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ABSTRACT: Fast and accurate computational approaches to predicting reactivity in sulfa-Michael additions are required for high-
throughput screening in toxicology (e.g., predicting excess aquatic toxicity and skin sensitization), chemical synthesis, covalent drug
design (e.g., targeting cysteine), and data set generation for machine learning. The kinetic glutathione chemoassay is a time-
consuming in chemico method used to extract kinetic data in the form of log(kGSH) for organic electrophiles. In this work, we use
density functional theory to compare the use of transition states (TSs) and enolate intermediate structures following C−S bond
formation in the prediction of log(kGSH) for a diverse group of 1,4 Michael acceptors. Despite the widespread use of transition state
calculations in the literature to predict sulfa-Michael reactivity, we observe that intermediate structures show much better
performance for the prediction of log(kGSH), are faster to calculate, and easier to obtain than TSs. Furthermore, we show how linear
combinations of atomic charges from the isolated Michael acceptors can further improve predictions, even when using inexpensive
semiempirical quantum chemistry methods. Our models can be used widely in the chemical sciences (e.g., in the prediction of
toxicity relevant to the environment and human health, synthesis planning, and the design of cysteine-targeting covalent inhibitors),
and represent a low-cost, sustainable approach to reactivity assessment.

■ INTRODUCTION
Michael addition reactions, characterized by nucleophilic
attack at the β-carbon of an α,β-unsaturated carbonyl
compound, have been widely used in synthesis for generating
a variety of carbon-nucleophile bond types (e.g., C−S, C−N,
and C−C bonds).1−3 The sulfa-Michael addition in particular
is a highly important reaction given its extensive use in organic
synthesis4−6 pharmacology,7,8 toxicology,9,10 and materials
science.11 Therefore, the ability to assess and predict the
reactivity of Michael acceptors (MAs) toward sulfur
nucleophiles is of paramount importance across a range of
disciplines. In chemical synthesis, predicting rates of reaction
between MAs and a given nucleophile would provide low-cost,
quantitative predictions for novel synthetic transformations. In
toxicology, such predictions could be used in the chemical risk
assessment of aquatic toxicity and skin sensitization, while
aligning with the increasingly important “Green” toxicology
approach.12−14 Lastly, in drug discovery, such predictions
could be used in the design of cysteine-targeting, targeted

covalent inhibitors (TCIs). TCIs are an emerging class of
compounds in drug discovery and recently, three FDA-
approved drugs (Afatanib, Ibrutinib, and Osimertinib) were
designed to react irreversibly with a sulfur-containing cysteine
residue through a hetero-Michael addition.15,16

In 2006, Schultz et al. presented a pioneering framework for
modeling reactions between an electrophilic toxicant and a
biological macromolecule, many of which are nucleophilic.17

This framework proposed the use of model nucleophiles to
better understand reactive toxicity and the ultimate biological
effects associated with its existence. Traditionally, MA
reactivity has been assessed using chemoassays, with the
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kinetic glutathione chemoassay developed by Böhme et al.
being the most widely used to examine sulfa-Michael
additions.18 This method has been used extensively to obtain
second-order rate constants [L mol−1 min−1] to assess the
reactivity of different α,β-unsaturated carbonyl compounds and
uses glutathione (GSH) as the nucleophile (Figure 1).19 In

2016, Schürmann and co-workers compiled, to the best of our
knowledge, the largest known experimental kinetic glutathione
assay rate data set for α,β-unsaturated carbonyl compounds.20
As we move toward a more sustainable future, it is vital that in
silico approaches are developed that align with the principles of
green chemistry. Predictive in silico approaches provide
advantages in the design of safer chemicals and less hazardous
syntheses, along with reducing harmful waste products that are
commonly utilized in experimental methods. Thus, to reduce
the environmental, financial, and time-based costs attached to
chemoassays, there have been numerous attempts to develop
quantum chemical transition state (TS) approaches to the
prediction of MA reactivity data sets. In 2010, Cronin and co-
workers performed TS calculations for 22 MAs reacting with
methanethiolate.21 They presented a QSAR regression
equation for the prediction of log(kGSH) that used the
activation barrier ΔE‡

PCM for both the forward and backward
reaction, and the solvent accessible surface area (SASA),
resulting in an impressive squared Pearson correlation
coefficient (r2) of 0.90 between their calculated and
experimental values for log(kGSH):

= ± + ±

+ ±

±

‡

‡

k E

R E

log 0.0290( 0.005) 1.42( 0.23)

log SAS( ) 0.0307( 0.004)

2.14( 0.61)

GSH PCM

PCM,back

Although this work did provide strong regression statistics,
multiple descriptors were required, and when only ΔE‡

PCM and
the SASA were utilized as features, a relatively poor correlation
(r2 = 0.51) was observed. In the same year, Schürmann and co-
workers published a set of multidescriptor models based on
ground state features such as a charge-limited local electro-
philicity index, a σ-bond energy (obtained from natural bond
order analysis), and SASAs for both the α- and β-carbons.22
Overall, their models showed strong statistics, with a four-
descriptor model showing the best performance (r2 = 0.93). In
2011, Mulliner et al. used TS calculations to predict log(kGSH)
for 35 α,β-unsaturated carbonyl compounds.23 They also
performed calculations under the PCM solvent model to
examine the effect of implicit solvation on the prediction of
log(kGSH). For solvated and nonsolvated models, respectively,
they obtained regression equations with r2 = 0.76 and r2 = 0.68
between calculated and experimental log(kGSH) values.
Following this in 2013, the same authors calculated reaction
barriers (ΔE‡) for a set of esters, and from ΔE‡, calculated
log(kGSH) using their previously developed regression model
from 2011. This study examined the use of log(kGSH) and

hydrophobicity (in the form of log(Kow), where Kow is the
octanol−water partition coefficient) for the prediction of 50%
growth inhibition ofT. pyriformis (log(EC50)). It is thus clear
that TSs have commonly been used in assessing MA reactivity,
but far fewer studies have examined high energy intermediate
structures (HEI, see Figure 2) and their ability to predict

reactivity.24 In 2013, Enoch and Roberts performed DFT
calculations on a data set of 26 MAs and calculated their ΔEHEI
values upon reaction with methanethiolate.25 With the full data
set, their results showed a poor correlation (r2 = 0.02) between
skin sensitization potency (pEC3) and intermediate energies
upon linear regression analysis. Upon refining the data set and
removing some problematic compounds from the analysis,
their results showed improved correlation (r2 = 0.43) for a
single descriptor model using intermediate energies. This was
further improved by adding a SASA descriptor, resulting in a
multivariate regression model with strong statistics (r2 = 0.79).
Further in 2016, Ebbrell et al. developed an in silico profiler for
the prediction of RC50 values using intermediate MA
structures, where RC50 is the concentration of electrophiles
needed to reduce the concentration of GSH by 50%. Their
results showed that a single descriptor model using ΔEHEI
resulted in modest regression statistics (n = 54, r2 = 0.52).
However, this model was greatly improved (n = 41, r2 = 0.87)
by adopting a multivariate approach and including an
additional SASA descriptor.10 In 2017, Ebbrell et al. presented
a thorough analysis on how their previously developed
fragment profiler could be used in the prediction of aquatic
toxicity (towardT. pyriformis) and skin sensitization poten-
tial.26 This study highlighted the crucial role of ΔEHEI
regression models for the prediction of important toxicological
endpoints such as EC50/pEC50. Thus, it is clear that
intermediates and ΔEHEI are of great use and importance in
predictive toxicology. Furthermore, intermediate structures are
particularly desirable from a practical standpoint; TS
calculations are not only computationally costly but are
challenging for both experts and nonexperts to perform.27

Compared with TSs, intermediate structure calculations

Figure 1. Generalized reaction mechanism between glutathione and a
1,4 Michael acceptor. “Glut” represents a glutathione residue minus
its sulfur atom.

Figure 2. GSH-MA reaction pathway showing the structure of the
reactants, intermediate, TS, and product.
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involve optimization to a minimum, which is typically less
costly, easier to automate (e.g., for data set generation in
machine learning (ML)), and much easier to perform.24 In this
work, we find that easily calculable intermediate energies
perform better than TSs in the prediction of log(kGSH).
Furthermore, we find that linear regression models built with
very inexpensive features from semiempirical quantum
mechanical (SQM) calculations can make reliable predictions
of log(kGSH) comparable to methods using DFT calculations,
even when only reactant-derived features are used.

■ MATERIALS AND METHODS
Kinetic glutathione assay data (log(kGSH)) for 23 1,4 MAs were
taken from the work published by Böhme et al., providing
experimental rate data for nine esters, seven aldehydes, and
seven ketones (see Figure 3 and Table S1 in the Supporting
Information).20 DFT calculations were performed with
Gaussian 16 (Rev. A.03)28 at the M06-2X/def2-TZVPP level
of theory under the IEFPCM implicit solvation model (water),
which has been used extensively for modeling organic
reactions.29−32 Implicit solvation in water was chosen to
simulate the experimental conditions used in the kinetic
glutathione chemoassay. In line with previous studies, and to
ensure computational feasibility, methanethiolate was used as a
model nucleophile in all calculations.10,25 All regression models
were developed via the Scikit-learn Python package.33

Activation barriers and intermediate energy differences were
calculated according to:

= +‡G G G G( )TS MA nuc

= +G G G G( )HEI Int MA nuc

where ΔG‡ is the activation free energy, GTS is the TS free
energy, GMA is the free energy of a MA, ΔGHEI is the free
energy difference between the intermediate and the reactant
state, GInt is the free energy of the intermediate structure, and
Gnuc is the free energy of methanethiolate. For full computa-
tional details, see the Supporting Information.

■ RESULTS AND DISCUSSION
In total, across the data set, 94 reactant ground states, 226 TSs,
and 229 intermediate structures were obtained and verified as
either minima or first-order saddle points on the M06-2X/
def2-TZVPP-IEFPCM (water) potential energy surface. Two
compounds were minorly truncated in this work; 1-pentene-3-
one to methyl vinyl ketone and trans-2-pentenal to but-2-enal.
Previous literature demonstrates that conformational freedom
is often neglected in the construction of QSAR models that use
descriptors derived from quantum chemical methods.34−36

However, a more thorough exploration of chemical space is
needed. To illustrate this, six reactant conformers were
obtained for 2-ethylacrolein, and the lowest energy structure
was 3.26 kcal/mol lower in energy than the highest energy
conformation. Thus, if single conformations are examined,
large errors can be introduced in the calculation of
thermochemical data. A further example includes the two
reactant conformers obtained for methyl methacrylate; a
difference of 7.73 kcal/mol was obtained between the two
conformers. Thus, it is quite clear that without direct
consideration of molecular flexibility, calculated activation
barriers and relative intermediate energies can vary consid-
erably.

TS Calculations. Across the data set, experimental rate
constants ranged from 3.1 to −2.15 log units (see Figure 3).
The more positive a value of log(kGSH), the faster the reaction
between an MA and methanethiolate, and thus, the
corresponding MA is more reactive. Our calculated activation
energies ranged from 9.7 to 16.1 kcal/mol across all
compounds, with esters showing the largest range among the
three groups. A single descriptor linear regression analysis
showed a poor correlation between log(kGSH) and ΔG‡ (Figure
4), with a squared Pearson correlation coefficient (r2) of 0.49
between the predicted and measured log(kGSH). The resultant
model demonstrates that TSs and free energies of activation
provide a poor prediction of log(kGSH) in the MA data set, with
a relatively large test set mean absolute error (MAE) of 0.69
log units. These results show good agreement with previous
work by Schwöbel et al., where it was shown that at the
B3LYP/6-31G** level of theory, no global model for esters,
ketones, and aldehydes exists that utilizes activation energies

Figure 3. Visualizing log(kGSH) for the 23 compounds included in this study. Red indicates a higher reactivity with glutathione, while green
indicates lower reactivity. Blue compounds indicate that minor truncation was performed (see the SI for full details).
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derived from TSs.21 Additionally, it has been previously
reported that DFT can prove problematic in the study of
charged ionic TSs due to large errors in the calculated
reactivity parameters.37 It is also known that most implicit
solvent models define the solvent cavity as a set of overlapping
spheres with fixed atomic radii. These radii are experimentally
calculated, and for IEFPCM, the Bondi data set is used; for
each atom, the atomic radius is calculated through multi-
plication of a constant (1.2) by the Bondi atomic van der
Waals radius.38,39 These empirically determined radii use
solvation free energy training sets for parameterization, and
TSs are often not included in the initial training set, thereby
introducing error when TSs are examined with implicit solvent
models.40 Additionally, radii of the specific atoms involved in
the bond-forming/breaking process (e.g., S−C from our study)
are often poorly defined in TSs for this reason. It must also be
noted that from a practical perspective, explicit solvation is too
costly and would eliminate the easy-to-use nature of our
models.
Therefore, our work, combined with previous literature,

indicates that a poor correlation between log(kGSH) and
activation energy is likely to be independent of both basis set
and DFT functional. However, to further corroborate this,
benchmarking studies could be performed to thoroughly
examine the role that level of theory and solvation method
plays in this problem. Upon examination of our results and
previously published work, it is clear that single-descriptor ΔG‡

models do not provide a sufficient description of MA reactivity
toward sulfur nucleophiles and should not be used for making
predictions about the reactivity of MAs with glutathione.

Intermediate Structures. The computed stability of the
enolate intermediates after C−S bond formation, which closely
resembles the TSs in line with Hammond’s postulate, may be
used to accurately predict the reactivity of MAs toward thiol
containing compounds.41 Across the data set, calculated
intermediate energies ΔGHEI varied from 2.4 to 13.3 kcal/
mol. Intermediate energies for ketones ranged from 2.4 to 11.6
kcal/mol, aldehydes ranged from 2.8 to 7.5 kcal/mol, and
esters ranged from 6.2 to 13.3 kcal/mol. A linear regression
analysis with ΔGHEI resulted in a significantly improved model
compared to TS barriers (Figure 5), with r2 = 0.76 and a test
set MAE of 0.48 log units. This is a noteworthy result;

generally, it would be expected that TS barriers correlate more
strongly with kinetic data such as log(kGSH), if the rate-
determining step has been modeled. As highlighted by
Schürmann and co-workers, the rate-determining step is the
addition of methanethiolate to the MA, and the protonation
step (see Figure 2, TS-2) is expected to be fast and not rate-
limiting.22 However, to ensure we have focused our
calculations on the rate-determining step (TS-1), we calculated
reaction barriers of the protonation step (ΔG‡

prot) for six
structures in our data set; two esters, two ketones, and two
aldehydes, with a fast and slow reacting compound being
chosen for each (see Table S2). Methanethiol was the proton
source as per the work by Northrop and co-workers.42 All
calculated barriers for the protonation step were lower than the
corresponding barrier for the addition of methanethiolate by
an average value of 6.41 kcal/mol, thus confirming it highly
likely that thiolate addition is the rate-determining step. From
these results, it remains clear that, in line with the Hammond
postulate, calculation of ΔGHEI can provide a fast, high-
throughput measure of 1,4 MA reactivity toward methane-
thiolate (and thus, thiol containing compounds), with our
models permitting strong quantitative predictions to be made
for initial, preliminary reactivity assessments. As detailed
above, it is likely that the deficiencies of DFT TS modeling
account for why our intermediate models perform better than
those using TS-derived features.
A key advantage in the development of this model is its

simplicity. A single variable regression model that uses
calculated intermediate energies is very simple to use for
both experts and nonexperts. TS searching is a nontrivial task,
involving specialist knowledge and a high degree of human
input to arrive at suitable structures. Optimization of only
reactant and intermediate structures is significantly easier for
the nonspecialist to make predictions. Minima, such as the
intermediate structures presented here, converge more readily,
thereby providing a great practical advantage for making
predictions.43 Successfully obtaining a set of TSs for a single
structure can take many rounds of re-optimization, while
intermediate geometries can be readily obtained after a single
calculation. A generalized workflow for obtaining intermediate
structures was presented in one of our previous studies, and
can be equally applied in the context of this study.24 Our

Figure 4. Linear regression of log(kGSH) on the activation energy
derived from transition state structures (M06-2X/def2-TZVPP-
IEFPCM (water)) was performed. Predicted log(kGSH) is plotted
against measured log(kGSH).

Figure 5. Linear regression of log(kGSH) on the intermediate energy
differences (M06-2X/def2-TZVPP-IEFPCM (water)). Predicted log-
(kGSH) is plotted against measured log(kGSH).
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model presents a fast, easy-to-use method for predicting the
reactivity of 1,4 MAs with thiol containing compounds.

Multivariate Models. To see if the intermediate or TS
models could be improved upon, a number of multivariate
linear regression models were also generated using key
Mulliken atomic charges, APT atomic charges (Figure 6),

and several other chemical features (see Supporting
Information) for all MAs, intermediates, and TSs. With the
aim to create an easy-to-use method, Mulliken and APT
charges, which are readily extracted from Gaussian output files
and are thus very user friendly for the nonexpert performing
calculations, were selected. The best results were obtained
using MA features only, with r2 = 0.88 and an MAE of 0.35 log
units via a three-descriptor model combining the Mulliken
atomic charges of the α- and β-carbons and the carbonyl
oxygen (Figure 7). Not only are these results a significant

improvement on the ΔGHEI model, but with fewer atoms and
less conformational flexibility than the corresponding inter-
mediates, calculations on reactant MA structures are even
more trivial.

Semiempirical Models. Finally, we reoptimized all MAs
and intermediates using the SQM AM1 method44 and
generated multivariate linear models using the same chemical
features as above. Because SQM calculations are typically
orders of magnitude faster than DFT, regression models
derived from SQM calculations could substantially reduce the
computational expense of predictions. A result of particular
significance is the negative relationship observed between
log(kGSH) and the Mulliken charges (of C1 and C2) in the
regression equation (see Figure 8). Although counterintuitive
according to chemical intuition, previous literature indicates
that MAs have a propensity to show interesting charge

behavior on the α- and β-carbons. Spencer et al. used 13C
NMR chemical shifts to examine the effect of electron-
withdrawing groups (EWGs) at different positions on the aryl
group of methyl cinnamates upon reaction with GSH.45 The
presence of EWGs resulted in an increased rate of reaction
with GSH, with the chemical shifts of the β-carbon being
shifted slightly upfield (less positively charged). Additionally,
although downfield shifts were observed for the α-carbon
resonances with an increasing rate of reaction, no obvious
statistical relationship was apparent between the rate of GSH
addition and the α-carbon chemical shifts. When ortho-
hydroxyl substitution on the aryl group was considered, a
significant observation of an upfield shift of 3−6 ppm was
observed at the β-carbon. These observations suggest that the
electron distribution (and thus charge) at the α- and β-carbons
can behave in an unusual way in the context of sulfa-Michael
addition, and they agree with our results. Further to this point,
the regression equation demonstrates a positive relationship
between log(kGSH) and the APT charge on the carbonyl
oxygen. It is possible that due to the highly electronegative
nature of oxygen, an increasingly positive charge on the
carbonyl oxygen is indicative of less overall electron density in
the conjugated α,β-unsaturated carbonyl substructure. Thus,
with lower electron density, the MA electrophile should
become more receptive to nucleophilic attack, and the rate of
reaction would increase as the charge becomes increasingly
positive on oxygen. Similar to the model presented in the
previous section, the best performing model utilized atomic
charges on the α- and β-carbons and the carbonyl oxygen of
the MA, with r2 = 0.89 and an MAE of 0.37 log units (Figure
8). This provides very similar performance to the DFT MA
model, and is better than the single feature ΔGHEI model but
reduces the need for time-consuming DFT calculations. It is
significant to note that a combination of models with differing
levels of theory, opens up their use to a wider audience with
differing computational resources.

■ CONCLUSIONS
In this work, TS, intermediate, and reactant structures were
explored in reactivity predictions (log(kGSH)) for a group of 23
sulfa-Michael additions. Such an approach to predicting sulfa-
Michael reactivity is desirable for high-throughput screening in

Figure 6. Mulliken and APT atomic charges were calculated for
highlighted atoms only.

Figure 7. Linear regression of log(kGSH) on key atomic charges of the
MA (M06-2X/def2-TZVPP-IEFPCM (water)). Predicted log(kGSH)
is plotted against measured log(kGSH).

Figure 8. Linear regression of log(kGSH) on key atomic charges of the
MA (AM1). Predicted log(kGSH) is plotted against measured
log(kGSH).
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chemical synthesis, toxicology (aquatic toxicity and skin
sensitization prediction), drug discovery (targeted covalent
inhibitor design), and reactivity data set generation for ML.
Further, our models provide a practical advantage in shifting
the focus toward more sustainable approaches to chemical
reactivity assessment. TSs were first considered, and activation
free energies showed poor predictive performance in regression
analyses toward log(kGSH) (r2 = 0.49, MAE = 0.69 log units).
Intermediate enolate structures that follow the C−S bond-
forming TSs were also considered and showed stronger
predictive performance in regression analyses toward log(kGSH)
(r2 = 0.76, MAE = 0.48 log units). Intermediate structures
provide two key advantages over TSs: they are easier to
compute and provide increased calculation speeds. Using linear
combinations of purely reactant-derived chemical features, thus
simplifying the calculations even further, resulted in noticeable
improvements to our models with respective squared Pearson
correlation coefficients and MAEs of 0.88 and 0.35 log units
with DFT, and 0.89 and 0.37 log units with SQM. The models
presented here are fast and easy-to-use methods for predicting
log(kGSH).
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