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Abstract—This paper presents a new approach which allows 
for the computation and optimization of feasible 3D flight 
trajectories within real time planning deadlines, for 
Unmanned Aerial Systems (UAS) operating in 
environments with obstacles present.  Sets of candidate 
flight trajectories have been generated through the 
application of maneuver automaton theory, where smooth 
trajectories are formed via the concatenation of predefined 
trim and maneuver primitives; generated using aircraft 
dynamic models.  During typical UAS operations, multiple 
objectives may exist, therefore the use of multi-objective 
optimization can potentially allow for convergence to a 
solution which better reflects overall mission requirements.  
Multiple objective optimization of trajectories has been 
implemented through weighted sum aggregation.  However, 
real-time planning constraints may be imposed on the multi-
objective optimization process due to the existence of 
obstacles in the immediate path.  Thus, a novel 
Computationally Adaptive Trajectory Decision (CATD) 
optimization system has been developed and implemented 
in simulation to dynamically manage, calculate and 
schedule system execution parameters to ensure that the 
trajectory solution search can generate a feasible solution, if 
one exists, within a given length of time. The inclusion of 
the CATD potentially increases overall mission efficiency 
and may allow for the implementation of the system on 
different UAS platforms with varying onboard 
computational capabilities.  This approach has been 
demonstrated in this paper through simulation using a fixed 
wing UAS operating in low altitude environments with 
obstacles present.12 
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1. INTRODUCTION 

Unmanned Aerial Systems (UAS) have been previously 
employed in a diverse range of military applications 
including surveillance and strike deployment [1].  With 
respect to civilian applications, geographically sparse 
countries, such as Australia have great potential for 
utilization of UAS in asset management, search and rescue, 
remote sensing operations and atmospheric observation [2]. 
 In order to realize this potential, seamless operation of 
UAS within the National Airspace System (NAS) is 
required [3, 4]; this is a difficult problem. 

Operation of UAS in the NAS creates a new set of 
challenges that are not applicable to many military 
applications.  From a regulatory perspective, UAS need to: 
(i) demonstrate an Equivalent Level Of Safety (ELOS) to 
that of a human piloted aircraft, (ii) operate in compliance 
with existing aviation regulations and (iii) appear 
transparent to other airspace users [5].  

The majority of UAS operations still require human 
operators to perform mission management and piloting tasks 
through real time communications links with the unmanned 
platform.  This results in high operator workload and places 
greater reliance on the communications link.  The inclusion 
of automated planning systems onboard can potentially 
improve mission efficiency and allow for continued 
operations in the presence of communications failures.  In 
particular, the automation of global and local path planning 
components assist in ensuring that the flight occurs in 
accordance with the rules of the air; a key ELOS 
requirement. 

Local path planning provides a navigation strategy for safe 
traversal through cluttered environments.  The desired track, 
represented as a collision free flight trajectory, ensures that 
the platform remains within platform performance bounds.  
Automating the local path planning process is non-trivial 
and some challenges include: incorporation of complex 
platform dynamics, trajectory optimization to meet mission 
requirements, real-time constraints on computation time 
imposed by obstacles in the flight path, and the guarantee 
that generated trajectories are collision free. 
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During operations, civilian UAS may have multiple 
objectives to meet.  The use of multi-objective optimization 
allows for the generation of a solution which better reflects 
the overall mission requirements.  Additionally, if 
operations are undertaken at lower altitudes, the 
environment may present several challenges not 
encountered during high altitude flight.  Terrain and urban 
structures become hazards to the safety of the UAS.  The 
proximity of obstacles to the UAS places real-time 
constraints on the re/planning computation time available. 

This paper presents a new framework for the 
Computationally Adaptive Multi-Objective Flight 
Management of UAS in civilian environments.  An outline 
of UAS trajectory generation approaches and related work 
is given in section 2.  Section 3 presents an overview of the 
trajectory optimization process, and section 4 outlines the 
real-time re/planning requirements of UAS operating in 
cluttered requirements.  Simulation results presented in 
section 5 demonstrate how the addition of the CATD can 
allow for the generation of feasible trajectories within given 
real-time deadlines.  Finally, conclusions are presented in 
section 6. 

2. FEASIBLE TRAJECTORY REPRESENTATION  

A local path planning process is generally described as a 
system which generates a smooth trajectory representing the 
aircraft track through a set of mission level waypoints; 
typically generated by a global planner.  The trajectory 
generated is required to be feasible and collision free to 
ensure that UAS flight track is safe and within platform 
performance bounds. 

UAS Platform Constraints 

The inclusion of vehicle dynamics during the trajectory 
planning process, allows for the generation of flight 
trajectories which take platform constraints into account.  
Vehicle dynamics are used to calculate the performance 
envelope which the aircraft must remain within to ensure 
that platform does not operate outside performance bounds. 
 In the presence of a Stability Augmentation System (SAS) 
onboard, trajectories which do not consider platform 
performance bounds may lead to poor tracking. 

Flight Trajectory Representation 

Flight trajectories are generally represented through the use 
of either spline based or geometric approximations.  
Polynomial or spline based techniques [6, 7] place control 
points in a particular order to generate the desired trajectory. 
 Geometric based techniques require the concatenation of 
aircraft flight maneuvers to form a smooth flight track [8-
11].  However, these flight maneuvers are usually limited to 
cruise and constant radius turns and roll/yaw coupling 
effects are not considered; an essential flight characteristic 
of fixed wing platforms.   

During the execution of a constant radius turn for a fixed 
wing aircraft, the consideration of roll/yaw coupling allows 
for the inclusion of platform roll rate as a component of the 
overall aircraft performance envelope.  However, this 
requires the additional tracking of the platform attitude (roll 
component) during the trajectory planning process.  One 
candidate method which allows for the inclusion of roll rate 
performance bounds is maneuver automaton theory. 

Maneuver Automaton Theory 

Maneuver Automaton (MA) theory, proposed by Frazzoli et 
al. [12, 13] can be used in the generation of feasible flight 
trajectories through the sequential concatenation of 
predefined motion primitives (Figure 1).  MA employs two 
types of primitives: trims and maneuvers.  Trim primitives 
represent the vehicle during a state of equilibrium whilst 
maneuver primitives characterize the vehicle operating 
outside a state of equilibrium.  Primitives are generated 
using a dynamic model of the vehicle, thus platform 
stability can be implicitly guaranteed through generation of 
primitives which ensure that the vehicle remains within 
performance bounds. 

Trajectory Representation Implementation 

For this paper, MA theory is used to describe a time-
invariant non-linear, dynamical system S , described as a set 
of ordinary differential equations (ODE) as: 

))(),(()(:)( tutxftx
dt

d
tx ==                 (1) 

Where u  is the control input (execution time, maneuver 

type) = },{ primitiveτ  and x  is the state vector. 

Trim Primitive Representation 

Trim Primitives represent the UAS platform operating in a 
state of equilibrium.  Using MA theory, trim primitives can 

be generated by placing the body fixed roll )(φ  and pitch 

)(θ rates to zero and maintaining a constant velocity )(V , 

roll )(φ  and pitch )(θ angle for the duration )( qτ  of the 

primitive execution.   

Trim primitives were generated using a 6 Degree of 
Freedom (DOF) flight dynamics model  based on the 
Aerosonde UAS platform data set available in the Aerosim 
Blockset [14].  Six predefined trim primitives have been 
implemented in simulation including: cruise, coordinated 
turn, climb, descent, helical climb and helical descent.   

The initial platform state ii xtx =)(   reaches a final state 

ff xtx =)(  due to the execution of a given trim 

primitive )(q ; this can be represented as: 
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Where },,{ θφV  are constants and }0,0{},{ =θφ   

It is of importance to note, that for a platform to enter a state 
of equilibrium (execution of a trim primitive), the initial 
platform attitude must equal the attitude requirements of the 

trim primitive to be executed; qi },{},{ θφθφ = .  If the 

initial platform attitude does not equal the attitude required 
to execute the given trim primitive, a maneuver primitive 
must be inserted to ensure that body fixed attitude rate 
constraints are included within performance bounds. 

Maneuver Primitive Representation 

During the execution of a maneuver primitive, the UAS 
does not have to remain in a state of equilibrium.  For a 
fixed wing platform, the body fixed attitude rate constraint 

becomes },{},{ maxmax θφθφ  = .  In this paper, maneuver 

primitives )( p  are employed to connect two trim 

primitives, if required, in the formation of feasible 
trajectories.  This allows for the consideration of attitude 
rates as an additional platform constraint during periods 
where the UAS is not in a state of equilibrium, 

where qi },{},{ θφθφ ≠ . 

If qi },{},{ θφθφ ≠ , the UAS platform dynamic model is 

propagated until the platform reaches the desired state 

configuration qi },{},{ θφθφ =  making the execution of 

the next trim primitive feasible. 

While qi },{},{ θφθφ =  

ttt
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Where },{},{ maxmax θφθφ  =  

 
Figure 1 – Visual Representation of Trim and Maneuver 

Primitive Concatenation (Coordinated Turn) 

Generating Collision Free Trajectories 

Safe UAS operation in cluttered environments requires the 
generation of collision free trajectories.  This has been 
accomplished through the inclusion of collision detection 
algorithms.  The transition maneuver must be deemed 
collision free before collision detection along the maneuver 
primitive takes place.  Due to the sequential nature of 
maneuver concatenation, a collision free candidate 
trajectory does not guarantee vehicle safety during the next 
maneuver.  Safe state maneuvers [15] are executed at each 
sampled point along the candidate flight mode and then 
tested for collisions.  This ensures that the UAS can enter a 
safe state if no collision free trajectory is determined during 
the optimization of the following stage (Figure 2). 

 
Figure 2 – Safe States Generated for a Candidate 

Coordinated Turn Trim Primitive 

3. TRAJECTORY OPTIMIZATION 

Dynamic programming (DP) [16] has been previously 
employed in related research [17, 18] for the optimization of 
feasible trajectories which have been generated using MA 
theory.  DP is a sequential optimization process where each 
trim primitive selected for execution can be considered as a 
stage.  Thus the final trajectory is formed through sequential 
concatenation of a set of selected trim primitives (and 
corresponding maneuver primitives, if required) for all 
stages used in the computation.   

DP is a very computationally expensive algorithm for the 
motion planning application.  In comparison to the 
application of DP to trajectory planning with respect to a 
generic graph search implementation, the current UAS 
platform position can be treated as the current node.  Each 
possible state the platform can reach through the execution 
of currently stored trim primitives must be treated as 
neighboring nodes.  Expanding each neighboring node 
would cause the algorithm to grow exponentially in 
computational complexity for each additional stage 
considered in the overall optimization process.  Due to the 
inclusion of maneuver primitives, it is difficult to calculate 
how many stages are required before a solution is found (if 
one exists).   
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In a typical UAS scenario, constant trajectory replanning 
maybe required if operations take place in partially known 
environments (e.g. active onboard sensing is predominantly 
used for navigation).  To decrease the computational 
complexity and resulting time to plan during DP 
optimization over multiple stages, hybrid architectures 
involving DP with Rapidly Exploring Random Trees (RRT) 
[12] and DP with Model Predictive Control (MPC) [19] 
have been implemented. 

The research presented in this paper uses the DP search 
algorithm but limits the search to single stage optimization.  
This converts the DP algorithm to a greedy search 
implementation, which essentially chooses the most optimal 
trim primitive, trim execution time and maneuver execution 
time required to execute the optimal trim primitive for a 
single stage.  The UAS position after execution of the 
optimal trim primitive is taken as the next node for 
expansion, and continues until the goal is reached is reached 
(Figure 3).  

 

 

 
Figure 3 - Greedy Search Algorithm Implementation 

 
Executing a DP search algorithm iteratively over each stage 
significantly decreases search time.  However, not 
considering all stages during the optimization process 
means that global solution optimality and completeness 
cannot be guaranteed.  Additionally, this may lead to 
scenarios where the platform becomes trapped in local 
minima.  UAS motion planning in 3D space has the 
advantage for allowing the execution of certain motion 
primitives (e.g. helical ascent) to escape local minima and 
continue operations [20].  In addition, during operations in 
dynamic and partially known environments, a greedy 
motion planning implementation can suffice as it may not 
be possible to find a global solution (e.g. due to limited 
environment representation).  Furthermore searching for a 
globally optimal solution may be infeasible as there can be 
real-time constraints placed on the finite replanning time 
available.   

Multi-Objective Optimization Process 

During operations, civilian UAS may have multiple 
objectives to meet including platform safety; successful 
completion of the mission; minimizing fuel, time, and/or 
distance; or minimizing deviation from the current path. The 
use of multi-objective optimization allows for the 
generation of a solution which may better reflect the overall 
requirements of the mission.  For example, by placing 
greater emphasis on safety, operations in populated 
environments may benefit from the inclusion of additional 
objectives which minimize platform control loss. 

During each stage, the utility value is calculated using a 
weighted sum aggregation for all feasible trim primitives.  
The objectives included in the optimization process are, 
minimization of distance to goal and minimization of 
vehicle heading with respect to goal.  Two additional 
objectives have been included to generate trajectories which 
are less likely to lead to loss of platform control. These 
objectives include: minimizing wing loading; and 
minimizing the transition length required to execute next 
flight mode.  The optimal solution for each stage is the trim 
primitive with the highest aggregated weighted sum value. 


=

=
n

i
iiT w

1

μμ                               (4) 

Where Tμ is the total utility value, iw is the objective 

weighting and iμ is the objective utility value.   

The following section provides an overview of real time 
considerations during the optimization process. 

4. REAL TIME OPTIMIZATION 

In the presence of real time deadlines, there is a finite length 
of time available (Finite Planning Window) for the UAS to 
complete the trajectory solution search before a predefined 
safety maneuver must be executed to ensure collision free 
flight.  Convergence to a solution, if one exists, within this 
Finite Planning Window (FPW) is dependent on current 
system execution parameters and computational power 
available. 

The time required to perform an optimal trajectory solution 
search during maneuver generation is dependent on system 
execution parameters such as search resolution (number of 
primitives available); maneuver resolution (number of 
points representing primitive).  Scenarios may occur where 
a feasible solution cannot be generated within the FPW if 
the search and resolution settings are too great. 
Consequently, solution completeness may be further 
diminished if the settings are too low. 

Trim Maneuver (roll angle < 60deg) 

Trim Maneuver (roll angle > 60deg) 

Transition Maneuver  
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A novel Computationally Adaptive Trajectory Decision 
(CATD) optimization system has been developed and 
implemented in simulation to dynamically manage, 
calculate and schedule system execution parameters.  This 
ensures that the trajectory generator can complete the 
trajectory solution search and generate a feasible solution, if 
one exists, within the FPW.   

CATD is an expert system which composed of two 
components. The offline component benchmarks the 
computational performance of the system using sets of 
predefined execution parameters.  The computational 
performance can be estimated as the algorithm is 
deterministic in nature.  However, the offline component 
must be re-executed if the computation capabilities of the 
system are modified. 

The online component dynamically computes the most 
optimum set of execution parameters with respect to the 
available computational power and FPW.  Multi-objective 
theory is used to find a best compromise solution where the 
conflicting objectives are maximization of search and 
resolution and minimization of search time.   

The inclusion of the CATD potentially increases overall 
mission efficiency and may allow for the implementation of 
the system on different UAS platforms with varying 
onboard computational capabilities.  The following section 
presents the results for the generation of feasible trajectories 
with the CATD both enabled and disabled.  A 3D 
environment representation was setup in MATLAB the 
UAS assignment included safe and efficient navigation 
through a set of mission level waypoints.  

5. RESULTS 

During the simulation the platform operates at a constant 
velocity of 30 m/s.  The simulation has been performed on a 
computer with an Intel Core 2 quad core processor 
operating at 3.4GHz to simulate the how the inclusion of the 
CATD can allow for the generation of feasible trajectories 
within a given FPW.  The FPW is calculated as the time 
taken to complete the current stage.  The FPW value is has a 
maximum value of ranging from 3 to 5 seconds to simulate 
a finite horizon (FH) between 90 and 150m  

Simulated Results – CATD Not Enabled 

The first set of results show the algorithms performance 
without the CATD enabled for each computing setup.  The 
maneuver generation algorithm finds a feasible solution 
(Figure 4 and Figure 5) using a predefined set of maneuver 
and search resolution parameters (Table 1).   

Table 1 – Algorithm Run Time: CATD Not Enabled 

FH 
(m) 

Maneuver 
Resolution 

Search 
Resolution 

Avg. 
Utility 

Min. 
FPW (s)  

90 80 89 0.52 -0.7 
120 80 89 0.52 0.1 
150 80 89 0.52 1.2 

 
 

 

Figure 4 –Top View of Trajectory 

 

 

Figure 5 – 3D View of Trajectory 
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Figure 6 – FPW per Iteration (FH = 150m) 
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Figure 7 - FPW per Iteration (FH = 90m) 

Without the CATD enabled, there is not guarantee that 
feasible trajectories will be generated within a given FPW. 
Using predefined search and maneuver resolution 
parameters may use of the computation time available 
inefficiently in scenarios where the FH is relatively large 
(Figure 6).  In scenarios, where the given FH is shorter 
(Figure 7), the platform may not be able to compute a 
feasible solution within the available FPW.   

Simulated Results – CATD Enabled 

Enabling the CATD dynamically adjusts the maneuver and 
search resolutions with respect to the available FPW.  Table 
2 presents the results for the simulated results with the 
CATD Enabled. 

Table 2 - Algorithm Run Time - CATD Enabled 

FH 
(m) 

Maneuver 
Resolution 

Search 
Resolution 

Avg. 
Utility 

Min. FPW 
(s)  

90 Dynamic 
(Figure 10) 

Dynamic 
(Figure 11) 

0.93 1.6 

120 Dynamic 
 

Dynamic 
 

0.93 0.3 

150 Dynamic 
(Figure 14) 

Dynamic 
(Figure 15) 

0.9 0.5 

 

 

Figure 8 –Top View of Trajectory (FH = 150m) 
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Figure 9 - FPW per Iteration (FH = 150m) 
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Figure 10 - Maneuver Resolution (FH = 150m) 
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Figure 11 - Search Resolution (FH = 150m) 

 

 
Figure 12 -Top View of Trajectory (FH = 90m) 
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Figure 13 - FPW per Iteration (FH =90m) 
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Figure 14 - Maneuver Resolution (FH = 90m) 
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Figure 15 - Search Resolution (FH = 90m) 

The inclusion of the CADT ensures that a feasible solution 
is generated within the given FPW.  By dynamically 
adjusting the search and maneuver resolution parameters, 
the system compromises search completeness for time 
required to generate a solution.  However, systems with 
greater onboard computational capabilities and/or longer FH 
(simulating onboard sensors) (Figure 9), benefit from the 
ability to complete a search at a higher resolutions.  Systems 
without lower computational resources and/or Shorter FH 
can continue to generate feasible trajectory solutions 
(Figure 13) within the given FPW.  However, this requires 
the search to be conducted at lower resolutions. 

6. CONCLUSIONS 

This paper has presented a new framework which allows for 
the computation and optimization of feasible 3D flight 
trajectories within real time planning deadlines, for UAS 
operations in cluttered environments.  A novel real time 
flight management subsystem (CATD) was implemented to 
dynamically adjust maneuver and search resolution 
parameters to ensure that a feasible trajectory solution could 
be generated (if one existed) within a given FPW. 

 The inclusion of the CATD coupled to a multi-objective 
maneuver automaton based trajectory planner can 
potentially allow for more efficient use of the computational 
time available.  Additionally, the utilization the offline 
component of the CATD to evaluate the performance of a 
given system, may potentially allow for the implementation 
of CATD on different platforms with varying onboard 
computational capabilities and Finite Planning Windows.   
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