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Abstract. In this paper, we extend a macroscopic probabilistic moflalswarm of foraging robots

from the homogeneous to the heterogeneous case. In the seachrobot is capable of adjusting its
searching time and resting time thresholds following tHegswalescribed in our previous paper [1]. In
order to model the difference between robots, privateipuesting time and searching time thresholds
are introduced, a number of equations are then developedro aut the relationship between these
private time thresholds and public time thresholds basegreviously developed difference equations
[2]. The extended macroscopic probabilistic model has lested using the simulation tools Play-
er/Stage. The results from the macroscopic probabilisidehmatch with those from the simulation

with reasonable accuracy, not only in the final net energhefdwarm but also in the instantaneous
net energy. Although the model is specific to adaptive farggwe believe the methodology can be
extended to other systems in which the heterogeneity ofytsters is coupled with its time parameters.

1 Introduction

In swarm robotics, the robots themselves are typically wimyple but complex collective behaviours may arise
from the interactions among the robots and between thesainat the environment. In order to design and optimise
individual robot behaviours and hence achieve the desbbelative swarm properties, one of the challenges is to
understand the effect of individual parameters on the gpauformance. Real robot experiments and sensor-based
simulations are the most direct way to observe the behawibtire system with different parameters. However,
experiments with real robots, even in simulation, are verstly and time-consuming to implement, and do not
scale well as the size of the system grows. It is thereforeaetjral to scan the whole design parameter space to
find the best solutions using a trial and error basis. Mathiealanodelling and analysis offer an alternative to
experiments and simulations.

In the last few years, more attention has been dedicateddi@ssing the modelling problem in swarm robotics.
Probabilistic models, using both microscopic and macrpcapproaches have been successfully applied to anal-
ysis of collective swarm behaviour. A microscopic probiaktit model was first proposed by Martinoli et al. [3, 4]
to study collective clustering. The central idea of the mwstopic probabilistic model is to describe the interac-
tions among robots and between the robots and environmergerses of stochastic events. The probabilities that
each eventis triggered are determined by simple geometnisiderations and systematic experiments with one or
two real robots. Instead of computing the exact trajecsasigd sensory information of individual robots, as most
sensor-based simulations do, state transitions are deedmandomly, in effect by throwing dice. Running several
series of stochastic events in parallel, one for each raliotys researchers to study the collective behaviour of the
swarm. To obtain statistically significant results, sevaras of the model need to be carried out and the overall
behaviour of the system is computed by averaging the resiutese runs.

Unlike the microscopic model, a macroscopic model diregdéigcribes the overall collective behaviour of the sys-
tem. In general, macroscopic models are more computaljosféicient than their microscopic counterparts. One
of the fundmental elements of the macroscopic probalulisthdel are the Rate Equations, which have been suc-
cessfully applied to a wide variety of problems in physi¢gmistry, biology and the social sciences. For instance,
Sumpter and Pratt [5] developed a general framework for flingesocial insect foraging systems with gener-
alised rate functions (differential equations). Sugaveara coworkers [6, 7] first presented a simple macroscopic
model for foraging in a group of communicating and non-comioating robots, with analysis under different
conditions; further study can be found in [8]. Lerman andsBaln [9, 10] proposed a more generalised and fun-
damental contribution to macroscopic modelling in mugieat systems. In [11], they presented a mathematical
model of foraging in a homogeneous multi-robot system toeustdnd quantitatively the effects of interference
on the performance of the group. In [12], they developed aras@opic model of collaborative stick-pulling, and
the results of the macroscopic model quantitatively agriéie moth embodied and microscopic simulations. Agas-
sounon and Martinoli [13] use the same approach to capterdythamics of a robot swarm engaged in collective
clustering experiments.

Rather than using a time-continuous model, Martinoli andartiers [14, 15, 16] considered a more fine-grained
macroscopic model of collaborative stick-pulling whickea into account more of the individual robot behaviours,
in the discrete time domain using difference equationsyBuggested that time-discrete models are the most ap-
propriate solution for the level of description characed by logical operators and behavioural states. Simjlarly



Correll et al. [17, 18] used a macroscopic probabilistic eiddr analysis of beaconless and beacon-based strate-
gies for a swarm turbine inspection system, and furtherrntmfind an optimal collaboration policy minimising
the time to completion and the overall energy consumptich@swarm in [19, 20]. In [21], a macroscopic prob-
abilistic model is proposed to analyse the self-organisbdtraggregation inspired by a study on aggregation in
gregarious arthropods.

Despite the success of the above examples, there is végyelitiisting work on mathematical analysis of adaptive
multi-robot systems in dynamic environments, with the bteaxception of the work done by Lerman and Gal-
styan [22, 23, 24]. They have extended the macroscopic piigiec model to study distributed systems composed
of adaptive robots that can change their behaviour baseleindstimates of the global state of the system. In
their study, a group of robots engaged in a puck collectisy teeed to decide whether to pick up red or green
pucks based on observed local information. The heteroiendi the robot population must therefore be taken
into account. They claim that the model can be easily ex@taether systems in which robots use a history of
local observations of the environment as a basis for makégstbns about future actions.

In our previous work [1], we presented a simple adaptatigorithm for robots engaged in a collective foraging
task. The adaptation algorithm has a number of parametachwahe used to adjust the contribution of each cue.
However, with a set of intuitively chosen parameters, itas clear that the swarm reaches the best performance
it can achieve, and there are no obvious guidelines for mniirading the best set of parameters for the algo-
rithms. To address these problems we first developed a naagiegprobabilistic model of collective foraging for

a simplified case in [2], where each robot is given the samingeime and searching time thresholds without
adaptation. In this paper we will extend the model for therswaith the adaptation abilities introduced in [1].

2 Collective Foraging with Adaptation
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Figure 1: Screen shot of collective foraging in the Player/Stage kKitou
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Figure 2: The threshold-based robot controller for collective fongag

Figure 1 illustrates the collective foraging experimenaisensor-based simulator — Player/Stage [25]. There are
a number of food-items randomly scattered in the arena affabalsis collected more wilgrow to replenish the



supply. Each food-item collected will deliver an amount néggy to the swarm but the activity of foraging will
consume a certain amount of energy at the same time. A tHokblased controller is implemented to complete
the task, as shown in Figure 2. In order to improve the eneffigieancy, the individuals in the swarm use three
adaptation cues — internal cues (successful or unsuctéssfiretrieval), environmental cues (collision with othe
robots while searching) and social cues (teammate fooi@vatrsuccess or failure) — to dynamically regulate two
internal thresholds, resting time and searching timei (et1,2,...,N) indicate the ID for each robot arid and

T/ be the searching time and resting time threshold respégtihen according to [1],

Te(k+ 1) = Td(K) — a1C'(K) + B1PL(K) — yaP} (K) 1)
T! (k4 1) = T/ (k) + a2C' (k) — B2PL(K) + yPi (k) — R (K) )

whereC (k) counts the collisions while searching, amganda, are adjustment factors to moderate the contribu-
tion of the environmental cue® (k) andP; (k) represent the social cues from teammates through the stigme
like mechanism. The contribution from social cues is motderay altering the adjustment factgdg 3, y1 and

y>. R (k) then donates the internal cues an the corresponding adjustment fact(k), R (k), Ps(k) andP; (k)

in Equation (1) (2) are defined as follows.

®3)

Ci(k) = 1 staterandomwalk — stateavoidance
10 otherwise

1  statedeposit — stateresting
R(k)=< —1 statehoming — stateresting 4)
0  otherwise

. 0 notinresting state
Pi(k) = < SR(k) statedeposit — stateresting (5)
N {R(k)|R (k) > 0} in resting state

0 notinresting state
Pt (k) = < SR(k) statehoming — stateresting (6)
N {IR(k)||R (k) < O}in resting state

whereSR andSR represent the gradual decay rather than instantly disaipgesocial cues (successful and failure
retrieval), which are defined as follows:

SR(k+1) = SR(k) — &+ i(Ri (KR (k) >0) ()

N
SR(k+1):SR(k)—ch+_;(|Ri(k)||Ri(k) <0) (8)

Attenuation factor®s andd; are introduced here to simulate somewhat akin to ants lgavitecaying pheromone
trail while foraging. As the social cues are only accesdibtéhe robots in the nest, two categories of robots will
be affected. One group are those already resting in thethestther are those ready to move to stattingfrom
stateshomingor deposit the former can ‘monitor’ the change of social cues and thjnsa its time threshold
parameters, while the latter will benefit from the gradualgcaying cues deployed by teammates. These two
situations for updating (k) andP; (k) are shown in Equation (5) (6).

3 Macroscopic Probabilistic Model for a Heter ogeneous Swarm
3.1 Probabilistic Finite State Machine (PFSM)

The collective foraging task can be described as a PFSM asdhd=igure 3. Each block in the PFSM represents
the corresponding state and the average number of robdtatistate, which is marked witl. For simplicity, we
make some changes from the finite state machine (FSM) shokigime 2: the original 9 states are merged into 5
states: statesmovetohomandDepositin the FSM correspond to staeposit(D) in PFSM, stategeavinghome
randomwalkand scanarenan the FSM are merged into staBearchingS), statesmovetofoodand grabfoodin

the FSM are now replaced with staBrabbing(G), statesResting(R) andHoming(H) in the FSM remain the
same. The transitions from one state to another are noriadigd on certain probabilities shown in the edge of
the transition lines. For examplg, indicates the probability that the robots in st&garchingwill find food and
thus transfer to stat&rabbing The transitions between two states without probabilibelashown in the edge
are delayed for certain period but with probability 100%.r Fstance, the transitions from staAgoidanceSo
Searchingwill be delayed fofTx steps after the robots move to staiidanceSThe dynamics of the system can



then be captured using a group of difference equations (Di),each representing the number of robots and its
changesin corresponding state. [2] gives more detailddadiems for the DEs and transition probability from first
principles.
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Figure 3: The probabilistic finite state machine for collective fdrag Transitions marked as bolder lines are affected
by the variation of time threshold parameters during adegta

3.2 The Challengeand its Solution for M odelling Adaptation

Unlike the swarm modelled in [2], here the time thresholdapagters s and T;) for the robots with adaptation
abilities will not only vary from one robot to another, busalbe different from one time step to the next. However,
the basic behaviours for the robots are essentially the sxeept for some transitions among states which rely
on these two time parameters. More specifically, as showrigar€ 3, the transition from stat&earchingor
Grabbing(includingavoidancgto stateHoming and the transition from statestingto stateSearchingdepend

on the value of these two time threshold parameters. ThegesaofTs and T, result in the different actions the
robots will take. Since the macroscopic model itself doetake the difference among individual robots into
account, all the parameters and variables used in the moslptesented from statistical aspects, for instance, the
average number of robots in each state. The challenge isdaviroduce these differences into our previously
developed macroscopic model. To solve these problems njuection with the sub-PFSM presented in [2], we
introduce the concept of private resting time and searctiing thresholds, and their counterparts — public resting
time and searching time thresholds, into our model. Theagitime thresholds play the role of deciding when
the transition from one state to another is triggered, wihitepublic time thresholds are used to accumulate the
contributions from all the adaptation cues which have bemiied to the swarm. They affect each other in a
bi-directional manner. For example, as shown in Figure d,dtivate resting time thresholds in the model are
‘inherited’ from the public resting timd, when they are formed (with the robots moving to st&&sting and
then ‘merged’ into the public resting tinig after that subset of robots move to st&arching By defining the
‘inherit’, ‘adaptation’ and ‘merge’ operations accorditagthe adaptation algorithms described above, we can then
extend the macroscopic model for a swarm of foraging robdtsadaptation abilities and study the effect of these
adjustment parameters on the performance of the systeime fioltowing sections, we will deal with the two time
thresholds separately.
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Figure 4: Relationship between private and public resting time thokesparameters. Here ‘inherited’ means ‘making a
copy’, while ‘merge’ refers to the update of thigbased on some rules



3.3 Modedling Adaptation on Resting Time Threshold

The adjustment for each robot falls into three categoriegsponding to the contribution from internal cues, social
cues and environmental cues respectively. In the modelriat cues and social cues will be applied to adjust the
private resting time threshold first, then the changes ofgeiresting time thresholds can be combined together
and affect the public resting time threshdjdafterwards. Meanwhile environmental cues have a direcaaonpn

the adjustment of; .

3.3.1 Internal Cues& Social Cues

The effect of internal cues and social cues on resting timestiolds can be categorised into two stages: firstly, the
internal cues and social cues are applied when the tramsitiostatdRestingoccur; then, the social cues continue
to play roles on adjustment when the robots are in dResting In order to model the difference among the
individual robots, we need to deal with the ‘failed’ and ‘sassful’ robots separately. In our model, each type of

robot is endowed with a private resting time threshBll or T92, which is ‘inherited’ from the public resting
time thresholdT;. Similar to the sub-PFSMs presented in [2], ea“éw andTr(d) have their own lifetimes. Here

notationTr(h)(k; i) and Tr(d)(k; i) are introduced to represent the values of private resting threshold, where
indicates the time step that the corresponding privaténgesime threshold is formed arkddenotes the current

time step. Taking’r(d) (k;i) as an example, mathematical modelling of private time tiolels can be summarised
to three steps:

1) initialising when they are formed & i);

2) adapting during their lifetime & k < i + % (k:));

3) merging to public time threshold at the end of their lifedi k = i +Tr(d)(k; i)).
Initialisation
As soon as the robots move into st&esting a private resting time threshold is formed for these robatk
the initial value of public resting time threshold. The im&l cues will be applied to adjust the private resting

time threshold first, and then the social cues applied agugto the gradually evaporating virtual pheromones
deployed by previous returning robots. Following Equati@y we have

T (k+ Lk + 1) =Ty (K) — B2SR(K) + 2SPr (k) + 1 9)
T (k4 1;k+ 1) =T () — BoSR(K) + yoSP; (K) — (10)

The first term in the right-hand side (RHS) of Equation (9) &wgiation (10) represents the ‘inherit’ operation
from the public resting time threshold. The second and ttarchs in the RHS count the contribution of social
cues. The last term then depicts the adjustment of intecres.c

As for SP; andSR,, the increased value at each time step equals the numbebatsreeturning home (denoted
with Ay (k—Th) andAp (k— Ty) respectively). Meanwhile, they will ‘evaporate’ with tireéapsing. Thus we have

SPy (k+1) =SP; (k) — 8 + A (k—Th) (11)
SR(k+1) =SR(K) — &+Bp (k- Ta) (12)

Adaptation

When the robots are already in st&estingi.e.i <k < +Tr(d)(k; i), they adjust their time thresholds based on
the change of social cues, which is equivalent to the ineitasmber of returning robots. The adaptation can be
described as

TV (k+ 1;i) =T (ki) — Box Ao (K— Ty) + yo B (K— Thy) (13)

TP (k+ 1i) =TV (ki) — Bo* Ao (K— Ta) + Yo A (K— Th) (14)

wherei < k< i+ Tr(d)(k; i).
Merging

Once the resting robots move into st&@archingthe corresponding private resting time thresholds witlate the
public resting time threshold. The updating of public megtiime threshold is referred to as a merging operation.
At each time step, there may be more than one group of restlgs running out of their resting time. In order to
calculate the contribution that the private resting timesholds make on the public resting time threship|dve
need to know:

1The superscripth) and(d) indicate that which state the robots are transferred frarg th) for statddomingwhile (d) for stateDeposit
Similarly, for the private searching time threshold intnodd later, (s) represents st&earching



« the number of robots which leave the stRestingat the current time step;

» the impact of social cues and internal cues on the privatingetime thresholdﬂ;’r(h) andTr(d) during their
lifetime.

Since there is only one copy of private resting time thred;ﬁ'ér) formed each time step, the number of resting

robots transferring from statdomingand their corresponding private resting time threshﬂil(aécan be identified
using the date of birth (DOB). For example, the number of teli@nsferring from statelomingat time step

equalshAy (i — Th), and their private resting time thresholdﬂ&h)(k; i). To calculate the number of resting robots
running out of resting time at time stégp we introduce two help-variableRy (k) andRp(k), to represent the
collection of DOBs of private resting time thresholds whigk ready to ‘merge’ intd; at time stegk. then
R (k) = {ijk—i= |T" (ki)]} (15)
Ro(k) = {ilk—i= [T¥(ki)|} (16)

Let Ag gm(K) andAg g (k) be the number of robots transferring from stRtesting(from stateHomingand
Depositrespectively) tdSearchingat time stegk, then we have

Ay g(k+1)= % Du(i—Th) 17)
it (k)

ASHR<d) (kJr 1) = z AD(i — Td) (18)
icip (k)

Thus, the total number of robots moving from stBtestingo Searchingcan be expressed as

As(k+1) =Ag g (K+1) +Ag ga(k+1) (19)

The contribution of each fraction of reactive (from st&estingto Searching robots to the public resting time
threshold can be expressed as the product of the quantityg @bbots and the change of the corresponding private
resting time threshold. For instance, assume that a grougstihg robots which transferred from sté&teming
become reactive at time sté&pif the corresponding private resting threshold has a DQBen the contribution
from these robots is given by:

Bua(i=To) x (T (ki) = Te(i - 1)
whereT, (i — 1) depicts the value of public resting time threshold ‘intetitby theT," when it is formed. Let
AT<h) andAT@ be the total contribution provided by the resting robotagfarred from statelomingandDeposit
respectively at time stelg then

D)= Buli—Tn)x (T"(ki) = Te(i—1) (20)
ieRy (k)

Bok=3 Ao (i — Tg) x (T (ki) = Tr(i — 1)) (21)
ieRp (k)

The updating of the public resting time threshold for therswis then based on the following equation

B (K) + B0 (K)
No

Tr(k+1)=Tr(k) + (22)

whereN is the total number of robots in the swarm.

3.3.2 Environmental Cues

The environmental cues play roles in adjusting the restimg tthreshold for the robots working in the arena
(non-resting). Although the change of the resting timeghatd in this case will not affect the behaviour of the
robots until they return home, the public resting time thodg T, is changed in the following manner with the
environmental cues.

a2 * AA(k—i- 1)

Tr(k+1) =T (k) +
No

(23)

whereAa(k+ 1) depicts the number of robots moving into stAteidance&t time stefk.



3.3.3 Combining all the Cues

Combining the effect of all the cues, the swarm will updagepitblic resting threshol@ in this manner

~

~ AT(h) JrAT(d) +azxAa(k+1)
Tr(k+1):Tr(k)+ r r

No

(24)

3.4 Modedlling Adaptation on Searching Time Threshold

Similarly, three private searching time thresholﬁ,@, Ts(d) ande(S), and one public searching time threshdid

are introduced to model the adaptation of searching timestiald. Figure 5 demonstrates the relationship between
the private and public searching time thresholds. Gengethk private searching time thresholds have their own
life cycles during the adapting process. They ‘inherit’ tlpa-to-datefs when they are formed, and will update
(‘merge’ into)'léS at the end of their lifetime. However, the situation here @encomplex than for the resting time
threshold, as the private searching time thresholds ondiifferent states. Consequently, two pairs of ‘inheritlan
‘merge’ operations are applied to regulate the exchangeigdtp and public searching time thresholds. Among

these three private searching time threshngﬁ@, ande(d) are used to track the contribution of social cues when

the robots are in statResting while Ts(s) is used to track the contribution of environmental cues. éddwer, as
shown in Figure 5, the transition from sta®earchingto Homingis now decided b)ﬂ's(s). AIthoughTs(h) and
Ts<d> do not change the l:lehaviour of searching robots directy, tiave large contributions in adjuAsting the public
searching time thresholfi, which in return affect the behaviour of searching robotse Tipdate ofs from these

private searching time thresholds can be categorised astages according to the social cues and environmental
cues.
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3.4.1 Social Cues

Again, Ieth(h)(k; i) ande(d)(k; i) be the private searching time threshold for the robots ngfriom stateHoming
andDepositrespectively, wheredenotes the DOB (i.e. the time step that the robots move tateResting and
k is the current time step, cleark> i, then the mathematical description ffgﬁh) ande(d) can be obtained using

the same approach as presented in previous sections.
Initialisation
Initialisation is performed when the robots move into sRéstingi.e. (K=1). An ‘inherit’ operation is executed

to make a copy of the current public searching time threshand then, based on the adaption rules, the private
searching time threshold will be updated according to thergmones left by the previous returning (to nest)



robots. Thus

Ta" (k+ Lk + 1) =Ts(K) + B1SR(K) — y1SPt (K) (25)

~

To (k+ Lk + 1) =To(K) + BiSR(K) — y1SP (K) (26)

Adaptation

After the robots transfer to staResting the social cues continue to adjust the private searching thresholds,
until the robots move to stateearching The private searching time threshdﬁ) ande(d) will be updated using

the following rules
T (k1) =T (ki) + Br+ Ao (k— Ta) — i+ A (K— Th) (27)
T k+ 1) =TdY (ki) + Bo* Ao (K — Ty) — ya* A (k—Tr) (28)

Although Equation (25) - Equation (28) show that the updatesrforTs(h) and Téd) are exactly the same, the
life cycles for these two private searching time threshalds different, as decided by the private resting time

parameter§r(h) andT,<d) .
Merging
The merging operation occurs when the resting robots rurobtiteir resting time, decided by the private rest-

ing time thresholdg; "™ and ;Y. Let AT<h>(k) andAT@(k) represent the contribution provided by the robots
transferred from statddlomingandDepositrespectively, then

B = Buli—To)x (5" (ki) = Teli — 1)) (29)
ieRy (k)

Bw® =3 Boli—Ta)x (59 (ki) ~ To(i — 1)) (30)
ieRp (K)

whereRy (k) andRp (k) are collections of DOBs for the private resting time thrédhehich come to the end of
their lifecycles, which are defined in Equation (15) and Emue(16).An (i — Ty,) andAp (i — Ty) depict the number
of resting robots which are ready to transfer to sg&darchingat time stegk.

Finally, the contribution of social cues to the public sédmg time thresholds can be expressed as

A (K) +8 0 (K)
No

Ts(k+1) = To(k) + (31)

3.4.2 Environmental Cues

Once the robots move to steBearchingthey are subject to the constraint of searching time tiolesimless the

robots grab food-items successfully. The environmentas@ffect the searching time threshold when the robots
are actively engaged in the searching task. To represeninilj@e and variable searching time threshold, a new
private searching time threshold is introduced for the B&E®M engaged in “searching-grabbing” task, denoted

Tés)(k;i), wherei corresponds to the DOB of the private searching time thidstamd the sub-PFSM), aridis
the current time step for the sub-PFSM. Similarly, we canngefine ‘initialisation’, ‘adaptation’ and ‘merging’
operations ford¥.

Initialisation

Generally, WhenTS(s) is formed, it should ‘inherit’ the up-to-date public sedarghtime threshold. However, as

shown in Figure 5Ts<h) ande(d) are ‘merged’ to'fS atthe same time. Thus the initialising'@@ is the combination
of both ‘merge’ and ‘inherit’ operations, i.e.

B (K) +81@ (K)
No

T (k4 1k + 1) =To(k) + (32)

Clearly, the size of sub-swarm in the sub-PFSM equals thebeuof robots moving from stateestingcurrently,
which can be expressed as

Ns(k+1ik+1) =Bg g (k) + A5 _ga)(K) (33)



whereAg g (K) andAg g« (K) are defined in Equation (17) and Equation (18).
Adaptation

Wheni < k< i+ TS(S) (k;i), the change 0T5<5) can be described as follows
aq % A/A(k-‘r 1)
NE(i;1)

whereA, (k-+1) depicts the number of robots transferring to stateidancdrom stateSearchingn the sub-PFSM,
Ng(i;1) is the initial number of robots in the sub-swarm, as defindggoation (33).

T (k+1;0) = T (ki) + (34)

Merging

Similarly, in order to know the contribution from the enuimaental cues during the lifecycles of the sub-PFSM,
let S(k) denote the collection of all the DOBs for the sub-PFSMs wisizine to the end of their life cycles at time
stepk, thenS(k) can be expressed as

S(k) = {ik—i= T (kii)]} (35)

Whenever the robots in the sub-PFSM run out of their seagdiime, their private searching time threshd‘_@
will be ‘merged’ to the public searching time threshold irsttvay

| iesw [T (ki) — T )]+ Ni(is i)

To(k+1) = To(k) =

(36)

3.4.3 Combining all the Cues

As the social and environmental cues may occur simultagouthe swarm, we need to merge Equation (31) and
(36) to model the effect of the social cues and environmeuiaé on the public searching time threshold. Thus we
have

Siesgo [To” (ki) = T8 (i51)]  N&(i:1) + B (K) + A ) (K)
+ S S

To(k+ 1) = To(K) NG

(37)

3.5 Integration with Previously Developed M odel

To obtain a complete model of adaptive collective foragiwg,need to integrate this work into our previously
developed model in [2]. This can be done by replacing somatams with the new working as follows:

Ns(k+ 1) =Ns(k) + As(k+ 1) + 1 (K)Ng (K) + [Aa(k— Ta) — Qa(k— Ta)]

[ (K= Ta) — Qag(k—Ta)] — [y (K) & yeM(K)] Ns(k) — Fs(k-+ 1) (38)
Nr(k+1) =Nr(K) + Ap(k—Tg) + An(k—Th) — Ag(k+ 1) (39)
[s(k) = Z Né(k; i) Ic(k) = N'G(k; i) (40)
ieS(k) ieS(k)
Ia(k) = Z NA(k; i) I_Ag(k) = N (ki) (41)
i<STk) i<STk)
k
Qk-Ty=S Ni(k—Tgii) (42)
K=k TicfT)
Qak—Ta) = f My (K~ Toii) (43)
K-T Taic8T0)

Qpg(k—Ta) = z Dy (k—Taii) (44)
K=K TaicSK)



4 Resultsand Conclusion

The extended macroscopic model has been validated usisgiiser-based simulation tools Player/Stage (a screen
shot is shown in Figure 1). The basic parameters for the sitioul environment, for instance the size of arena, the
speed of the robots, etc, are exactly the same as were usgd g behaviour sets of the robots in the simulation
are also the same, with an exception that each robot is noanestiwith the adaptation ability. Using the same
set of adjustment factors presented in [1], we have alsedeste model with different food growth rates (i.e.
the probability that one food itemgrowsin the arena, each second). Figure 6 illustrates the refsaftsboth the
simulation and macroscopic probabilistic model for a swafi® robots, where the growth rate varies from 0.03 to
0.05. The error bars represent the standard deviationd@feeorded from 10 experimental runs. We see clearly
that the data from simulation fits well to the curves obtaifreth the macroscopic model, though a relatively large
gap develops when the growth rate is set to 0.03. Figure 7glmésmthe instantaneous number of robots in selected
states from the simulation under different environmentaiditions. Not surprisingly, the predicted number of
robots in each state from the macroscopic model reflectsdhesponding average number of robots from the
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simulation. As we already discussed in [1] and [2], for a fiyegulation swarm under different environmental
conditions — i.e. food growth rate, there is a different oyati swarm density (ratio of foragers to search area)
which results in the optimal energy efficiency for the systédthough the swarm population and the adjustment
factors remain the same for the above experiments, thegwenamber of robots in staiResting(referred to as
resters) and noRestingas foragers) vary with the food growth rate changing. TiniBdates that the swarm with
adaption is able to adjust the ratio of foragers and restégmamously in response to environmental changes. In
other words, the swarm density (in foragers) in the areni@vavith food growth rate varying.
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Figure 7: Comparison of number of robots in selected states for therswéth adaptation mechanism between the
extended macroscopic probabilistic model and the simariativhere the horizontal dashed lines are from the model
while the coloured curves from simulation.

Clearly, by setting all the adjustment factors to zero, thiereded model should reduce to be the simplified case
we developed in [2]. To examine this, let us consider theasibm where the growth rate is 0.045 for a swarm of
homogeneous robots (without adaptation), we can deriveaflaéonship between the resting time threshold and
the final net energy of the swarm by varying the resting tinnegholdT, from O to 1000 time steps (corresponding
to 0 to 200 seconds at 5 Hz updating rate). Figure 8 compagassiults obtained from both the simulation and the



10 —

I

energy of swarm (10° units)

---6---gimulation |4
model

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
0

1 1
0 200 400 600 800 1000

T,

Figure 8: The total net energy of the swarm after 20000 seconds for answh8 robots with different resting time
threshold parameter.

macroscopic model. Again, the final net energies of the swasadicted by the model match with those measured
from simulation very well. We also see that a critical val@id,oexists, corresponding to the maximum net energy
of the swarm. As for a fixed population of robot swarm, it is ersdood that the bigger the resting time threshold
T, the larger the proportion of robots stay in stRestingon average, as a consequence the swarm density (in
foragers) in the arena is smaller.

Due to the huge solution space of the adjustment factors, ribt possible to test the model by varying each
parameter individually and repeating the experiment agiathagain. Although no further comparisons are made at
this stage, as the adjustment factors are chosen intyitivelhave good reason to believe that the model developed
in this paper truly captures the dynamics of the swarm witiptation. Clearly the swarm with intuitively selected
adjustment factors does not reach its optimal performainee icompare the results presented in Figure 6 and
Figure 8. However, in conjunction with an appropriate skiug technique, the macroscopic model can be used to
find an optimal set of adjustment factors for the adaptatigaraghm and hence help the swarm achieve the best
performance; we have implemented this approach using aigafgorithm in [26]. To the best of our knowledge,
at the time of writing, there are very few macroscopic modetbhe field of swarm robotics that can describe the
collective behaviour of a group of heterogeneous robotghodigh the model presented in this paper is specific to
the adaptive foraging task, we believe the methodology eaxtended to other systems in which the heterogeneity
of the system is coupled with its time parameters.
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