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Abstract. In this paper, we extend a macroscopic probabilistic model of a swarm of foraging robots
from the homogeneous to the heterogeneous case. In the swarm, each robot is capable of adjusting its
searching time and resting time thresholds following the rules described in our previous paper [1]. In
order to model the difference between robots, private/public resting time and searching time thresholds
are introduced, a number of equations are then developed to work out the relationship between these
private time thresholds and public time thresholds based onpreviously developed difference equations
[2]. The extended macroscopic probabilistic model has beentested using the simulation tools Play-
er/Stage. The results from the macroscopic probabilistic model match with those from the simulation
with reasonable accuracy, not only in the final net energy of the swarm but also in the instantaneous
net energy. Although the model is specific to adaptive foraging, we believe the methodology can be
extended to other systems in which the heterogeneity of the system is coupled with its time parameters.

1 Introduction
In swarm robotics, the robots themselves are typically verysimple but complex collective behaviours may arise
from the interactions among the robots and between the robots and the environment. In order to design and optimise
individual robot behaviours and hence achieve the desired collective swarm properties, one of the challenges is to
understand the effect of individual parameters on the groupperformance. Real robot experiments and sensor-based
simulations are the most direct way to observe the behaviourof the system with different parameters. However,
experiments with real robots, even in simulation, are very costly and time-consuming to implement, and do not
scale well as the size of the system grows. It is therefore impractical to scan the whole design parameter space to
find the best solutions using a trial and error basis. Mathematical modelling and analysis offer an alternative to
experiments and simulations.

In the last few years, more attention has been dedicated to addressing the modelling problem in swarm robotics.
Probabilistic models, using both microscopic and macroscopic approaches have been successfully applied to anal-
ysis of collective swarm behaviour. A microscopic probabilistic model was first proposed by Martinoli et al. [3, 4]
to study collective clustering. The central idea of the microscopic probabilistic model is to describe the interac-
tions among robots and between the robots and environment asa series of stochastic events. The probabilities that
each event is triggered are determined by simple geometric considerations and systematic experiments with one or
two real robots. Instead of computing the exact trajectories and sensory information of individual robots, as most
sensor-based simulations do, state transitions are determined randomly, in effect by throwing dice. Running several
series of stochastic events in parallel, one for each robot,allows researchers to study the collective behaviour of the
swarm. To obtain statistically significant results, several runs of the model need to be carried out and the overall
behaviour of the system is computed by averaging the resultsof those runs.

Unlike the microscopic model, a macroscopic model directlydescribes the overall collective behaviour of the sys-
tem. In general, macroscopic models are more computationally efficient than their microscopic counterparts. One
of the fundmental elements of the macroscopic probabilistic model are the Rate Equations, which have been suc-
cessfully applied to a wide variety of problems in physics, chemistry, biology and the social sciences. For instance,
Sumpter and Pratt [5] developed a general framework for modelling social insect foraging systems with gener-
alised rate functions (differential equations). Sugawaraand coworkers [6, 7] first presented a simple macroscopic
model for foraging in a group of communicating and non-communicating robots, with analysis under different
conditions; further study can be found in [8]. Lerman and Galstyan [9, 10] proposed a more generalised and fun-
damental contribution to macroscopic modelling in multi-agent systems. In [11], they presented a mathematical
model of foraging in a homogeneous multi-robot system to understand quantitatively the effects of interference
on the performance of the group. In [12], they developed a macroscopic model of collaborative stick-pulling, and
the results of the macroscopic model quantitatively agree with both embodied and microscopic simulations. Agas-
sounon and Martinoli [13] use the same approach to capture the dynamics of a robot swarm engaged in collective
clustering experiments.

Rather than using a time-continuous model, Martinoli and coworkers [14, 15, 16] considered a more fine-grained
macroscopic model of collaborative stick-pulling which takes into account more of the individual robot behaviours,
in the discrete time domain using difference equations. They suggested that time-discrete models are the most ap-
propriate solution for the level of description characterised by logical operators and behavioural states. Similarly,



Correll et al. [17, 18] used a macroscopic probabilistic model for analysis of beaconless and beacon-based strate-
gies for a swarm turbine inspection system, and furthermoreto find an optimal collaboration policy minimising
the time to completion and the overall energy consumption ofthe swarm in [19, 20]. In [21], a macroscopic prob-
abilistic model is proposed to analyse the self-organised robot aggregation inspired by a study on aggregation in
gregarious arthropods.

Despite the success of the above examples, there is very little existing work on mathematical analysis of adaptive
multi-robot systems in dynamic environments, with the notable exception of the work done by Lerman and Gal-
styan [22, 23, 24]. They have extended the macroscopic probabilistic model to study distributed systems composed
of adaptive robots that can change their behaviour based on their estimates of the global state of the system. In
their study, a group of robots engaged in a puck collecting task need to decide whether to pick up red or green
pucks based on observed local information. The heterogeneities in the robot population must therefore be taken
into account. They claim that the model can be easily extended to other systems in which robots use a history of
local observations of the environment as a basis for making decisions about future actions.

In our previous work [1], we presented a simple adaptation algorithm for robots engaged in a collective foraging
task. The adaptation algorithm has a number of parameters which are used to adjust the contribution of each cue.
However, with a set of intuitively chosen parameters, it is not clear that the swarm reaches the best performance
it can achieve, and there are no obvious guidelines for manually finding the best set of parameters for the algo-
rithms. To address these problems we first developed a macroscopic probabilistic model of collective foraging for
a simplified case in [2], where each robot is given the same resting time and searching time thresholds without
adaptation. In this paper we will extend the model for the swarm with the adaptation abilities introduced in [1].

2 Collective Foraging with Adaptation

Figure 1: Screen shot of collective foraging in the Player/Stage simulator.
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Figure 2: The threshold-based robot controller for collective foraging.

Figure 1 illustrates the collective foraging experiment ina sensor-based simulator – Player/Stage [25]. There are
a number of food-items randomly scattered in the arena and asfood is collected more willgrow to replenish the



supply. Each food-item collected will deliver an amount of energy to the swarm but the activity of foraging will
consume a certain amount of energy at the same time. A threshold-based controller is implemented to complete
the task, as shown in Figure 2. In order to improve the energy efficiency, the individuals in the swarm use three
adaptation cues – internal cues (successful or unsuccessful food retrieval), environmental cues (collision with other
robots while searching) and social cues (teammate food retrieval success or failure) – to dynamically regulate two
internal thresholds, resting time and searching time. Leti (= 1,2, . . . ,N) indicate the ID for each robot andT i

s and
T i

r be the searching time and resting time threshold respectively, then according to [1],

T i
s(k+1) = T i

s(k)−α1C
i(k)+ β1Pi

s(k)− γ1Pi
f (k) (1)

T i
r (k+1) = T i

r (k)+ α2C
i(k)−β2Pi

s(k)+ γ2Pi
f (k)−ηRi(k) (2)

whereCi(k) counts the collisions while searching, andα1 andα2 are adjustment factors to moderate the contribu-
tion of the environmental cues.Pi

s(k) andPi
f (k) represent the social cues from teammates through the stigmergy-

like mechanism. The contribution from social cues is moderated by altering the adjustment factorsβ1, β2, γ1 and
γ2. Ri(k) then donates the internal cues andη is the corresponding adjustment factor.Ci(k), Ri(k), Pi

s(k) andPi
f (k)

in Equation (1) (2) are defined as follows.

Ci(k) =

{
1 staterandomwalk→ stateavoidance
0 otherwise

(3)

Ri(k) =






1 statedeposit→ stateresting
−1 statehoming→ stateresting
0 otherwise

(4)

Pi
s(k) =






0 not inresting state
SPs(k) statedeposit→ stateresting

∑N
i=1{R

i(k)|Ri(k) > 0} in resting state

(5)

Pi
f (k) =






0 not inresting state
SPf (k) statehoming→ stateresting

∑N
i=1{|R

i(k)||Ri(k) < 0} in resting state

(6)

whereSPs andSPf represent the gradual decay rather than instantly disappearing social cues (successful and failure
retrieval), which are defined as follows:

SPs(k+1) = SPs(k)− δs+
N

∑
i=1

(Ri(k)|Ri(k) > 0) (7)

SPf (k+1) = SPf (k)− δ f +
N

∑
i=1

(|Ri(k)||Ri(k) < 0) (8)

Attenuation factorsδs andδ f are introduced here to simulate somewhat akin to ants leaving a decaying pheromone
trail while foraging. As the social cues are only accessiblefor the robots in the nest, two categories of robots will
be affected. One group are those already resting in the nest,the other are those ready to move to staterestingfrom
stateshomingor deposit; the former can ‘monitor’ the change of social cues and then adjust its time threshold
parameters, while the latter will benefit from the graduallydecaying cues deployed by teammates. These two
situations for updatingPi

s(k) andPi
f (k) are shown in Equation (5) (6).

3 Macroscopic Probabilistic Model for a Heterogeneous Swarm
3.1 Probabilistic Finite State Machine (PFSM)

The collective foraging task can be described as a PFSM as shown in Figure 3. Each block in the PFSM represents
the corresponding state and the average number of robots in that state, which is marked withNX . For simplicity, we
make some changes from the finite state machine (FSM) shown inFigure 2: the original 9 states are merged into 5
states: statesmovetohomeandDepositin the FSM correspond to stateDeposit(D) in PFSM, statesleavinghome,
randomwalkandscanarenain the FSM are merged into stateSearching(S), statesmovetofoodandgrabfoodin
the FSM are now replaced with stateGrabbing(G), statesResting(R) andHoming(H) in the FSM remain the
same. The transitions from one state to another are normallybased on certain probabilities shown in the edge of
the transition lines. For example,γ f indicates the probability that the robots in stateSearchingwill find food and
thus transfer to stateGrabbing. The transitions between two states without probability label shown in the edge
are delayed for certain period but with probability 100%. For instance, the transitions from stateAvoidanceSto
Searchingwill be delayed forTA steps after the robots move to stateAvoidanceS. The dynamics of the system can



then be captured using a group of difference equations (DE),with each representing the number of robots and its
changes in corresponding state. [2] gives more detailed derivations for the DEs and transition probability from first
principles.
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Figure 3: The probabilistic finite state machine for collective foraging. Transitions marked as bolder lines are affected
by the variation of time threshold parameters during adaptation.

3.2 The Challenge and its Solution for Modelling Adaptation

Unlike the swarm modelled in [2], here the time threshold parameters (Ts andTr ) for the robots with adaptation
abilities will not only vary from one robot to another, but also be different from one time step to the next. However,
the basic behaviours for the robots are essentially the sameexcept for some transitions among states which rely
on these two time parameters. More specifically, as shown in Figure 3, the transition from stateSearchingor
Grabbing(includingavoidance) to stateHoming, and the transition from stateRestingto stateSearchingdepend
on the value of these two time threshold parameters. The changes ofTs andTr result in the different actions the
robots will take. Since the macroscopic model itself doesn’t take the difference among individual robots into
account, all the parameters and variables used in the model are presented from statistical aspects, for instance, the
average number of robots in each state. The challenge is how to introduce these differences into our previously
developed macroscopic model. To solve these problems, in conjunction with the sub-PFSM presented in [2], we
introduce the concept of private resting time and searchingtime thresholds, and their counterparts – public resting
time and searching time thresholds, into our model. The private time thresholds play the role of deciding when
the transition from one state to another is triggered, whilethe public time thresholds are used to accumulate the
contributions from all the adaptation cues which have been applied to the swarm. They affect each other in a
bi-directional manner. For example, as shown in Figure 4, the private resting time thresholds in the model are
‘inherited’ from the public resting timêTr when they are formed (with the robots moving to stateResting) and
then ‘merged’ into the public resting timêTr after that subset of robots move to stateSearching. By defining the
‘inherit’, ‘adaptation’ and ‘merge’ operations accordingto the adaptation algorithms described above, we can then
extend the macroscopic model for a swarm of foraging robots with adaptation abilities and study the effect of these
adjustment parameters on the performance of the system. In the following sections, we will deal with the two time
thresholds separately.
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Figure 4: Relationship between private and public resting time threshold parameters. Here ‘inherited’ means ‘making a
copy’, while ‘merge’ refers to the update of thêTr based on some rules



3.3 Modelling Adaptation on Resting Time Threshold

The adjustment for each robot falls into three categories corresponding to the contribution from internal cues, social
cues and environmental cues respectively. In the model, internal cues and social cues will be applied to adjust the
private resting time threshold first, then the changes of private resting time thresholds can be combined together
and affect the public resting time thresholdT̂r afterwards. Meanwhile environmental cues have a direct impact on
the adjustment of̂Tr .

3.3.1 Internal Cues & Social Cues

The effect of internal cues and social cues on resting time thresholds can be categorised into two stages: firstly, the
internal cues and social cues are applied when the transitions to stateRestingoccur; then, the social cues continue
to play roles on adjustment when the robots are in stateResting. In order to model the difference among the
individual robots, we need to deal with the ‘failed’ and ‘successful’ robots separately. In our model, each type of

robot is endowed with a private resting time thresholdT(h)
r or T(d)

r
1, which is ‘inherited’ from the public resting

time threshold̂Tr . Similar to the sub-PFSMs presented in [2], eachT(h)
r andT(d)

r have their own lifetimes. Here

notationT(h)
r (k; i) andT(d)

r (k; i) are introduced to represent the values of private resting time threshold, wherei
indicates the time step that the corresponding private resting time threshold is formed andk denotes the current

time step. TakingT(d)
r (k; i) as an example, mathematical modelling of private time thresholds can be summarised

to three steps:

1) initialising when they are formed (k = i);

2) adapting during their lifetime (i < k < i +T(d)
r (k; i));

3) merging to public time threshold at the end of their lifetime (k = i +T(d)
r (k; i)).

Initialisation

As soon as the robots move into stateResting, a private resting time threshold is formed for these robotswith
the initial value of public resting time threshold. The internal cues will be applied to adjust the private resting
time threshold first, and then the social cues applied according to the gradually evaporating virtual pheromones
deployed by previous returning robots. Following Equation(2), we have

T(h)
r (k+1;k+1) =T̂r(k)−β2SPs(k)+ γ2SPf (k)+ η (9)

T(d)
r (k+1;k+1) =T̂r(k)−β2SPs(k)+ γ2SPf (k)−η (10)

The first term in the right-hand side (RHS) of Equation (9) andEquation (10) represents the ‘inherit’ operation
from the public resting time threshold. The second and thirdterms in the RHS count the contribution of social
cues. The last term then depicts the adjustment of internal cues.

As for SPf andSPs, the increased value at each time step equals the number of robots returning home (denoted
with ∆H(k−Th) and∆D(k−Td) respectively). Meanwhile, they will ‘evaporate’ with timeelapsing. Thus we have

SPf (k+1) =SPf (k)− δ f + ∆H(k−Th) (11)

SPs(k+1) =SPs(k)− δs+ ∆D(k−Td) (12)

Adaptation

When the robots are already in stateResting, i.e. i < k < i +T(d)
r (k; i), they adjust their time thresholds based on

the change of social cues, which is equivalent to the increased number of returning robots. The adaptation can be
described as

T(h)
r (k+1;i) =T(h)

r (k; i)−β2∗∆D(k−Td)+ γ2∗∆H(k−Th) (13)

T(d)
r (k+1;i) =T(d)

r (k; i)−β2∗∆D(k−Td)+ γ2∗∆H(k−Th) (14)

wherei < k < i +T(d)
r (k; i).

Merging

Once the resting robots move into stateSearching, the corresponding private resting time thresholds will update the
public resting time threshold. The updating of public resting time threshold is referred to as a merging operation.
At each time step, there may be more than one group of resting robots running out of their resting time. In order to
calculate the contribution that the private resting time thresholds make on the public resting time thresholdT̂r , we
need to know:

1The superscripts(h) and(d) indicate that which state the robots are transferred from, here (h) for stateHomingwhile (d) for stateDeposit.
Similarly, for the private searching time threshold introduced later, (s) represents stateSearching.



• the number of robots which leave the stateRestingat the current time step;

• the impact of social cues and internal cues on the private resting time thresholdsT(h)
r andT(d)

r during their
lifetime.

Since there is only one copy of private resting time threshold T(h)
r formed each time step, the number of resting

robots transferring from stateHomingand their corresponding private resting time thresholdsT(h)
r can be identified

using the date of birth (DOB). For example, the number of robots transferring from stateHomingat time stepi

equals∆H(i−Th), and their private resting time threshold isT(h)
r (k; i). To calculate the number of resting robots

running out of resting time at time stepk, we introduce two help-variables,RH(k) andRD(k), to represent the
collection of DOBs of private resting time thresholds whichare ready to ‘merge’ intôTr at time stepk. then

RH(k) = {i|k− i = ⌊T(h)
r (k; i)⌋} (15)

RD(k) = {i|k− i = ⌊T(d)
r (k; i)⌋} (16)

Let ∆S←R(h)(k) and∆S←R(d)(k) be the number of robots transferring from stateResting(from stateHomingand
Depositrespectively) toSearchingat time stepk, then we have

∆S←R(h)(k+1) = ∑
i∈RH (k)

∆H(i−Th) (17)

∆S←R(d)(k+1) = ∑
i∈RD(k)

∆D(i−Td) (18)

Thus, the total number of robots moving from stateRestingto Searchingcan be expressed as

∆S(k+1) =∆S←R(h)(k+1)+ ∆S←R(d)(k+1) (19)

The contribution of each fraction of reactive (from stateRestingto Searching) robots to the public resting time
threshold can be expressed as the product of the quantity of the robots and the change of the corresponding private
resting time threshold. For instance, assume that a group ofresting robots which transferred from stateHoming
become reactive at time stepk, if the corresponding private resting threshold has a DOBi, then the contribution
from these robots is given by:

∆H(i−Th)× (T(h)
r (k; i)− T̂r(i−1))

whereT̂r(i− 1) depicts the value of public resting time threshold ‘inherited’ by theT(h)
r when it is formed. Let

∆
T

(h)
r

and∆
T

(d)
r

be the total contribution provided by the resting robots transferred from stateHomingandDeposit

respectively at time stepk, then

∆
T(h)

r
(k) = ∑

i∈RH (k)

∆H(i−Th)× (T(h)
r (k; i)− T̂r(i−1)) (20)

∆
T

(d)
r

(k) = ∑
i∈RD(k)

∆D(i−Td)× (T(d)
r (k; i)− T̂r(i−1)) (21)

The updating of the public resting time threshold for the swarm is then based on the following equation

T̂r(k+1) = T̂r(k)+
∆

T
(h)
r

(k)+ ∆
T

(d)
r

(k)

N0
(22)

whereN0 is the total number of robots in the swarm.

3.3.2 Environmental Cues

The environmental cues play roles in adjusting the resting time threshold for the robots working in the arena
(non-resting). Although the change of the resting time threshold in this case will not affect the behaviour of the
robots until they return home, the public resting time threshold T̂r is changed in the following manner with the
environmental cues.

T̂r(k+1) = T̂r(k)+
α2 ∗∆A(k+1)

N0
(23)

where∆A(k+1) depicts the number of robots moving into stateAvoidanceSat time stepk.



3.3.3 Combining all the Cues

Combining the effect of all the cues, the swarm will update its public resting threshold̂Tr in this manner

T̂r(k+1) = T̂r(k)+
∆

T
(h)
r

+ ∆
T

(d)
r

+ α2∗∆A(k+1)

N0
(24)

3.4 Modelling Adaptation on Searching Time Threshold

Similarly, three private searching time thresholds,T(h)
s , T(d)

s andT(s)
s , and one public searching time thresholdT̂s

are introduced to model the adaptation of searching time threshold. Figure 5 demonstrates the relationship between
the private and public searching time thresholds. Generally, the private searching time thresholds have their own
life cycles during the adapting process. They ‘inherit’ theup-to-dateT̂s when they are formed, and will update
(‘merge’ into)T̂s at the end of their lifetime. However, the situation here is more complex than for the resting time
threshold, as the private searching time thresholds occur in different states. Consequently, two pairs of ‘inherit’ and
‘merge’ operations are applied to regulate the exchange of private and public searching time thresholds. Among

these three private searching time thresholds,T(h)
s andT(d)

s are used to track the contribution of social cues when

the robots are in stateResting, while T(s)
s is used to track the contribution of environmental cues. Moreover, as

shown in Figure 5, the transition from stateSearchingto Homing is now decided byT(s)
s . Although T(h)

s and

T(d)
s do not change the behaviour of searching robots directly, they have large contributions in adjusting the public

searching time threshold̂Ts, which in return affect the behaviour of searching robots. The update of̂Ts from these
private searching time thresholds can be categorised as twostages according to the social cues and environmental
cues.
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3.4.1 Social Cues

Again, letT(h)
s (k; i) andT(d)

s (k; i) be the private searching time threshold for the robots moving from stateHoming
andDepositrespectively, wherei denotes the DOB (i.e. the time step that the robots move into stateResting) and

k is the current time step, clearlyk≥ i, then the mathematical description forT(h)
s andT(d)

s can be obtained using
the same approach as presented in previous sections.

Initialisation

Initialisation is performed when the robots move into stateResting, i.e. (k = i). An ‘inherit’ operation is executed
to make a copy of the current public searching time threshold, and then, based on the adaption rules, the private
searching time threshold will be updated according to the pheromones left by the previous returning (to nest)



robots. Thus

T(h)
s (k+1;k+1) =T̂s(k)+ β1SPs(k)− γ1SPf (k) (25)

T(d)
s (k+1;k+1) =T̂s(k)+ β1SPs(k)− γ1SPf (k) (26)

Adaptation

After the robots transfer to stateResting, the social cues continue to adjust the private searching time thresholds,

until the robots move to stateSearching. The private searching time thresholdT(h)
s andT(d)

s will be updated using
the following rules

T(h)
s (k+1;i) =T(h)

s (k; i)+ β1∗∆D(k−Td)− γ1∗∆H(k−Th) (27)

T(d)
s (k+1;i) =T(d)

s (k; i)+ β1∗∆D(k−Td)− γ1∗∆H(k−Th) (28)

Although Equation (25) - Equation (28) show that the update rules forT(h)
s andT(d)

s are exactly the same, the
life cycles for these two private searching time thresholdsare different, as decided by the private resting time

parametersT(h)
r andT(d)

r .

Merging

The merging operation occurs when the resting robots run outof their resting time, decided by the private rest-

ing time thresholdsT(h)
r andT(d)

r . Let ∆
T

(h)
s

(k) and∆
T

(d)
s

(k) represent the contribution provided by the robots

transferred from stateHomingandDepositrespectively, then

∆
T(h)

s
(k) = ∑

i∈RH (k)

∆H(i−Th)× (T(h)
s (k; i)− T̂s(i−1)) (29)

∆
T

(d)
s

(k) = ∑
i∈RD(k)

∆D(i−Td)× (T(d)
s (k; i)− T̂s(i−1)) (30)

whereRH(k) andRD(k) are collections of DOBs for the private resting time threshold which come to the end of
their lifecycles, which are defined in Equation (15) and Equation (16).∆H(i−Th) and∆D(i−Td) depict the number
of resting robots which are ready to transfer to stateSearchingat time stepk.

Finally, the contribution of social cues to the public searching time threshold̂Ts can be expressed as

T̂s(k+1) = T̂s(k)+
∆

T
(h)
s

(k)+ ∆
T

(d)
s

(k)

N0
(31)

3.4.2 Environmental Cues

Once the robots move to stateSearching, they are subject to the constraint of searching time threshold unless the
robots grab food-items successfully. The environmental cues affect the searching time threshold when the robots
are actively engaged in the searching task. To represent theunique and variable searching time threshold, a new
private searching time threshold is introduced for the sub-PFSM engaged in “searching-grabbing” task, denoted

T(s)
s (k; i), wherei corresponds to the DOB of the private searching time threshold (and the sub-PFSM), andk is

the current time step for the sub-PFSM. Similarly, we can define the ‘initialisation’, ‘adaptation’ and ‘merging’

operations forT(s)
s .

Initialisation

Generally, whenT(s)
s is formed, it should ‘inherit’ the up-to-date public searching time threshold. However, as

shown in Figure 5,T(h)
s andT(d)

s are ‘merged’ tôTs at the same time. Thus the initialising ofT(s)
s is the combination

of both ‘merge’ and ‘inherit’ operations, i.e.

T(s)
s (k+1;k+1) =T̂s(k)+

∆
T

(h)
s

(k)+ ∆
T

(d)
s

(k)

N0
(32)

Clearly, the size of sub-swarm in the sub-PFSM equals the number of robots moving from stateRestingcurrently,
which can be expressed as

N′S(k+1;k+1) =∆S←Rh(k)+ ∆S←R(d)(k) (33)



where∆S←Rh(k) and∆S←R(d)(k) are defined in Equation (17) and Equation (18).

Adaptation

Wheni < k < i +T(s)
s (k; i), the change ofT(s)

s can be described as follows

T(s)
s (k+1;i) = T(s)

s (k; i)+
α1 ∗∆′A(k+1)

N′S(i; i)
(34)

where∆′A(k+1) depicts the number of robots transferring to stateavoidancefrom stateSearchingin the sub-PFSM,
N′S(i; i) is the initial number of robots in the sub-swarm, as defined inEquation (33).

Merging

Similarly, in order to know the contribution from the environmental cues during the lifecycles of the sub-PFSM,
let S(k) denote the collection of all the DOBs for the sub-PFSMs whichcome to the end of their life cycles at time
stepk, thenS(k) can be expressed as

S(k) = {i|k− i = ⌊T(s)
s (k; i)⌋} (35)

Whenever the robots in the sub-PFSM run out of their searching time, their private searching time thresholdT(s)
s

will be ‘merged’ to the public searching time threshold in this way

T̂s(k+1) = T̂s(k)+
∑i∈S(k)

[
T(s)

s (k; i)−T(s)
s (i; i)

]
∗N′S(i; i)

N0
(36)

3.4.3 Combining all the Cues

As the social and environmental cues may occur simultaneously in the swarm, we need to merge Equation (31) and
(36) to model the effect of the social cues and environmentalcues on the public searching time threshold. Thus we
have

T̂s(k+1) = T̂s(k)+
∑i∈S(k)

[
T(s)

s (k; i)−T(s)
s (i; i)

]
∗N′S(i; i)+ ∆

T
(h)
s

(k)+ ∆
T

(d)
s

(k)

N0
(37)

3.5 Integration with Previously Developed Model

To obtain a complete model of adaptive collective foraging,we need to integrate this work into our previously
developed model in [2]. This can be done by replacing some equations with the new working as follows:

NS(k+1) =NS(k)+ ∆S(k+1)+ γl(k)NG(k)+
[
∆A(k−Ta)−ΩA(k−Ta)

]

+
[
∆Ag(k−Ta)−ΩAg(k−Ta)

]
−

[
γr(k)+ γ f M(k)

]
NS(k)−ΓS(k+1)

(38)

NR(k+1) =NR(k)+ ∆D(k−Td)+ ∆H(k−Th)−∆S(k+1) (39)

ΓS(k) = ∑
i∈S(k)

N′S(k; i) ΓG(k) = ∑
i∈S(k)

N′G(k; i) (40)

ΓA(k) = ∑
i∈S(k)

N′A(k; i) ΓAg(k) = ∑
i∈S(k)

N′Ag
(k; i) (41)

ΩG(k−Tg) =
k

∑
k′=k−Tg

∑
i∈S(k′)

∆′G(k−Tg; i) (42)

ΩA(k−Ta) =
k

∑
k′=k−Ta

∑
i∈S(k′)

∆′A(k−Ta; i) (43)

ΩAg(k−Ta) =
k

∑
k′=k−Ta

∑
i∈S(k′)

∆′Ag
(k−Ta; i) (44)



4 Results and Conclusion
The extended macroscopic model has been validated using thesensor-based simulation tools Player/Stage (a screen
shot is shown in Figure 1). The basic parameters for the simulation environment, for instance the size of arena, the
speed of the robots, etc, are exactly the same as were used in [2]. The behaviour sets of the robots in the simulation
are also the same, with an exception that each robot is now endowed with the adaptation ability. Using the same
set of adjustment factors presented in [1], we have also tested the model with different food growth rates (i.e.
the probability that one food itemgrowsin the arena, each second). Figure 6 illustrates the resultsfrom both the
simulation and macroscopic probabilistic model for a swarmof 8 robots, where the growth rate varies from 0.03 to
0.05. The error bars represent the standard deviations of data recorded from 10 experimental runs. We see clearly
that the data from simulation fits well to the curves obtainedfrom the macroscopic model, though a relatively large
gap develops when the growth rate is set to 0.03. Figure 7 thenplots the instantaneous number of robots in selected
states from the simulation under different environmental conditions. Not surprisingly, the predicted number of
robots in each state from the macroscopic model reflects the corresponding average number of robots from the
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Figure 6: Comparison of the instantaneous energy of the swarm with adaptation mechanism between the extended
macroscopic probabilistic model and the simulation.



simulation. As we already discussed in [1] and [2], for a fixedpopulation swarm under different environmental
conditions – i.e. food growth rate, there is a different optimal swarm density (ratio of foragers to search area)
which results in the optimal energy efficiency for the system. Although the swarm population and the adjustment
factors remain the same for the above experiments, the average number of robots in stateResting(referred to as
resters) and non-Resting(as foragers) vary with the food growth rate changing. This indicates that the swarm with
adaption is able to adjust the ratio of foragers and resters autonomously in response to environmental changes. In
other words, the swarm density (in foragers) in the arena varies with food growth rate varying.
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Figure 7: Comparison of number of robots in selected states for the swarm with adaptation mechanism between the
extended macroscopic probabilistic model and the simulation, where the horizontal dashed lines are from the model
while the coloured curves from simulation.

Clearly, by setting all the adjustment factors to zero, the extended model should reduce to be the simplified case
we developed in [2]. To examine this, let us consider the situation where the growth rate is 0.045 for a swarm of
homogeneous robots (without adaptation), we can derive therelationship between the resting time threshold and
the final net energy of the swarm by varying the resting time thresholdTr from 0 to 1000 time steps (corresponding
to 0 to 200 seconds at 5 Hz updating rate). Figure 8 compares the results obtained from both the simulation and the
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Figure 8: The total net energy of the swarm after 20000 seconds for a swarm of 8 robots with different resting time
threshold parameter.

macroscopic model. Again, the final net energies of the swarmpredicted by the model match with those measured
from simulation very well. We also see that a critical value of Tr exists, corresponding to the maximum net energy
of the swarm. As for a fixed population of robot swarm, it is understood that the bigger the resting time threshold
Tr , the larger the proportion of robots stay in stateRestingon average, as a consequence the swarm density (in
foragers) in the arena is smaller.

Due to the huge solution space of the adjustment factors, it is not possible to test the model by varying each
parameter individually and repeating the experiment againand again. Although no further comparisons are made at
this stage, as the adjustment factors are chosen intuitively, we have good reason to believe that the model developed
in this paper truly captures the dynamics of the swarm with adaptation. Clearly the swarm with intuitively selected
adjustment factors does not reach its optimal performance if we compare the results presented in Figure 6 and
Figure 8. However, in conjunction with an appropriate searching technique, the macroscopic model can be used to
find an optimal set of adjustment factors for the adaptation algorithm and hence help the swarm achieve the best
performance; we have implemented this approach using a genetic algorithm in [26]. To the best of our knowledge,
at the time of writing, there are very few macroscopic modelsin the field of swarm robotics that can describe the
collective behaviour of a group of heterogeneous robots. Although the model presented in this paper is specific to
the adaptive foraging task, we believe the methodology can be extended to other systems in which the heterogeneity
of the system is coupled with its time parameters.
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