summarization of these schemes is as
follows:
Greedy Approach(GA): This approach required the infor-

mation of all EVs to be available at the RSU server which can
solve (39) in a centralized manner. In such a way, the RSU is
using the best first search strategy to make decisions for each
EV. Furthermore, the solution is mostly achieved as a locally
optimal solution but has a huge gap compared to the global
optimal. In some trivial cases, the greedy approach might
achieve an optimal solution. This approach has an O(N 2)
complexity.
Exhaustive Search(ES): Similar to the GA approach,

ES requires the information of all EVs at the RSU side to
solve the problem in a centralized manner. The RSU might
try to search all of the possible solutions that satisfy all
of the constraints and conditions posed in (39). It always
guarantees the globally optimal solution for MINLP but is
time-consuming and computationally intensive. Moreover,
the original problem in (29) is NP-hard, thus, the ES scheme
could not obtain the optimal solution on a large-scale set-
ting in polynomial time. Therefore, to quantify the gap
between the optimal and proposed solution, we have taken a
small-scale network to compare our proposed approach with
the optimal solution, where the number of DEVs in the range
of [10 ∼ 20], and the number of SEV in the range [10 ∼ 40].

This approach has an O(2N ) complexity.
Centralized Algorithm: This algorithm requires the RSU

with complete information as inputs for solving the problem
(40) in a centralized manner and has a complexity of at least
O(N log(N )) [29].

It must be noted that ES and GA schemes are designed to
solve the problem of MINLP state in (29), where the goal
of ES is to obtain an optimal solution of our formulated
problem in a strictly small scale-setting such as number of
EVs is very small. Moreover, GA is a scheme that can be
used to obtain a solution of a lower complexity compared to
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FIGURE 3. Performance of proposed framework: (a) Convergence of BCD-based algorithm, (b) Convergence rate of BCD-base algorithm, and
(c) Convergence of ODP algorithm.

ES, where the solution is obtained via the best first search
strategy. On the other hand, theCentralized, and our proposed
approach are designed to solve the relaxed problem that is
the convex problem state in (29) and (40). This approach
requires complete information on EVs in our model such as
task profiles, transmit power, EVs’ velocity, location, etc.

Furthermore, our proposed approach is performed in a dis-
tributed manner which does not require complete information
in any agent such as EVs or the RSU. In which, each EV
makes decisions simultaneously and sent them to the RSU.
After gathering all decisions of EVs, the RSU balances the
decision of all EVs via auxiliary variables such as γ , and λ to
avoid the violation of feasible constraints. This will incur an
overhead communication of message exchange among EVs
and the RSU. However, this information is typically very
small in the scale of just a few bits and can be ignored, e.g.,
8 + 4|O| bytes when EV send feedback to the RSU, and
12 bytes when the RSU share information to EVs.

It must be noted that our proposed approach sequentially
optimizes each block in turn, where RBA will be optimized
first, then optimized PCP, and ODP is optimized afterward.
Moreover, the iteration complexity of BCD-based algorithm
is O(ε−1bcd (log(ε

−1
bcd ))

2) [28]. Furthermore, each block have
complexity of O(N ) in RBA, O(1) in PCP, and O(N ) in
ODP. In the worst scenario, with the coherence time is one
second, and the criteria condition εbcd = 10−4, our proposed
approach can handle up to N = 100 which is equivalent to
|O| = 100 EVs to achieve the final solution.

C. NUMERICAL RESULTS
This subsection mainly focuses on the performance improve-
ment of our proposed algorithm.

1) CONVERGENCE PERFORMANCE OF BCD-BASED
ALGORITHM
The convergence of the proposed algorithm based on the BCD
technique is presented in Fig. 3(a). As shown in the figure,
we can see that the proposed approach achieved a stationary
solution within 40 iterations. Moreover, we also observed that
our proposed approach is stable after reached to the stationary
without any fluctuation. On the other hand, we verify the con-
vergence rate of the BCD-based algorithm by capturing the

residual of the objective function (28) between each iteration
in Fig. 3(b). It means that with up to 40 iterations, our solution
is stable without any change even if we increase the number
of iterations.

Furthermore, based on theoretical analysis in [28], our pro-
posed approach remains in the strong convexity or bi-convex
category; and thus, the convergence rate is always better than
the non-convex category. Therefore, our proposed approach
can be deployed in large-scale settings with a significant
improvement in convergence performance and reasonable
for particle settings. However, to successfully deploy in a
realistic environment, we need to improve our mechanism
further for uncertain conditions, such as accidents, traffic
jams, or natural uncertainty.

2) CONVERGENCE PERFORMANCE OF OPD
The convergence of the ODP algorithm is presented in
Fig. 3(c). From the figure, we observe that the proposed
algorithm has converged to the optimal solution within less
than 10 iterations. In the initial state, the objective function
is smaller than the centralized solution due to the viola-
tion of the constraint (39i). Moreover, the solution in ear-
lier iterations does not satisfy the stopping conditions εpri
and εdual , thus, the algorithm keeps repeating. Therefore,
when the number of iterations is increasing up to 10, our
proposed approach achieved the same performance with the
Centralized scheme due to the convexity of problem (40).
This convergence always guarantees a stationary point which
is known as the globally optimum point for problem ODP.
Moreover, we have analysed the convergence performance
with various simulation setting such as ρ = {0.5, 1.0, 2.0}
parameter,the number of SEVs O = {10, 20, 30, 40} and the
number of DEVs D = {5, 10, 15, 20}. We obverse that our
proposed algorithm always guarantee the stationary solution
at most within 10 iteration with ρ = 1, D = 10 and O = 40.

3) CONVERGENCE PERFORMANCE OF PCP AND RBA
ALGORITHM
The convergence of the PCP and RBA algorithm is presented
in Fig. 4(a), and Fig. 4(b), respectively. For a better visual-
ization in a small figure, we set the number of V2V pairs
equal to 6. Indeed, the proposed approach can operate on a
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FIGURE 4. Performance of PCP and RBA: (a) Convergence of PCP algorithm, (b) Convergence of RBA algorithm, (c) Average achievable data rate.

FIGURE 5. Performance comparison between proposed approach and
benchmarks.

large scale since our proposed method is based on gradient
theory and the convergence rate is dependent on the property
of the objective function and constraints. We can see that our
proposed approach achieves a stationary solution atmost after
10 iteration for both algorithms while they couple each other.
This algorithm is stable since the solution does not fluctu-
ate after getting to the stationary point. On the other hand,
we have to also capture the effect of our proposal in dense
settings, therefore, we only choose to have 15 RBs [31], [40].
By setting the maximum interference experienced by RUE,
Imax
b = {−80.0,−100.0,−200.0} (dBm), explicitly. We can
see that the system still achieves the highest achievable data
rate at Imax

b = −80.0 (dBm) due to the tight protection for
RUE. In such a case, every V2V user must carefully control
its power level to keep the interference of RUE as low as
possible. On the other hand, the RUEs are transmitting with
fixed power levels such that the average achievable rate is
higher than the case of Imax

b = {−100.0,−120.0} (dBm) as
shown in Fig. 4(c).

4) PERFORMANCE OF PROPOSED SCHEME
As show in Fig. 5, we can see that our proposed approach has
achieved the same performance with Centralized approach,
while outperforms the Greedy Approach, and close to the
Exhausted Searchwhich is considered as an optimal solution.
Moreover, the proposed approach is higher than the optimal
solution 3.5% at the number of SEVs O = 10 and 3.9% at
O = 40. Meanwhile, it is lower than the Greedy Approach

FIGURE 6. Performance of proposed approach versus the number of SEVs
and DEVs vary.

FIGURE 7. System performance versus trade-off value vary.

65% at O = 10 and 49.5% at O = 40. Furthermore, we have
varied the number of SEVs and DEVs, respectively. The
result is shown in Fig. 6 in which our proposed approach
always achieves a performance with the lowest 2.5% and
highest 6.0% compare to the performance of the Exhausted
Search.

5) THE IMPACT OF TRADE-OFF VALUE ψ
The results of the aforementioned sections are conducted
at ψ = 0.5. To show the impact of trade-off value on
the objective value, we have varied the value of ψ =

{0.0, 0.1, . . . , 1.0}. We can see that when ψ = 1.0, the
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objective function in (28) is focused on minimizing the
total energy consumption such that the power is minimized
at 49, 000 (mW) while the latency has the highest value
4, 000 (ms). Similarly, when we set ψ = 0.0 that means
that the optimization is focused on minimizing the latency
only. In such a case, the energy consumption is achieved at
the highest 54, 000 (mW) while the latency is minimized at
3115 (ms). Thus, we choose ψ = 0.5 to balance between
latency and energy consumption for our numerical results.

VII. CONCLUSION
In this paper, we propose a novel solution that minimizes
and balances between latency and energy consumption. Since
the formulated problem was the MINLP category, we have
decomposed the original problem into three subproblems by
using the BCD technique. We then proposed an algorithm
based on duality theory to get the sub-optimal solution for the
first sub-problem RBA. And, the sub-optimal for the second
sub-problem PCP by using distributed power control based
on the Lagrangian multiplier method. Especially, we have
achieved a global optimum for the third sub-problem ODP.
Through a comprehensive numerical analysis, the results
show that the final solution of the original problem con-
verges to the sub-optimal solution with an average gap of
5%. In addition, our proposal reduces the complexity into
a polynomial complexity compared to the exponential com-
plexity of Exhaustive Search and quadratic complexity of
Greedy Approach. We have considered the mobility of EVs
as a time constraint for the formulated problem as well as
wireless channel aspects such as shadowing, fast fading, and
interference management for offering more adequate offload-
ing service in the vehicular network.

APPENDIX
PROOF PCPE

Proof: The objective function in (36) can be rewrite as
follows:

F(pbi ) =
∑
i∈�b

Rbi

=

∑
i∈�b

α
Rbi

Rb,max
i

− (1− α)
pbi
pmax
i

=

∑
i∈�b

α
Wb log2(1+

pbi g
b
i

IV2V+IRSU+I0
)

Rb,max
i

− (1− α)
pbi
pmax
i

=

∑
i∈�b

31,iWb log2(1+ ξ
b
i p

b
i )−32,ipbi , (50)

where 31,i =
α

Rb,max
i

, 32,i =
1−α
pmax
i

, ξbi =
gbi

IV2V+IRSU+I0
. The

Lagrangian function is given by:

L(p, λ) =
∑
i∈�b

(
32,ipbi −31,iWb log2(1+ ξ

b
i p

b
i )
)

−

∑
i∈�b

λ1,ipbi +
∑
i∈�b

λ2,i(pbi − p
max
i )

−

∑
i∈�b

λ3,i

(
Wb log2(1+ ξ

b
i )− R

min
i

)
− λ4

(∑
i∈�b

pbi g
b
i,0 − I

max
b

)
. (51)

The derivative w.r.t. pbi is given by:

∂L
∂pbi
= 32,i −31,iWb ln(2)

ξbi

1+ ξbi p
b
i

− λ1,i + λ2,i

− λ3,iWb ln(2)
ξbi

1+ ξbi p
b
i

− λ4gbi,0

= 32,i + λ1,i + λ2,i − λ4gbi,0

−

(
31,i + λ3,i

)
Wb ln(2)

ξbi

1+ ξbi p
b
i

. (52)

By setting the first order condition equal to zero, e.g., ∂L
∂pbi
=

0, then

32,i + λ1,i + λ2,i − λ4gbi,0

=

(
31,i + λ3,i

)
Wb ln(2)

ξbi

1+ ξbi p
b
i

. (53)

It is equivalent to

ξbi

1+ ξbi p
b,∗
i

=
32,i + λ1,i + λ2,i − λ4gbi,0(

31,i + λ3,i

)
Wb ln(2)

⇒ pb,∗i =

(
31,i + λ3,i

)
Wb ln(2)

32,i + λ1,i + λ2,i − λ4gbi,0
−

1

ξbi
.

(54)

Base on (54), the optimal transmit power for EV imust satisfy
the following conditions(complementary slackness):

1) λ∗1,ip
b,∗
i = 0,∀i ∈ �b,

2) λ∗2,i(p
b,∗
i − p

max
i ) = 0,∈ �b,

3) λ∗3,i(Wb log2(1+ ξ
b
i p

b,∗
i )− Rmin) = 0,∀ ∈ �b,

4) λ4(
∑
i∈�b

pbi g
b
i,0 − I

max
b ) = 0.

Therefore, based on the KKT conditions, the Lagrangian
multiplier must be non-negative λ∗1, λ

∗

2, λ
∗

3, λ
∗

4 � 0 , we can
have a general form for transmit power of EV i at RB b given
by:

pb,∗i =

(
31,i + λ

∗

3,i

)
Wb ln(2)

32,i + λ
∗

1,i + λ
∗

2,i − λ
∗

4,ig
b
i,0

−
1

ξbi

=

(
31,i + λ

∗

3,i

)
Wb ln(2)

32,i + λ
∗

1,i + λ
∗

2,i − λ
∗

4,ig
b
i,0

−

∑
j∈�b,j6=i

pbj g
b
j,i + IRSU + I0

gbi
. (55)
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