
Received 23 February 2023, accepted 23 March 2023, date of publication 27 March 2023, date of current version 30 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3262411

Error-Type—A Novel Set of Software Metrics for
Software Fault Prediction
KHOA PHUNG , EMMANUEL OGUNSHILE , AND MEHMET AYDIN , (Senior Member, IEEE)
School of Computing and Creative Technologies, University of the West of England, BS16 1QY Bristol, U.K.

Corresponding author: Khoa Phung (khoa.phung@uwe.ac.uk)

ABSTRACT In software development, identifying software faults is an important task. The presence of
faults not only reduces the quality of the software, but also increases the cost of development life cycle.
Fault identification can be performed by analysing the characteristics of the buggy source codes from the past
and predict the present ones based on the same characteristics using statistical or machine learning models.
Many studies have been conducted to predict the fault proneness of software systems. However, most of
them provide either inadequate or insufficient information and thus make the fault prediction task difficult.
In this paper, we present a novel set of software metrics called Error-type software metrics, which provides
prediction models with information about patterns of different types of Java runtime error. Particular, in this
study, the ESM values consist of information of three common Java runtime errors which are Index Out
Of Bounds Exception, Null Pointer Exception, and Class Cast Exception. Also, we propose a methodology
for modelling, extracting, and evaluating error patterns from software modules using Stream X-Machine
(a formal modelling method) and machine learning techniques. The experimental results showed that the
proposed Error-type software metrics could significantly improve the performances of machine learning
models in fault-proneness prediction.

INDEX TERMS Error type prediction, machine learning, software fault prediction, software metrics, stream
X-machine.

I. INTRODUCTION
Software testing plays an essential role in Software Develop-
ment Life Cycle (SDLC) as it ensures the quality and correct-
ness of the software system. However, complete testing of a
software system is practically not possible as it consumes an
enormous amount of time and resources [1], [2]. Furthermore,
faults are normally not distributed uniformly across software
modules. Therefore, it is mostly inefficient or impossible to
spend the same amount of testing resources and efforts on
every individual software module of the system under test.
To overcome this problem, Software Fault Prediction (SFP)
has been introduced to early identify faulty software modules
prior to the testing phase so that the allocation of testing
resources can be economically optimised.

Software Fault Prediction can be done by training statisti-
cal and/or machine learningmodels on data that includes both
dependent (faultiness) and independent (software metrics)

The associate editor coordinating the review of this manuscript and

approving it for publication was Baoping Cai .

variables. In a real-life enterprise context, the software met-
rics and faults information would be obtained directly from
the source code and bug tracker. Over the last three decades,
a great number of SFP research has been conducted with
the use of various statistical and machine learning models
such as Logistic Regression, Naïve Bayes, Support Vector
Machine, Decision Tree, Random Forest, Multilayer Percep-
tron, etc. In the literature, there are many different sets of
software metrics such as Object-oriented (OO) metrics with
CK metrics suite [3], MOODS metrics suite [4], Bansiya
metrics suite [5], etc.; or Traditional metrics with Size metrics
(e.g., Function Points – FP, Source lines of code – SLOC,
Kilo-SLOC – KSLOC), Quality metrics (e.g., Defects per FP
after delivery, Defects per SLOC or KSLOC after delivery),
System complex metrics [6], Halstead metrics [7], etc.

According to Rathore and Kumar [8], the definition of
software fault proneness is very ambiguous and can be mea-
sured in different ways since a fault/error can happen in any
phase of the SDLC and some faults remain undetected during
the testing phase and forwarded to regular use in the field.

30562
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-9341-2033
https://orcid.org/0000-0002-6276-188X
https://orcid.org/0000-0002-4890-5648
https://orcid.org/0000-0002-4499-492X


K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

Menzies et al. [9] also pointed out that the techniques/
approaches used for SFP have hit the ‘‘performance ceiling’’.
Thus, simply applying different or better techniques will
not guarantee an improved performance. In order to achieve
better prediction performance, Menzies et al. [10] suggested
the use of additional information when building SFP models.
In order to eliminate ambiguity and thus, reduce the chance of
having errors during the SDLC, Hierons et al. [2] suggested
using formal methods. Over the last 35 years, formal methods
have reached a sufficient level of maturity so that they can be
practically applied in software development, especially safety
critical software. A variety of different formal specification
techniques (e.g., model-based formal specification [11], [12],
[13], [14], [15], finite-state-based formal specification [16]
[17], [18], [19], etc.) have been proposed and most of them
are backed up by a wide variety of support tools.

In [20], we proposed a novel SFP approach for pre-
dicting error-type proneness in software modules using a
streamlined process linking Stream X-Machine (a formal
method) [21] and machine learning techniques. In particular,
Stream X-Machine is used to model and generate test cases
for different types of Java runtime errors, which will be
employed to extract error-type data from the source codes.
This data is subsequently added to the collected software
metrics to form new training datasets. The experimental
results showed that each individual error-type data (herein
later referred to as Error Specification Machine values or
ESM values) extracted using Stream X-Machine provided
machine learning models with meaningful information about
patterns of a particular runtime error and thus, boosted their
performances in predicting error-type proneness of software
modules. Although the experimental results showed that the
new datasets could significantly improve the performances
of machine learning models in terms of predicting error-
type proneness, there were some limitations and threats that
could potentially hinder the findings of the study. Also,
in [20], we only explored each ESM value individually for
the purpose of predicting error-type proneness. In reality, this
approach can be time consuming, especially during the train-
ing process because different prediction models will have to
be trained for different types of runtime error.

This paper is an extension of the study we proposed in [20].
In this research, we aim to overcome the existing limitations
in the previous work [20] by:

1) Employing an industrial project that has accessible
source code and is actively maintained to collect ESM
values and software metrics for the experiments.

2) Developing an algorithm, called PSI-E, to extract ESM
values automatically.

3) Further investigating the usefulness and potential
issues of ESM values in software fault prediction by
employing Stream X-Machine and machine learning
techniques.

More importantly, in this work, we primarily aim to present
a novel set of software metrics, called Error-type (ET)

software metrics, by considering the ESM values as one com-
bined objective to capture the patterns of different types of
Java runtime error (JRE). The motivation for proposing a new
set of software metrics is becauseMenzies et al. [9] suggested
that leveraging training data with more information content
can potentially help to break the ‘‘performance ceiling’’ of
SFP models. To the best of our knowledge, this is the first
attempt in the literature to propose a set of software metrics
that provides prediction models with information about error
types.

In order to achieve the aim of the study, firstly, we need
to investigate the relationships of ESM values with each
other and with other software metrics. Note that in this study,
we focus primarily on class-level software metrics because
ESM values are measured at the class level. Secondly,
we need to evaluate the impacts of ESM values on the
performances of four different machine learning models
including Decision Tree, Logistic Regression, Multilayer
Perceptron, and Naïve Bayes. Here, the whole study aims at
finding empirical evidences to answer the following research
questions:

RQ1: Do the ESM values have relationships with each
other and with other class-level software metrics?

The goal of this research question is to investigate if the
multi-collinearity issue exists amongst the ESM values and
other software metrics. Multi-collinearity can lead to the
difficulty in distinguishing between the contributions of inde-
pendent variables (features) to that of the dependent variable
(label/output) since they may compete to explain similar
variance.

RQ2:Can the ESM values be used as a new set of software
metrics to incorporate with other class-level software metrics
to improve performances of SFP models?

The goal of this research question is to investigate the
usefulness, relevance, and potential issues of ESM values in
software fault prediction when being incorporated with the
other software metrics.

The rest of the paper is organised as follows. Section II con-
tains relatedwork. Section III describes the proposedmethod-
ology. Section IV outlines the results of the experiments and
discusses the threats to validity. Section V concludes the
paper and provides the directions for the future research.

II. RELATED WORK
Generally, in SFP, a prediction model is used to predict the
fault-proneness of software modules. The process of SFP typ-
ically includes training a prediction model using the underly-
ing properties of the software project, and subsequently using
the prediction model to predict faults for unknown software
projects.

In the literature, SFP studies often fall into one of the three
categories: binary-class classification of faults, number of
faults/fault density prediction, and severity of fault predic-
tion [8]. The use of SFPmodels for binary-class classification
has been extensively investigated by various researchers and
has been the most popular approach [1], [8]. The systematic

VOLUME 11, 2023 30563



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

reviews and analysis of these studies can be found in [8],
[22] [23], and [24]. With binary-class classification of fault
proneness, researchers use public datasets (e.g., NASA [25]
and PROMISE [26]) to train different machine learning/deep
learning models such as Decision Tree, Naïve Bayes in
Bayesian Learners, Multilayer Perceptron in Neural Net-
works, and Random Forest in Ensemble Learners. However,
according to Rathore and Kumar [8], binary-class classifi-
cation of software fault proneness is very ambiguous. This
approach provides a very general picture of fault prediction
because some modules are indeed more fault-prone and thus,
require more attention than the others.

There are not many approaches that focused on predicting
the fault density or fault severity of software modules. With
the motivation of addressing the lack of information issue in
SFP (discussed in Section I), in what follows, we only focus
on analysing and reviewing the SFP approaches that could
provide more useful information about software modules for
software developers such as number of errors, severity of
errors, or error-type proneness.

In 2005, Ostrand et al. [27] proposed an approach for
predicting the number of faults and fault density using neg-
ative binomial regression (NBR) technique. The study was
performed over the code of the file in the current release,
and fault and modification history of the file from previous
releases. The prediction aimed to identify top 20% of files
with the highest percentage of the predicted number of faults.
The analysis indicated that NBR-basedmodels could produce
accurate results for the number of faults and fault density
predictions. A similar type of work was also reported in [28].
A few years later, Yu [29] conducted a deeper study to
investigate the effectiveness of NBR in the context of Apache
Ant software system. The results showed that NBR could
not outperform the so called Binary Logistic Regression in
predicting fault prone modules. However, the study demon-
strated that (1) the performance of forward assessment is
better than or at least the same as the performance of self-
assessment; and (2) NBR is effective in predicting multiple
faults in one module.

In another study, Afzal et al. [30] applied genetic program-
ming (GP) for predicting the number of faults in a given
project. The independent variables used to train the model
were the weekly fault count data collected from three indus-
trial projects. The empirical results indicated a significant
accuracy rate of GP-based model for fault count prediction.
Also, in [31], Rathore and Kumar presented an approach
for predicting the number of faults using GP over several
open-source software projects. The results demonstrated the
significant accuracy and completeness of GP-based model in
predicting the number of faults in software modules. In [32],
Gao et al. presented a comprehensive analysis of five count
models including Poisson Regression model (PR) [33], Zero-
Inflated Poissonmodel (ZIP) [34], NBRmodel, Zero-Inflated
Negative Binomial model (ZINB) [35], and Hurdle Regres-
sion model (HR) [36]. The results showed that ZINB and

HR models produced better prediction accuracy for fault
counts. Recently, Rathore and Kumar [1] explored the capa-
bility of Decision Tree Regression (DTR) for the number of
faults prediction in two different scenarios, intra-release and
inter-release predictions for a given software project. Five
open-source software projects with their nineteen releases
collected from the PROMISE data repository were chosen
to perform the experimental study. The results indicated that
DTR-based model could produce significant accuracy in both
the considered scenarios.

Yang et al. [37] believed that predicting the exact number
of faults in a softwaremodule is difficult due to noisy data that
exists in the fault dataset; therefore, the authors introduced a
learning-to-rank (LTR) approach to construct the SFPmodels
by directly optimising the ranking performance. The LTR
approach has two major benefits which are (1) more robust
against noisy data and (2) unlike the other approaches which
have to predict the number of faults in the software modules
before ranking them, it provides a way to rank the level
of severity of the software modules directly. The empirical
results showed the effectiveness of the LTR approach for the
ranking task.

Although the previously mentioned approaches could pro-
vide some more useful information such as number of errors
and severity of errors in software modules, they relied on pub-
lic datasets (NASA and PROMISE repositories) as the input
for their investigations. Shepperd et al. [25] and Petric et al.
[38] criticised these public datasets for containing erroneous
data with unnecessary or incorrect information that could
lead to deteriorate the classifier performance. Also, with
the NASA dataset, the source code and information about
metric tools used are not available; therefore, the anomalies
in the dataset cannot be verified or fixed. Particularly, in our
research, we cannot extract ESM values without the availabil-
ity of the source code. Furthermore, most of the studies in the
literature reported results without any inspection of the data
and assumed that the datasets were of reasonable quality for
prediction [8], [25]. This means that data quality issues (e.g.,
outlier, missing value, repeated value, redundant or irrelevant
value) existing in public datasets were not addressed ade-
quately in several SFP approaches.

In 2021 [20], we proposed a novel SFP approach using a
streamlined process linking Stream X-Machine and machine
learning techniques to predict if software modules are prone
to having a particular type of runtime error in Java programs.
Particularly, StreamX-Machine is used tomodel and generate
test cases for different types of JREs, which will be employed
to extract error-type data (ESMvalues) from the source codes.
Subsequently, each individual ESM value was incorporated
with other software metrics to form new training datasets.
We then evaluated the performances of three machine learn-
ing algorithms (Support Vector Machine, Decision Tree, and
Multilayer Perceptron) on error-type proneness prediction.
The experimental results showed that the new datasets could
significantly improve the performances of machine learning

30564 VOLUME 11, 2023



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

models in terms of predicting error-type proneness. To the
best of our knowledge, this is the first attempt in the liter-
ature that utilises a formal method (Stream X-Machine) to
specify and introduce error patterns (ESM values) to SFP
models to improve their performances in terms of predicting
error-type proneness in software modules. However, there
were some limitations associated with the study. First, the
size of the dataset was not substantial compared to other
public datasets like NASA or PROMISE. Second, the ESM
values were extracted manually from source codes, which
could potentially lead to some unwanted mistakes. Finally
and most importantly, the ESM values were evaluated indi-
vidually for the purpose of predicting error-type proneness,
which can potentially be time consuming during the train-
ing process because different prediction models will have
to be built for different types of runtime error. Also, when
being investigated individually, the usefulness and relevance
of ESM values in SFP were not thoroughly examined and
thus, potential issues such as multi-collinearity can be left
unhandled.

In [20], we introduced the ESM values and evaluated them
individually as a proof of concept. In this work, we further
investigate the usefulness and relevance of ESM values in
SFP. This work differs from [20] in several ways.

1) Firstly, we present an algorithm, called PSI-E (see sub-
section III-B), which is used to automatically extract
ESM values from software modules. The development
of the PSI-E helps to overcome potential issues that
might happen due to the manual ESM values extraction
process we discussed in [20].

2) Secondly, instead of being investigated individually as
in [20], in this work, the ESM values are evaluated as
one combined objective. This means that we consider
all the ESM values as a new set of software metrics that
can be incorporated with other software metrics in the
literature. Subsequently, we investigate the impacts of
this new set of software metrics on the performances of
SFP models.

3) Thirdly, we use software metrics collected from the
BugHunter Dataset proposed by Ferenc et al. [39] for
conducting the experiments.

4) Fourthly, we analyse and address several data qual-
ity issues (e.g., missing values, redundant/irrelevant
values, and multi-collinearity) existing in the training
datasets, which we did not consider in the previous
work [20] and many other SFP studies have also not
handled adequately [8], [25].

5) Finally and most importantly, we propose the novel set
of Error-type software metrics.

III. METHODOLOGY
This section describes the proposed methodology to derive
the ESM values and evaluate their effectiveness in SFP. The
general process consists of five sequential steps, each of
which is described in detail in the following subsections.

A. GENERATE TEST CASES FOR JREs
A runtime error might occur when one object operates an
action on another object. Therefore, the general equation is
as follows:

A operates on B (1)

where:
• A and B are the 2 operands. They are either literals (e.g.,
literal string, literal integer, etc.) or references (e.g.,
string reference, integer reference, object, etc.)

• ‘‘operates on’’ denotes any action that A acts on B
(e.g., Number A divides Number B→ ArithmeticExcep-
tion error might occur; Array A accesses Bth element
of itself → IndexOutOfBoundsException error might
occur, etc.)

With the information about A, B, and ‘‘operates on’’ from
Equation 1, we can determine the characteristics of an error
such aswhat the error is, how it happens, and in which context
it happens. Equation 1 is specified as a Stream X-Machine
that represents a type of runtime error. This runtime error
SXM is also known as an Error Specification Machine
(ESM). Each type of runtime error can be represented as an
ESM, which is a tuple of 8 elements as follows:

ESMi = (6, 0,Q,M , 8,F, q0,m0) (2)

where:
• 6 is a finite set of input symbols,
• 0 is a finite set of output symbols,
• Q is a finite set of states,
• M is a (possibly) infinite set called memory,
• 8 is a finite set of partial functions (processing func-
tions), which map memory-input pair to output-memory
pairs, φ : M × 6 → 0 ×M ,

• F is the next-state partial function, F : Q× 8 → Q,
• q0 ∈ Q and m0 ∈ M are the initial state and memory,
respectively,

• i ∈ E , where E is a finite set of different types
of JRE. E = {Arithmetic, NullPointer,
ClassCast, IndexOutOfBounds, ...}.

A Stream X-Machine can be thought as a finite automa-
ton with the arcs labelled by functions from the type. The
automaton AZ = (8,Q,F, I ,T ) is called the associated
finite automaton (FA) of a Stream X-Machine and is usually
described by a state-transition diagram. In [20], we have
presented a state-transition diagram of the ESM with 5 states
(state 1, state 2, state 3, state 4, and state 5) and 4 pro-
cessing functions (getA, getOperation, getB, and getError-
Label). Each ESMi has a corresponding FA as AESMi =

(8,Q,F, I ,T ).
One of the great benefits of using SXM to specify a

system is its associated testing method which was initially
developed for deterministic SXM [19], [40] and was further
extended to non-deterministic SXM [41] and communicating
SXM [42]. Under certain design for test conditions, this
method can produce a test suite that can be used to verify

VOLUME 11, 2023 30565



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

TABLE 1. Example test cases for arithmetic exception.

the correctness of the implementation under test, provided
that the processing functions of the SXM specification have
been correctly implemented [43]. In this research, since each
ESM is a Stream X-Machine specification, test cases for each
ESM can be generated by applying the Stream X-Machine
testing method which is the state-counting approach [43],
[44]. This means that each type of runtime error will have
a corresponding set of test suite which is calculated using
Equation 3 [44] as follows:

Ui =

⋃
q∈Qr

{pq}prefix(V (q))Ws (3)

In order to construct the test suiteUi, we first need to select
two sets of sequences of processing functions, Sr andWs, and
of a relation ds on the states of ESMi as follows:

• Sr is a non-empty set of realisable sequences such that
no state in ESMi is reached by more than one sequence
in Sr ,

• pa is a path in AESMi where pa = φ1 · · · φk ∈ 8∗,
• The definition of the set V (q) can be found in [44],
• Ws is a finite set that separates between separable states
of ESMi. Ws is required to be non-empty,

• ds : Q ↔ Q is a relation on the states of ESMi that
satisfies the following conditions: for every two states
q1, q2 ∈ Q, if (q1, q2 ∈ ds) then q1 and q2 are separated
by Ws. The relation ds identifies pairs of states that are
known to be separated by Ws,

• The maximal set Q1 · · ·Qj of states of ESMi that are
known to be pairwise separated by Ws,

• i ∈ E , where E is a finite set of different types
of JRE. E = {Arithmetic, NullPointer,
ClassCast, IndexOutOfBounds, ...},

• Ui is a set of test cases associated with each type of JRE.
For instance, ArithmeticException can be represented as
ESMArithmetic, which can subsequently generate test
cases (an example is shown in Table 1) for this error.

Based on Equation 3, in [45] and [46], we proposed
T-SXM which is a modelling tool developed based on the
concept of Stream X-Machine and state-counting approach
for automatic test generation. The T-SXM tool has been
used to model chronic diseases (e.g., Type II Diabetes) with
promising results in [46] and [47]. In this study, we employed
the T-SXM tool to model and generate test cases for three dif-
ferent types of JRE including IndexOutOfBoundsException,
ClassCastException, and NullPointerException.

B. EXTRACT ESM VALUES
In a software module, an ESM value for a JRE (e.g., Index
Out Of Bounds Exception) is the sum of all the code
patterns that satisfy the two following conditions:

1) Match the pattern represented in Equation 1,
2) Match one or more test cases (generated from Step 1)

of that particular error.
In other words, ESM values for different types of JRE for

software modules in a software system can be represented as
follow:

ESM_values =

⋃
m∈S

L∑
i=1

K∑
j=1

matched_pattern (4)

where:
1) m is a software module in the software system S,
2) i is the ith line in the total L lines of code in software

module m,
3) j is the jth code pattern in the total K code patterns in

line ith,
4) matched_pattern is the pattern in line ith that satisfies

the 2 conditions mentioned above.
In this study, we introduced a new algorithm, called PSI-E,

that has been developed based on Equation 4 and integrated
into the T-SXM tool so that it can interpret and extract ESM
values for different types of JREs from softwaremodules. The
PSI-E algorithm has been built on top of the PSI (Program
Structure Interface) - a layer in IntelliJ Platform [48] which
is responsible for parsing files and creating syntactic and
semantic code model.

C. EXTRACT SOFTWARE METRICS
In this study, software metrics have been imported from
the BugHunter Dataset and re-validated using Metric-
sReloaded [49], which is a tool for obtaining/measuring soft-
ware metrics from source codes. The software metrics we
used in this study are at the class level and can be found in
Table 2.

The reasons we employed the BugHunter Dataset are
(1) the software metrics were collected from large industrial
projects which are still actively maintained; (2) the source
codes of the projects are publicly available via GitHub [50]
for us to verify the correctness of the collected software
metrics and extract the ESM values; and (3) the BugHunter
Dataset collects software metrics based on before-fix and
after-fix snapshots of the source code elements that were
affected by bugs whilst leaving the source code elements that
were not affected by bugs untouched. This approach is useful
to capture the changes in softwaremetrics when a bug is being
fixed. The empirical evaluations showed that the dataset can
be used for further investigations such as bug prediction.

D. CREATE NEW TRAINING DATASETS
To address the two research questions outlined in Section I,
in this step, we have evaluated performances of machine
learning models on two datasets.

30566 VOLUME 11, 2023



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

TABLE 2. Class-level software metric used in this study.

The first dataset is the Software metrics dataset. In this
dataset, the independent variables are the software metrics

extracted from the software modules and the dependent vari-
able indicates the fault proneness of the software modules.
Table 3 demonstrates an example of the Software metrics
dataset.

The second dataset is the Full dataset (the new dataset).
In this dataset, the independent variables are the ESM values
and software metrics extracted from the software modules
and the dependent variable indicates the fault proneness of
the software modules. The ESM values present in this dataset
include ESM IndexOutOfBounds (corresponding to the Index
Out Of Bounds Exception), ESM NullPointer (corresponding
to the Null Pointer Exception), and ESM ClassCast (corre-
sponding to the Class Cast Exception). Table 4 shows an
example of the Full dataset. The difference between the two
datasets is that in addition to the software metrics, the Full
dataset also consists of the ESM values.

The Software metrics dataset is used to reproduce the
results that the authors of the BugHunter Dataset [39] had
achieved so that we could conduct experiments on the Full
dataset with no biases/doubts towards the ESM values. The
Full dataset is used to investigate the impacts of ESM values
on the performances of machine learning models.

Before starting the training process, the two datasets have
been preprocessed carefully to resolve the issues of missing
values and irrelevant features. The details will be further
elaborated in subsection IV-B.

E. EVALUATIONS
Firstly, machine learning models are trained and evaluated
on the Software metrics dataset. Secondly, machine learning
models are trained and evaluated on the Full dataset. The
differences in performances of machine learning models on
the two datasets would indicate the impacts of ESM values.
To evaluate the performances of the trained models, we use
Accuracy, Precision, Recall, and F1-score metrics. We then
compare our machine learning models with the ones in [39].
The reason we use the results recorded by Ferenc et al. [39]
as the benchmark is that in our experiment, the datasets are
created based on the BugHunter Dataset.

IV. EXPERIMENTS, RESULTS, AND DISCUSSIONS
This section describes the details of the experiments and
their results. Subsequently, we present how the empirical
results can address the research questions. Finally, we discuss
some limitations and threats that could potentially hinder the
findings of the research.

A. SOURCE OF DATASET
As mentioned earlier, software metrics used in this experi-
ment have been imported from the BugHunter Dataset [39].
The primary difference between the BugHunter Dataset and
other traditional datasets (e.g., NASA and PROMISE repos-
itories) is that instead of gathering the characteristics of all
source code elements (fault prone or not fault prone) at only
one or more pre-selected release versions of the code, it cap-
tures the faulty and the fixed states of the same source code

VOLUME 11, 2023 30567



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

TABLE 3. Example of the software metrics dataset.

TABLE 4. Example of the full dataset.

regardless of the release versions. The process of collecting
software metrics for the BugHunter Dataset is described in
detail in [39].

Menzies et al. [10] suggested that researchers should con-
centrate on finding solutions that work best for the groups
of related projects rather than trying to seek general solu-
tions that can be applied to many projects. Therefore, in this
study, instead of training prediction models on all 15 projects
(see detailed descriptions in [39]) of the BugHunter Dataset,
we focused mainly on the JUnit project, which is a Java
framework for writing unit tests. The JUnit project is an
industrial project and has been actively maintained by the
developers. At the time of conducting the experiment in this
research, the project had 734 entries in total including 92 files,
216 classes, 426 methods, and 22,701 lines of code. Out of
the 734 entries, 286 are not related to test code (43 files,
77 classes, and 166 methods). Therefore, in the experiment,
139 class entries have been used to extract ESM values and
software metrics at class level. Note that the ESM values
and class-level software metrics were extracted throughout
multiple versions of the classes based on the commits on
GitHub.

B. DATA PREPROCESSING
The authors of the BugHunter Dataset trained the machine
learning models on this JUnit dataset and recorded the results
which are shown in Table 5. As can be seen in Table 5, the
performances of Decision Tree and Logistic Regression are
around 0.5, which is not very high. According to Gray et al.
[51], there are several quality issues (e.g., missing values,
redundant and irrelevant values, outliers, multi-collinearity,
etc.) associatedwith software fault datasets which researchers
need to properly handle before using them to construct SFP
models. Since the authors of the BugHunter Dataset did not
mention how they preprocessed the data in their experiment,

TABLE 5. Performances of decision tree and logistic regression on the
JUnit dataset of the BugHunter dataset.

we had to investigate it to ensure that the data quality issues
were adequately resolved before carrying on with the training
process.

Firstly, we discovered that the dataset consists of a num-
ber of constant features (software metrics) namely Warning
Blocker, Warning Critical, Warning Info, Warning Major,
Android Rules, Basic Rules, Brace Rules, Code Size Rules,
Comment Rules, Clone Implementation Rules, Controversial
Rules, CouplingRules, Empty Code Rules, Finalizer Rules,
Import Statement Rules, J2EE Rules. These features contain
only value 0 in all rows, which can potentially lead to heavy
bias for machine learning algorithms. These features were not
mentioned in the paper [39]; however, they exist in the actual
BugHunter Dataset.

Furthermore, most of the features in the dataset are
highly left skewed, which means they are not normally
distributed. Also, many features (software metrics) are highly
correlated with each other, which will potentially lead to
the multi-collinearity issue. Multi-collinearity is a com-
mon phenomenon in statistics and happens when there are
high correlations among independent variables (features).
According to Zainodin et al. [52], multi-collinearity can
lead to the difficulty in distinguishing between the con-
tributions of these independent variables (features) to that
of the dependent variable (label/output) since they may
compete to explain similar variance. In general, correlated
features do not improve performances of machine learning
models and thus, removingmulti-collinearity is recommended

30568 VOLUME 11, 2023



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

by Li et al. [53] to reduce dimensions, remove irrele-
vant data, increase learning accuracy, and improve result
comprehensibility.

In order to further examine the multi-collinearity issue in
the Full dataset, we employed the Variance Inflation Factor
(VIF) technique, which is used to measure the degree of
collinearity present for each factor. VIF indicates how much
of the estimated coefficient increases is due to collinearity
independent variables. In particular, VIF reports how much
of a regressor’s variability is explained by the rest of the
regressors in themodel due to correlation among those regres-
sors [54]. VIF can be calculated by Equation 5 as follows:

VIFi =
1

1 − R2i
(5)

where, R2i is the coefficient of determination obtained by
fitting a regression model for the ith independent variable on
the other independent variables.

The values of VIF scores in the Full dataset range from 2.07
(ESM ClassCast) to infinity (LDC, LLDC, TNLS and NLS).
According to Craney and Surles [54], although no formal
cutoff value or method exists to determine when a VIF score
is too large, the typical suggestions for a cutoff point are less
than 5 or less than 10. Based on the suggestions of Craney and
Surles [54], only 9 out of 61 features in the Full dataset satisfy
the cutoff point namely ESM ClassCast (2.07), ESM Index-
OutOfBounds (2.61), ESM NullPointer (6.55), PUA (6.70),
NII (8.05), NL (8.10), LCOM5 (8.34), and CBO (9.12). NOI
(16.49) is also considered to be relatively good since its VIF
score is much closer to 10 compared to the VIF scores of
the other features (software metrics). From the VIF analysis,
it can be seen that apart from PUA, NII, NL, LCOM5, CBO,
and NOI, the other software metrics have very high VIF
scores (≈40 → ∞), which means if all these features are
kept in the datasets for the training process, they will compete
with each other to explain the same variance and thus, affect
negatively to the performances of machine learning models.
Therefore, it can be concluded that the multi-collinearity
exists in the Full dataset and the Software metrics dataset and
thus, needs to be resolved.

With multiple issues existing in the Full dataset and the
Software metrics dataset as mentioned above, before carrying
on with the training process, we preprocessed the data with
the following steps:

1) Remove constant features (software metrics) (these are
the features that contain only value 0 in all rows men-
tioned earlier). The total number of features remaining
in the Full dataset and Software metrics dataset are
61 and 58, respectively.

2) Split the Full dataset and Software metrics dataset into
training (80%) and testing (20%) sets accordingly.

3) Scale the features to bring them into the same value
range (0, 1).

4) Normalise the features to make them more normally
distributed by applying Box-Cox transformation algo-
rithm [55]. According to Osborne [56], Box-Cox

applies a range of power transformations (rather than
the traditional square root, log, and inverse) to easily
improve the data normalisation process for both posi-
tively and negatively skewed features.

5) Apply feature selection using Linear Support Vector
Classification (Linear SVC) with Lasso (Least Abso-
lute Shrinkage and Selection Operator) regularisation
to remove multi-collinearity. According to Fonti and
Belitser [57], feature selection is a process that chooses
a reduced number of explanatory variable to describe a
response variable. Lasso is a powerful method for reg-
ularisation and feature selection. The method applies a
shrinking (regularisation) process to penalise the coef-
ficients of the regression variables and shrinks some
of them to zero [57]. After the shrinking process,
the variables that still have a non-zero coefficient are
selected to be part of the model. Feature selection is
applied to reduce irrelevant features (features that do
not add any information to the dataset or features that
are highly correlated with each other) and reduce over-
fitting. In [39], the authors did not explicitly mention
if they had applied any feature selection method on
the BugHunter Dataset or not. Therefore, we decided
to conduct the experiment with both scenarios where
feature selection would be applied and would not be
applied. Note that, in the Full dataset, feature selec-
tion would only be applied on the software metrics
variables.

C. EXPERIMENTAL RESULTS
Table 6 demonstrates the F1-score, Precision, Recall, and
Accuracy rates of the four machine learning algorithms (DT,
LR, MLP, and NB) on the two datasets (Full dataset and
Software metrics dataset) in two scenarios:

1) Feature selection was not applied: In this experi-
ment, the two datasets were used to train the four
machine learning models without being pre-processed
with feature selection. This experiment was conducted
to reproduce the results recorded by Ferenc et al. [39]
to investigate if the dataset had been adequately
pre-processed to resolve data quality issues mentioned
in subsection IV-B.

2) Feature selection was applied: In this experiment, the
two datasets had been pre-processed with feature selec-
tion before being used to train the four machine learn-
ing models.

As can be seen from Table 6, when feature selection was
not applied, the F1-scores of Decision Tree and Logistic
Regressions are 0.3750 and 0.5514, respectively on the Soft-
ware metrics dataset, which are quite close to the results
recorded by Ferenc et al. [39]. This indicates that we were
able to reproduce the results achieved in [39].

When feature selection was applied, the F1-scores were
significantly boosted for DT (increased by 42% and 77% for
the Software metrics dataset and Full dataset, respectively),

VOLUME 11, 2023 30569



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

TABLE 6. Experimental results.

LR (increased by 12% and 25% for the Software metrics
dataset and Full dataset, respectively), MLP (increased by
24% for the Full dataset, and NB (boosted by 6% for the Full
dataset). This means that in [39], the data quality issues were
not adequately addressed.

With the results from the two experimented scenarios,
the performances of the four machine learning models have
been boosted significantly after feature selection was applied
to the training datasets. As a result, it can be inferred that
the multi-collinearity issue existing in the software metrics
of both datasets negatively affects the performances of the
machine learning models by introducing harmful biases and
difficulties to distinguish the true effect of each independent
variable. Due to this multi-collinearity issue, when feature
selection was not applied, there were no clear differences
between performances of machine learning models when
being trained on the two datasets. For instance, with the
DT model, F1-scores were 0.3750 and 0.3529 for Software
metrics dataset and Full dataset, respectively. It can be seen
that these two values are close to each other and are less than
0.5, which is very low. As a result, we could not confirm if
the ESM values actually had effects/impacts on the learning
process or not.

On the other hand, when feature selection was applied, the
multi-collinearity issue has been resolved and thus, the effects
of features (including ESMvalues) could be interpreted better
by the machine learning algorithms. The results show that
the F1-scores of the four machine learning models were
significantly boosted as discussed above. More importantly,
the F1-scores of the models trained on the Full dataset were
always higher than the F1-scores of the same models trained
on the Software metrics dataset. The highest F1-score was
0.7143 and the highest Accuracy was 0.8 from the Logistic
Regression model trained on the Full dataset. For the other
models trained on the Full dataset, the F1-score was also
above 0.5 and the Accuracy was around 0.7. These results are
appropriate for predictionmodels as according to Rathore and

Kumar [8], the average accuracy of all SFP techniques was
between 70% and 85%.

From the F1-score and Accuracy rates of the four machine
learning models on the two datasets, it can be inferred that
the ESM values provided the machine learning models with
useful information about error patterns and thus, improved
their performances.

D. ANSWER TO RESEARCH QUESTIONS
By investigating the correlations of all the features in the Full
dataset as discussed in subsection IV-B, it can be inferred
that ESM IndexOutOfBounds, ESM NullPointer, and ESM
ClassCast do not have correlations with each other and with
other software metrics. Also, the VIF scores of these ESM
values are the lowest in the Full dataset (2.07 for ESM Class-
Cast, 2.61 for ESM IndexOutOfBounds, and 6.55 for ESM
NullPointer) and are lower than the cutoff point suggested by
Craney and Surles [54] (less than 5 or less than 10). From the
empirical results, we could address research question RQ1
outlined in Section I by concluding that the ESM values do
not have correlations with each other and with other software
metrics.

From the empirical results, it can be seen that with the
multi-collinearity issue being properly handled by applying
feature selection, the ESM values in the Full dataset added
more useful information to the machine learning models
and thus, helped to improve their performances. Therefore,
we could conclude that the ESM values can be used as a set
of software metrics to incorporate with software metrics to
improve fault-proneness prediction. As a result, the research
question RQ2 outlined in Section I can be answered.

By fully addressing research questions with empirical evi-
dence, we can infer that the ESM values do not compete
with each other and other software metrics to explain similar
variances. Also, ESM values can be used as a set of software
metrics to provide machine learning models with more use-
ful information about error patterns and thus, improve their

30570 VOLUME 11, 2023



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

performances. As a result, we conclude that ESM values can
be used as a novel set of software metrics, called Error-type
software metrics, to incorporate with other software metrics
in the context of software fault prediction.

E. COMPARE WITH OTHER SOFTWARE METRICS
According to Colakoglu et al. [58], class-level met-
rics that have been mostly used in SFP studies are
CK metrics (WMC, RFC, LCOM, CBO, DIT, NOC),
MC (Method/Message Complexity), CWC (CouplingWeight
for a Class), AC (Attribute Complexity), CLC (Class Com-
plexity), AMCC (Average Method Complexity per Class),
ACC (Average Class Complexity), ACF (Average Coupling
Factor) and AAC (Average Attributes Per Class). However,
these software metrics can only be applied in particular
application domains. For instance, although Rathore and
Kumar [8] suggested that object-oriented metrics, particular
CK metrics, are good predictors of fault severity in software
project, in [59], Bansal argued that the DIT and LCOM
metrics are unsuitable to measure quality and complexity for
object-oriented design; whilst NOC cannot be used at all for
fault-proneness prediction. As a result, when conducting SFP
studies, there is always a need to select the best combination
of metrics for each different application domain for the given
application context.

On the other hand, the traditional sizing metrics such as
LOC, SLOC, and KSLOC are considered as generic source
code metrics and can be used in any application domains.
These metrics have also been proven to be related to fault
proneness in many SFP studies [8], [58]. The combination
of LOC with WMC and RFC can be utilised to predict
change-prone classes and reduce the cost of testing for var-
ious types of software projects [60].

Similar to the sizing metrics, the newly proposed
Error-type metrics are derived based on the error type mod-
els as discussed in subsection III-A; therefore, they can be
applied in any application domain since the runtime errors
will always happen in the same manners. Also, the exper-
imental results showed that after applying feature selection
on the training data, the Error-type metrics, PUA, NII, NL,
LCOM, CBO, and NI can make a good combination for
fault-proneness prediction in object-oriented software (e.g.,
JUnit) with the accuracy rate of 80%.

One of the concerns with SFP is the continuous evolu-
tion of source codes. For instance, an SFP model is built
using a set of metrics and subsequently, it is used to predict
fault-proneness in a given software project. However, some
of the faults are fixed afterwards. Thus, the software modules
have evolved to accommodate the changes. However, in sev-
eral scenarios, the values of the used set of metrics remained
unchanged. As a result, if the built SFP model is reused,
it will detect the same code areas as fault-prone. According
to Rathore and Kumar [8], this is a well-known problem
in SFP. To overcome this issue, it is necessary to select
the software metrics based on the development process and
self-adapting measurements that capture already fixed faults.

Nachiappan et al. [61] and Matsumoto et al. [62] proposed
different sets of metrics such as software change metrics, file
status metrics, and developer metrics to build SFP models.
However, these metrics rely on inputs that consist of human
involvement. For example, software change metrics only
work when changes are committed whenever the developer
considers them as ready for release. On the other hand, our
proposed Error-type metrics can automatically capture the
differences in code/error patterns between two versions of
the software project and do not require human involvement.
As a result, the Error-type metrics can be used to construct
SFP models that capture the buggy and the fixed states of
the same source code elements from the narrowest timeframe
regardless of release versions.

Additionally, according to Chhillar et al. [63], most soft-
ware failures these days are caused by lack of testing
of non-functional parameters such as security and perfor-
mance. Also, it has become more challenging with the rapid
development of trending technologies such as Internet of
Things (IoT), Artificial Intelligence (AI), Machine Learn-
ing, and Robotics. However, we believe that the newly
proposed Error-type metrics can be useful for predicting
fault-proneness in these fields since the runtime errors
will also happen in the same manners with traditional
software.

In general, the contributions of the newly proposed
Error-type software metrics based on empirical results are as
follows.

• Error-type metrics are generic source code metrics and
can be used to construct SFP models for a wide variety
of application domains.

• Error-type metrics can capture the buggy and the fixed
states of the same source code elements from the nar-
rowest timeframe regardless of release versions.

• Error-type metrics are good predictors of
fault-proneness.

F. LIMITATIONS AND THREATS TO VALIDITY
Although the results are promising to confirm the useful-
ness of ESM values in improving performances of machine
learning models in predicting fault proneness, there are still
some threats that could affect the findings of the proposed
approach.

Firstly, the ESM values were collected automatically using
the T-SXM tool. As a result, errors can potentially occur
within the developed PSI-E algorithm when it encounters a
code pattern that is abnormal. However, manually validating
all code patterns in a large project would have been an enor-
mous task.

Secondly, we conducted the experiment with three ESM
values corresponding to the most three common JREs namely
Index Out Of Bounds Exception, Null Pointer Exception,
and Class Cast Exception. At the time of conducting the
experiment, we could not find any correlation between ESM
values with each other and with other class-level software
metrics. However, in future research, when new ESM values

VOLUME 11, 2023 30571



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

are introduced, the multi-collinearity issue can potentially
happen within the ESM values. As a result, the findings we
have in this study could be hindered.

Thirdly, the experiment was conducted on one project,
which is JUnit. Although JUnit is a fairly large Java project
and we obtained the ESM values and software metrics from
various versions of the project, it is still better to include
the analysis results from other different projects as different
projects possess different error patterns, which means one
ESM value (e.g., ESM Arithmetic) might contribute to the
error patterns in one project but it might be a noise or an out-
lier in another project. In this study, we have not investigated
the issue of outlier of the ESM values.

Finally, although through the experiments, we could
infer that the ESM values helped to improve performances
(F1-score and Accuracy rates) of machine learning mod-
els, the low values of Recall was a concern for us. The
Recall values from the four machine learning models in
all experiments fluctuated between 0.3333 and 0.5556. This
could be caused by the issue of skewed dataset we men-
tioned in subsection IV-B. Although we applied the Box-Cox
transformation algorithm to make the dataset more nor-
mally distributed, there are still more rooms for further
improvement.

V. CONCLUSION AND FUTURE RESEARCH
In this paper, we have investigated the usefulness and poten-
tial issues of the ESM values, which were initially introduced
in [20], as a new set of software metrics, called Error-type
software metrics, to improve performances of machine learn-
ing models in fault-proneness prediction. We have also
proposed a methodology for modelling, extracting, and
evaluating the ESM values using Stream X-Machine and
machine learning techniques. We conducted the experiments
with four machine learning models (Decision Tree, Logistic
Regression, Multilayer Perceptron, and Naïve Bayes) on the
JUnit project whose software metrics were imported from
the BugHunter Dataset. Before carrying on with the train-
ing process, we had carefully investigated the dataset to
address the data quality issues (e.g., redundant and irrel-
evant values, and multi-collinearity). The results showed
that the newly proposed Error-type software metrics helped
to improve performances of machine learning models by
providing them with useful information about error pat-
terns. Although there are still several limitations that could
potentially hinder the findings of the study, the promising
results from the experiments enabled us to conclude that
the ESM values can be used a new set of Error-type soft-
ware metrics that can be incorporated with software met-
rics to improve performances of SFP models in predicting
fault-proneness.

In future research, we will introduce more ESM values
(e.g., ESM Arithmetic, ESM NumberFormat, etc.) to the
Error-type software metrics to capture more runtime error
patterns in Java projects. We will also conduct experiments
on more industrial projects in different application domains

to consolidate our findings and address the threats outlined in
subsection IV-F.

REFERENCES
[1] S. S. Rathore and S. Kumar, ‘‘A decision tree regression based approach

for the number of software faults prediction,’’ ACM SIGSOFT Softw. Eng.
Notes, vol. 41, no. 1, pp. 1–6, Feb. 2016.

[2] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan, ‘‘Using formal
specifications to support testing,’’ ACM Comput. Surv., vol. 41, no. 2,
pp. 1–76, 2009.

[3] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[4] R. Harrison, S. J. Counsell, and R. V. Nithi, ‘‘An evaluation of the MOOD
set of object-oriented software metrics,’’ IEEE Trans. Softw. Eng., vol. 24,
no. 6, pp. 491–496, Jun. 1998.

[5] J. Bansiya and C. G. Davis, ‘‘A hierarchical model for object-oriented
design quality assessment,’’ IEEE Trans. Softw. Eng., vol. 28, no. 1,
pp. 4–17, Jan. 2002.

[6] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng., vol. SE-
2, no. 4, pp. 308–320, Dec. 1976.

[7] M. H. Halstead, Elements of Software Science (Operating and Program-
ming Systems Series). Amsterdam, The Netherlands: Elsevier, 1977.

[8] S. S. Rathore and S. Kumar, ‘‘A study on software fault prediction tech-
niques,’’ Artif. Intell. Rev., vol. 51, no. 2, pp. 255–327, Feb. 2019.

[9] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, ‘‘Impli-
cations of ceiling effects in defect predictors,’’ in Proc. 4th Int. Workshop
Predictor Models Softw. Eng., May 2008, pp. 47–54.

[10] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok, ‘‘Local
vs. global models for effort estimation and defect prediction,’’ in Proc.
26th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2011,
pp. 343–351.

[11] J. M. Spivey, Understanding Z: A Specification Language and Its Formal
Semantics, vol. 3. Cambridge, U.K.: Cambridge Univ. Press, 1988.

[12] J. M. Spivey, The Z Notation: A Reference Manual. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1992.

[13] L. Steels, ‘‘Components of expertise,’’ AI Mag., vol. 11, no. 2, p. 28, 1990.
[14] B. J. Wielinga, A. T. Schreiber, and J. A. Breuker, ‘‘KADS: A modelling

approach to knowledge engineering,’’ Knowl. Acquisition, vol. 4, no. 1,
pp. 5–53, 1992.

[15] J.-R. Abrial and A. Hoare, The B-Book: Assigning Programs to Meanings,
vol. 1. Cambridge, U.K.: Cambridge Univ. Press, 1996.

[16] D. Lee and M. Yannakakis, ‘‘Principles and methods of testing finite
state machines—A survey,’’ Proc. IEEE, vol. 84, no. 8, pp. 1090–1123,
Aug. 1996.

[17] Specification and Description Language (SDL), document ITU-T R Z.100,
ITU Telecommunication Standardization Sector, Geneva, Switzerland,
2002.

[18] D. Harel and E. Gery, ‘‘Executable object modeling with statecharts,’’ in
Proc. IEEE 18th Int. Conf. Softw. Eng., Mar. 1996, pp. 246–257.

[19] M. Holcombe and F. Ipate, Correct Systems: Building a Business Process
Solution. Springer, 2012.

[20] K. Phung, E. Ogunshile, and M. Aydin, ‘‘A novel software fault prediction
approach to predict error-type proneness in the Java programs using stream
X-machine and machine learning,’’ in Proc. 9th Int. Conf. Softw. Eng. Res.
Innov. (CONISOFT), Oct. 2021, pp. 168–179.

[21] D. Dranidis, K. Bratanis, and F. Ipate, ‘‘JSXM: A tool for automated test
generation,’’ in Proc. 10th Int. Conf. Softw. Eng. Formal Methods (SEFM),
Thessaloniki, Greece. Berlin, Germany: Springer, Oct. 2012, pp. 352–366.

[22] R. Malhotra, ‘‘A systematic review of machine learning techniques for
software fault prediction,’’ Appl. Soft Comput., vol. 27, pp. 504–518,
Feb. 2015.

[23] H. Alsolai and M. Roper, ‘‘A systematic literature review of machine
learning techniques for software maintainability prediction,’’ Inf. Softw.
Technol., vol. 119, Mar. 2020, Art. no. 106214.

[24] A. Kumar and A. Bansal, ‘‘Software fault proneness prediction using
genetic basedmachine learning techniques,’’ inProc. 4th Int. Conf. Internet
Things, Smart Innov. Usages (IoT-SIU), Apr. 2019, pp. 1–5.

[25] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ‘‘Data quality: Some com-
ments on the NASA software defect datasets,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1208–1215, Sep. 2013.

30572 VOLUME 11, 2023



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

[26] J. S. Shirabad and T. J. Menzies, ‘‘The PROMISE repository
of software engineering databases,’’ School Inf. Technol. Eng.,
Univ. Ottawa, Ottawa, ON, Canada, 2005. [Online]. Available:
http://promise.site.uottawa.ca/SERepository

[27] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘‘Predicting the location
and number of faults in large software systems,’’ IEEE Trans. Softw. Eng.,
vol. 31, no. 4, pp. 340–355, Apr. 2005.

[28] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘‘Where the bugs are,’’ ACM
SIGSOFT Softw. Eng. Notes, vol. 29, no. 24, pp. 86–96, 2004.

[29] L. Yu, ‘‘Using negative binomial regression analysis to predict soft-
ware faults: A study of apache ant,’’ 2012. [Online]. Available:
https://scholarworks.iu.edu/dspace/handle/2022/20466

[30] W. Afzal, R. Torkar, and R. Feldt, ‘‘Prediction of fault count data using
genetic programming,’’ in Proc. IEEE Int. Multitopic Conf., Dec. 2008,
pp. 349–356.

[31] S. S. Rathore and S. Kumar, ‘‘Predicting number of faults in soft-
ware system using genetic programming,’’ Proc. Comput. Sci., vol. 62,
pp. 303–311, Jan. 2015.

[32] K. Gao and T. M. Khoshgoftaar, ‘‘A comprehensive empirical study of
count models for software fault prediction,’’ IEEE Trans. Rel., vol. 56,
no. 2, pp. 223–236, Feb. 2007.

[33] P. Consul and F. Famoye, ‘‘Generalized Poisson regression model,’’ Com-
mun. Statist., Theory Methods, vol. 21, no. 1, pp. 89–109, 1992.

[34] M. Xie, B. He, and T. N. Goh, ‘‘Zero-inflated Poisson model in statistical
process control,’’ Comput. Statist. Data Anal., vol. 38, no. 2, pp. 191–201,
Dec. 2001.

[35] M. Ridout, J. Hinde, and C. G. B. Demétrio, ‘‘A score test for testing a zero-
inflated Poisson regression model against zero-inflated negative binomial
alternatives,’’ Biometrics, vol. 57, no. 1, pp. 219–223, Mar. 2001.

[36] S. Gurmu, ‘‘Semi-parametric estimation of hurdle regression models with
an application to medicaid utilization,’’ J. Appl. Econometrics, vol. 12,
no. 3, pp. 225–242, May 1997.

[37] X. Yang, K. Tang, and X. Yao, ‘‘A learning-to-rank approach to soft-
ware defect prediction,’’ IEEE Trans. Rel., vol. 64, no. 1, pp. 234–246,
Mar. 2015.

[38] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, ‘‘The jinx
on the NASA software defect data sets,’’ in Proc. 20th Int. Conf. Eval.
Assessment Softw. Eng., Jun. 2016, pp. 1–5.

[39] R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Tóth, and T. Gyimóthy, ‘‘An auto-
matically created novel bug dataset and its validation in bug prediction,’’
J. Syst. Softw., vol. 169, Nov. 2020, Art. no. 110691.

[40] F. Ipate and M. Holcombe, ‘‘An integration testing method that is proved
to find all faults,’’ Int. J. Comput. Math., vol. 63, nos. 3–4, pp. 159–178,
Jan. 1997.

[41] F. Ipate and M. Holcombe, ‘‘Generating test sets from non-deterministic
streamX-machines,’’Formal Aspects Comput., vol. 12, no. 6, pp. 443–458,
Dec. 2000.

[42] F. Ipate and M. Holcombe, ‘‘Testing conditions for communicating
stream X-machine systems,’’ Formal Aspects Comput., vol. 13, no. 6,
pp. 431–446, Aug. 2002.

[43] F. Ipate and D. Dranidis, ‘‘A unified integration and component testing
approach from deterministic stream X-machine specifications,’’ Formal
Aspects Comput., vol. 28, no. 1, pp. 1–20, Mar. 2016.

[44] F. Ipate, ‘‘Testing against a non-controllable stream X-machine using
state counting,’’ Theor. Comput. Sci., vol. 353, nos. 1–3, pp. 291–316,
Mar. 2006.

[45] K. Phung and E. Ogunshile, ‘‘An algorithm for implementing a minimal
stream X-machine model to test the correctness of a system,’’ in Proc. 8th
Int. Conf. Softw. Eng. Res. Innov. (CONISOFT), Nov. 2020, pp. 93–101.

[46] K. Phung, D. Jayatilake, E. Ogunshile, and M. Aydin, ‘‘A stream
X-machine tool for modelling and generating test cases for chronic
diseases based on state-counting approach,’’ Program. Comput. Softw.,
vol. 47, no. 8, pp. 765–777, Dec. 2021.

[47] S. Jayatilake, E. Ogunshile, M. Aydin, and K. Phung, ‘‘Modelling diseases
with stream X-machine,’’ in Proc. 9th Int. Conf. Softw. Eng. Res. Innov.
(CONISOFT), Oct. 2021, pp. 61–68.

[48] Z. Kurbatova, Y. Golubev, V. Kovalenko, and T. Bryksin, ‘‘The IntelliJ
platform: A framework for building plugins and mining software data,’’
in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng. Workshops
(ASEW), Nov. 2021, pp. 14–17.

[49] L. Ardito, R. Coppola, L. Barbato, and D. Verga, ‘‘A tool-based perspective
on software code maintainability metrics: A systematic literature review,’’
Sci. Program., vol. 2020, pp. 1–26, Aug. 2020.

[50] J. D. Blischak, E. R. Davenport, and G. Wilson, ‘‘A quick introduction to
version control with git and GitHub,’’ PLOS Comput. Biol., vol. 12, no. 1,
Jan. 2016, Art. no. e1004668.

[51] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, ‘‘The misuse
of the NASA metrics data program data sets for automated software
defect prediction,’’ in Proc. 15th Annu. Conf. Eval. Assessment Softw. Eng.
(EASE), 2011, pp. 96–103.

[52] H. J. Zainodin and S. J. Yap, ‘‘Overcoming multicollinearity in multiple
regression using correlation coefficient,’’ AIP Conf. Proc., vol. 1557, no. 1,
pp. 416–419, 2013.

[53] B. Li, Q. Wang, and J. Hu, ‘‘Feature subset selection: A correlation-based
SVM filter approach,’’ IEEJ Trans. Elect. Electron. Eng., vol. 6, no. 2,
pp. 173–179, 2011.

[54] T. A. Craney and J. G. Surles, ‘‘Model-dependent variance inflation factor
cutoff values,’’ Qual. Eng., vol. 14, no. 3, pp. 391–403, Feb. 2002.

[55] G. E. Box and D. R. Cox, ‘‘An analysis of transformations,’’ J. Roy. Stat.
Soc. B, Methodol., vol. 26, no. 2, pp. 211–243, 1964.

[56] J. Osborne, ‘‘Improving your data transformations: Applying the Box–Cox
transformation,’’ Practical Assessment, Res., Eval., vol. 15, no. 1, p. 12,
2010.

[57] V. Fonti and E. Belitser, ‘‘Feature selection using lasso,’’ VU Amsterdam
Res. Paper Bus. Anal., vol. 30, pp. 1–25, Mar. 2017.

[58] F. N. Colakoglu, A. Yazici, and A. Mishra, ‘‘Software product quality met-
rics: A systematic mapping study,’’ IEEE Access, vol. 9, pp. 44647–44670,
2021.

[59] M. Bansal and C. P. Agrawal, ‘‘Critical analysis of object oriented metrics
in software development,’’ in Proc. 4th Int. Conf. Adv. Comput. Commun.
Technol., Feb. 2014, pp. 197–201.

[60] S. Eski and F. Buzluca, ‘‘An empirical study on object-oriented metrics and
software evolution in order to reduce testing costs by predicting change-
prone classes,’’ in Proc. IEEE 4th Int. Conf. Softw. Test., Verification
Validation Workshops, Mar. 2011, pp. 566–571.

[61] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy,
‘‘Change bursts as defect predictors,’’ in Proc. IEEE 21st Int. Symp. Softw.
Rel. Eng., Nov. 2010, pp. 309–318.

[62] S. Matsumoto, Y. Kamei, A. Monden, K.-I. Matsumoto, and
M. Nakamura, ‘‘An analysis of developer metrics for fault prediction,’’
in Proc. 6th Int. Conf. Predictive Models Softw. Eng., Sep. 2010,
pp. 1–9.

[63] D. Chhillar and K. Sharma, ‘‘Proposed T-model to cover 4S quality metrics
based on empirical study of root cause of software failures,’’ Int. J. Electr.
Comput. Eng., vol. 9, no. 2, p. 1122, Apr. 2019.

KHOA PHUNG received the bachelor’s degree in
computing and the master’s degree in information
technology from the University of the West of
England (UWE), in 2018 and 2019, respectively.
He is currently pursuing the Ph.D. degree in com-
puter science.

He is also a Lecturer with UWE. He joined
the Computer Science and Creative Technologies
(CSCT) Department as a Lecturer, in April 2022.
His research topic is ‘‘A novel approach for soft-

ware fault prediction using stream X-machine and machine learning.’’

VOLUME 11, 2023 30573



K. Phung et al.: Error-Type—A Novel Set of Software Metrics for Software Fault Prediction

EMMANUEL OGUNSHILE received the B.Eng.
degree (Hons.) in software engineering, the M.Sc.
(Eng.) degree in advanced software engineering,
and the Ph.D. degree in computer science from
The University of Sheffield, U.K., in 2003, 2005,
and 2011, respectively. His Ph.D. thesis was titled,
‘‘A Machine with Class: A Framework for Object
Generation, Integration and Language Authentica-
tion: (FROGILA).’’

From September 2011 to August 2013, he was
with the prestigious Surrey Space Centre, University of Surrey, U.K., as a
Research Fellow. From September 2013 to August 2014, he was with
Loughborough University, U.K., as a Senior Research Fellow on the pres-
tigious EPSRC and Jaguar Land Rover well over e12 million-funded col-
laborative research project involving six major U.K. universities. He is
currently a Senior Lecturer in computer science and the Chair Athena
SWAN process with the University of the West of England (UWE), Bristol,
U.K.—conducting highly innovative teaching, research, scholarship, and
administration in computer science and software engineering. He is a pas-
sionate British computer scientist, a software engineer, a system designer,
a scientific inventor, a goal-getter, an achiever, and a gentleman. He has
diversified experience having success as a software engineer, an intranet
manager, a systems manager, a teaching assistant, and a senior research
scientist in software and systems engineering on other occasions. He is
a software professional with over 15 years of broad experience covering
analysis and design, development, service, testing, technical writing, user
training, team leading, and negotiation. Advocate for collaboration and adop-
tion of new technologies to improve information sharing and collaboration.
He has focused on a user-centric approach to software development to ensure
usable software that solves real problems for real people. The University of
Sheffield is a member of the prestigious Russell Group of research-intensive
universities.

MEHMET AYDIN (Senior Member, IEEE) is cur-
rently a Senior Lecturer in computer science with
the University of the West of England. He joined
the Computer Science and Creative Technologies
(CSCT) Department, in January 2015. Before this,
he was in academic and research positions for var-
ious universities, including the University of Bed-
fordshire, London South Bank University, and the
University of Aberdeen. He has a led an number
of research projects as CoI and PI, published more

than 100 articles in international peer reviewed journals and conferences. His
research interest include machine learning, multi-agent systems, planning
and scheduling.

Dr. Aydin is an Editorial Board member of a number of international peer-
reviewed journals, and have been serving as a committee member of various
international conferences. He is also a member of EPSRC Review College,
senior member of ACM, and fellow of Higher Education Academy.

30574 VOLUME 11, 2023


