Implications of the Turing Completeness of Reaction-Diffusion
Models, informed by GPGPU simulations on an XBox 360:

Cardiac Arrhythmias, Re-entry and the Halting Problem

S. Scarle! *

Rare Ltd., Manor Park, Twycross, Warwickshire, CV9 3QN, UK.

ar anno

Abstract

In the arsenal of tools that a computational modeller can bring to bare on the study of cardiac
arrhythmias, the most widely used and arguably the most successful is that of an excitable medium,
a special case of a reaction-diffusion model. These are used to simulate the internal chemical
reactions of a cardiac cell and the diffusion of their membrane voltages. Via a number of different
methodologies it has previously been shown that reaction-diffusion systems are at multiple levels
Turing complete. That is, they are capable of computation in the same manner as a universal
Turing machine. However, all such computational systems are subject to a limitation know as the
Halting problem. By constructing a universal logic gate using a cardiac cell model, we highlight
how the Halting problem therefore could limit what it is possible to predict about cardiac tissue,
arrhythmias and re-entry.

All Simulations for this work were carried out on the GPU of an XBox 360 development console,
and we also highlight the great gains in computational power and efficiency produced by such

general purpose processing on a GPU for cardiac simulations.

Keywords: heart, re-entry, cardiac arrhythmias, excitable media, halting problem, GPGPU

*Electronic address: sscarle@rare.co.ukTelephone:+44(0) 1827883400

I. INTRODUCTION

Propagating waves of electrical excitation are the fastest form of long range internal com-
munication available to animals, and so are one of the most practical applications of a subset
of reaction-diffusion systems, the excitable medium. In the heart these electrical waves (ac-
tion potentials) initiate contraction of the cardiac muscle. Their abnormal propagation can
lead to cardiac arrhythmias, with the most dangerous of these being ventricular tachycardia
(VT) and ventricular fibrillation (VF) [1]. These arrhythmias can result in sudden cardiac
death, which is the largest categorical cause of death in the industrialized world [1-3].

On a number of levels reaction-diffusion (RD) systems have been shown to be capable
of computation, and thus to be Turing complete. However, with such completeness comes
the Halting problem and in this work we point out that this will prevent us from predicting
complete re-entry in an arbitrary cardiac tissue as this amounts to solving a reversed form
of the Halting problem.

In a nice link Turing himself published work on the use of RD systems in a biological
context, to model pattern formation on the skins of animals [4].

A further point of interest is that all simulations for this work were carried out on the

X T

) of an XBox 360 development console, a variant of the

L i1 ~ /AT
processing on the GPU (GPGP
efficiency, and that this is part of an on going trend of such serious uses of graphical and

gaming hardware [5].

II. CARDIAC MODELLING

An excitable medium is a non-linear system which has the capacity to propagate a wave
of some description, and which cannot support the passage of another wave until a certain
amount of time has passed (the refractory period). Cardiac tissue can be modelled as an
electrically excitable medium which supports travelling waves of electrical activation, so

11 1 i i it 1 /AT N\ o 1 i AT 1 1 1 11 1
called action potentials (APs). Such propagating APs can be described by a non-linear

reaction diffusion equation [6] leading to the mono-domain tissue model

oV, .
Crm® = VDYV, — Ly (1)

The left hand side of Equation 1 gives the current due to the capacitance of the cell mem-
brane, whilst the right gives current due to both gradients in trans-membrane potential
(diffusive term = V.DVV,,) and ion channels, pumps and transporters in the cell mem-
brane (reaction term = I;,,). Where, D is the diffusion tensor, V,, is voltage across the
cell membrane, (), is membrane capacitance per unit membrane area and [;,, is membrane
current flow per unit area.

RD systems are so called as they can be seen to represent reactive chemical species which
are not well mixed. This means that to fully explain their behaviour we must take into
account both the diffusion of the species through space as well as their reactions with each
other. An excitable medium used to represent cardiac tissue can be seen as a simple type of
reaction-diffusion system, in that usually only one chemical species, the membrane voltage,

is allowed to diffuse.

III. COMPUTATION AND THE HALTING PROBLEM

Alan Turing is commonly accepted as the creator of modern computer science with

—

amongst other things his landmark paper on the Entscheidungsproblem [7]. In this pa-
per he created the concept of what is now called a Turing machine. A hypothetical device
which would be capable of carrying out any conceivable mathematical probiem if it could be
represented as an algorithm. This in turn lead to the idea of the Turing-Completeness of a
system if it were capable of doing all such computation. Critically, Turing also highlighted
the Halting problem in this work. This states that it is impossible to construct a general

algorithm which will state whether an arbitrary program will terminate or continue forever

when run on a Turing-Complete device/system.

IV. LEVELS OF COMPUTATION WITHIN REACTION-DIFFUSION SYSTEMS

Reaction-diffusion or excitable medium computational devices represent data in the dis-
tribution of their chemical species. The actual computation is implemented by excitation
waves, travelling and interacting in the medium, and such wave-based information process-
ing in excitable chemical media was first achieved with pioneering work on image processing

using a light-sensitive Belousov-Zhabotinsky reaction [8, 9].

In this section we outline a number of studies in the literature which have carried out
computation with or have shown computational traits in RD systems. These can be divided
into three types; problem solving using an RD directly, embedding of logic gate structures

o~

into an RD system and finally more theoretical work showing that any RD-

101

like systems are

capable of computation. This last type leading to the Reaction Diffusion Machine (RDM).

A. RD as problem solver

It is now well known that RD chemical systems have a unique ability to efficiently solve
1. i L] 1 11 i1 1 L] . i 111 r1 nl M 1 i1 i1 1 i 1 1

combinatorial problems with their innate parallelism [10]. Since both the data and the
results are encoded as concentration profiles of reagents, with the computation being pre-
'y 1 . i1 1 1 i ' . 1 / . M- 1 0T\ ma_e el il
formed via the spread and interaction of wave-fronts (see overview |[11-13]). This was first
experimentally implemented to carry out basic image processing using the light sensitive
Belousov-Zhabotinsky (B-Z) reaction [8, 9, 14]. Several other experimental and simulated
prototypes of excitable media computing devices or reaction-diffusion processors have been
designed and tested on a variety of tasks, including; path planning [15-18], robot navigation
[19, 20]. Further, work on slime moulds navigating labyrinths [21, 22] has suggested that

methods akin to these are used in nature. This work having the honour of being awarded

the Ig-Noble prize for Cognitive Science in 2008.

o

RD as logic gate system

~

The fundamental building blocks of a computer are logic gates, these equate at a

1

basic
level to the logic statements of AND, OR and NOT, i.e. an OR gate outputs TRUE if
input 1 or input 2 are TRUE else it outputs FALSE. Table 1 shows inputs and the produced
output for the most common gates. In a modern digital computer, TRUE = 1 and FALSE
= 0, and from this binary arithmetic is possible.

Two logic gates are of particular importance: Not AND (NAND) and Not OR (NOR).
These are referred to as the universal logic gates as the function of any logic gate can be
constructed with purely NAND or NOR gates (see Figure 1), and therefore by extension
any logic circuit.

In a more direct approach such logic gate circuits have been implemented via RD systems

A i1

in laboratory experiments [23], as well as in numerical simulations [10, 23-27]. Further com-
1 11 1

putational systems of higher level function have been constructed/modelled: being capable

of counting [28] and an implementation of a simple memory unit [27, 29].

C. Reaction Diffusion Machine

A computational model inspired by RD phenomena, called the Reaction-Diffusion Ma-
chine (RDM) was introduced by Simone and Bandini [30], and then expanded to produce the
Multi-layered Reaction-Diffusion Machine (MRDM) [31]. An RDM allows for the simulation
of complete systems in which entities react locally with each other and with the environment,
and the global system behaviour emerges from the local behaviour of the component entities.
In an RDM control is fully distributed, as behaviour is determined by local computation
based on position and sensitivity to fields as well as on reaction and diffusion patterns. The
MRDM, within appropriate constraints, collapses to a standard Cellular Automaton (CA).

Later work [32] provided the first theoretical assessment of an RDM, through a compar-
ison with the standard Turing machine model. They constructed a theoretical RD system

TN\ T R AN

capable of simulating a Turing machine, what they called a Turing RDM (TRDM). However,
their TRDM requires three fields to freely diffuse through its network of compartments. Car-
diac models, on the whole, have only one such field, excitation / membrane voltage, meaning
that it is unlikely that a cardiac model could directly be used as a TRDM.

However, it may still be possible to carry out computation directly in a cardiac model
by constructing logic gate systems, and in the rest of this work we shall show how we went
about constructing such systems using the Fenton-Karma four variable cardiac cell model.
If it can be shown that a cardiac model is capable in some way of carrying out computation

in a Turing-Complete manner, then implications of the Halting problem may be felt and

by inference it will also impinge on to the behaviour of cardiac tissue, or at least what it is

possible to predict about such tissue.

V. GPGPU

In recent years the introduction of programmable GPUs and therefore shaders to run on

them has led to a rapid increase in the fidelity of real-time graphical applications, particularly

in the field of games. Although non-photo realistic rendering predates sophisticated GPUs
some game designers have deliberately used a non-realistic style to differentiate themselves
from the realistic crowd. For example the inked graphical novel look of Crackdown [33],
and the painted styles of Okami [34] and Prince of Persia [35]. However, even these styles
are carried out via complex shader calculations [36, 37]. driven by demands for increased
visual fidelity, GPUs have evolved into increasingly general purpose computing devices,
with a growing trend to leverage this power for non-graphical applications. Leading to the
technique of General-Purpose computation on the GPU or General-Programming on the
GPU (GPGPU) becoming a growing trend in the field of high-level computation [38, 39].

Modern GPUs are highly optimized parallel computing devices, but they are obviously
highly optimized for the calculations required for graphics i.e. massively SIMD (Single
Instruction Multiple Data) and emphasis on vector arithmetic operations. However, if one
can restate your problem in a form usable by the GPU you can still exploit this power. In
fact Graphical Technology firm nVIDIA have recently released a framework for carrying out
such general calculations on its hardware, with its Compute Unified Device Architecture
(CUDA) [40, 41]. Other players in graphical technology (ATI, OpenGl, DirectX 11) have
also constructed their own replies to this, along with chip manufacturer Intel with their
GPU-CPU hybrid Larrabee.

Gaming hardware has been at the forefront of the applications of GPGPU methods and
has increasingly been used for high power computing. One of the earliest examples being the
creation of a supercomputer at the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign from 70 PlayStation 2 consoles. A more up to
date project used 16 networked PlayStation 3 (PS3) consoles to calculate gravity waves from
black hole collisions, using the consoles Cell chip, not a GPU but architecturally similar.
Meanwhile, other researchers used high-end graphics cards usually found in games PCs to
simulate the repulsion between two electrons in an atom. Both of these being highly non-
trivial calculations in their respective fields [42]. Meanwhile the Barcelona Supercomputing
Centre, one of the most powerful supercomputing resources in the world, have investigated
the possibility of using GPUs in future upgrades [43].

This may surprise the causal observer, who may think that the average game console
is basically an over priced toy. However, almost by definition the current generation of

games consoles and PCs are the most powerful bangs per buck computing hardware one can

purchase. The cell chip at the heart of the PS3 is the CPU now used in IBM’s high-end
systems for example, whilst the XBox 360 contains a respectable Xenon - triple core 3.2
GHz PowerPC processor and a Custom ATI 500 MHz GPU.

An estimate of the potential computational gains of using GPGPU techniques over run-
ning on the CPU can be found by roughly calculating the maximum number of floating
point operations the CPU and the GPU of the XBox can theoretically carry out in a sec-
ond. Here measured in Gflops (10° floating point operations) per second. The XBox
CPU has three cores each capable of one vector and one scalar operation per clock tick, .e.
3x (b+1) x2 =36 flops. With a clock frequency of 3.2 GHz this gives us 115.2 Gflops per
second. Meanwhile, the XBox GPU has three execution or arithmetic and logic units (ALUs)
capable of 16 vector and 16 scalar operations per clock tick, i.e. 3 x 16 x (4+ 1) x 2 = 480
flops. With a clock frequency of 500 MHz this gives us 240 Gflops per second. Therefore in
principle the GPU is capable of just over twice as many flops per second as the CPU. How-

AT T 1011

ever, both of these maximums are in practice impossible to obtain, with the CPU unlikely

ANTTT I

to achieve 50%, although due to its more optimized nature the GPU can get far closer.

VI. LOGIC GATE SYSTEMS IN CARDIAC MODELS

In the simulations carried out for this work we have used the Fenton-Karma 4 variable

model (FK4v) for I;,,[44].

in + Jso + Jsi
2
& 2)

with each J, being a simulated flow of ions across a cardiac cell membrane. These are de-

Iion =

scribed in Table II. Fenton and Karma choose to use this naming scheme so as to reiterate
that the currents do not actually represent measured currents, but only their activation,
inactivation and reactivation dynamics. It is these dynamics which are needed to qualita-

tively reproduce cardiac cell restitution properties. The J, are governed by three internal

variables v, w, and d, and V,, rescaled to be a dimensionless and normalized activation, U.

7 T7
rr__ Ym 0 79\
17 17 (9)
Vi — Vo
L 4 Qr X7 /(uVv. o ato gt 1\ Y1/ o X7 (et NT, 4t el
wihere vo = —oo L1V (Lle resillg polenvial), ve = 1o v (Lle INerust poteitlal ol tie last

Lo 1 A\ T 1 al 1 T —2 1N raWaYaYa T 1
mterval current). rurcther, C,, = 1 grci and £/ = U.Uuvuo CIn-1s .

All simulations for this study were carried out by solving Equation 1 in terms of U, and
the ODEs for v, w and d using a Euler finite difference numeric integration with a two speed
time-step. The spatial and temporal steps used were dx = 0.02 cm and 6t = 0.1 ms or 0.01
ms. The choice of time-step for the integration of the variables being dependent on the rate of
diffusion of the voltage at the point under consideration; if DV,,(dif)+ DV, (int) < 0.001
then we use ten of the shorter time-steps as opposed to one of the longer ones. With
DV (dif f) being the change in voltage due to the diffusion component, and DV,,(int)
being the change in voltage due to the internal ionic component.

in general most abnormal behaviour of cardiac tissue is brought about by damage of,
or disease in, cardiac cells. This reduces their excitability and/or their connectivity to
their neighbours and hence their diffusion coefficient. Therefore if we can show that we
can produce a universal logic gate using modelled cells with either of these defects, then it

should be possible with real diseased or damaged cells. This in turn means that any logic

circuit can thus be constructed, and that cardiac tissue is in a sense Turing compiete.

A. Conversion to the XBox 360 & on to GPGPU

In our previous work [45] a highly customizable cardiac dynamics code was constructed
in C**. For this current work we reimplemented this code on an XBox 360 development kit.

™ T

Firstly as a standard CPU based programme, and then further as a GPGPU programme.
Namely, a set of vertex and pixel shaders in High Level Shader Language (HLSL), with a
C** driver programme

At a basic level, a standard graphical programme for a GPU comprises of vertex and
pixel shader programmes or shaders for short. The vertex shader transforms an object’s
vertex coordinates from its own space to that of viewpoint given by the “camera”. This
information is then passed on to the pixel shader, along with further information related to
each vertex, e.g. a surface coordinate system given by normal, tangent and bi-tangent, or
texture (UV) coordinates. A texture being an array of colour data, essentially an image.
The pixel shader then deals with rasterisation. The data from three vertices of a triangle
are extrapolated across its surface and then used to calculate the required colour of the final

pixel.

As much as a modern technique such as GPGPU can be said to have a tradition, our

ANTYANTITT s ANTIANTITT

GPGPU implementation of the FK4v model differs from the traditional GPGPU method-
ology. In a standard GPGPU calculation [38] a set of vertices are passed to the GPU
representing a quadrilateral oriented parallel to the image plane so as to cover a rectangle
of pixels the size of the required output array. The rasterization process produces a com-
putational fragment for each pixel location, an instance of the pixel shader, these can read
from arbitrary memory locations (with texture reads) but can only write out to memory
locations defined by the pixel in the frame buffer. This output can be the final output of
the calculation or it can be stored in a texture and used in further computation. Complex
algorithms may require several passes of different pixel shaders to produce a final output.
We instead extensively exploit the additional functionality of the XBox GPU: flexible
fetching and memory export. The XBox 360 gives full control over the fetching logic of
model vertices from the vertex buffer. The data storage structure of the GPU for such
vertices. Rather than specify a fixed vertex declaration up front, you can arbitrarily fetch
from any location in the vertex buffer. This is based on a index from an index buffer, from

TXTL +1

which can be determined what data is required from the buffer. While memory export is
essentially improved memory access and can be see as the reverse of fiexible fetching aliowing
data to passed back into the vertex buffer at any desired location.

We therefore fully store our cardiac system on the vertex buffer. Our simulation vertex
structure is comprised of four sets of four data items and is defined in HLSL as foliows:
struct vertex{ float4 Position : POSITION; float4 FK4v : NORMAL; float4
Neigh : TEXCOORDO; float4 DVm : TEXCOORD1;};

Position contains the Cartesian coordinates of the cell (x,y, z) and its membrane voltage
Vin. FK4v contains the further FK4v variables (v, w,d) and its cell type, the FK4v having
parameter sets for endocardial, mid-endocardial and epicardial cells. Neigh contains the
indices in the vertex buffer of the four neighbours of this cell. Finally, DVm is used as a cal-
culation space for diffusion as it contains DV, (int) and DV,,(dif f) with the two remaining
items being held spare for the possible expansion of this code to deal with 3-D simulations
were they would contain the indices of the two remaining neighbours.

GPUs are good for embarrassingly parallel problems e.g. rendering 3D graphics. In so far
as the final colour of a given pixel is not per-se dependent on the final colours of its neigh-
bours. However, due to the diffusion of the membrane voltage a cardiac tissue simulation is

TT

not quite embarrassingly paraliel. Hence to perform the required synchronization, we broke

up our calculation into a set of vertex shaders, and passed the vertex buffer through each in
turn. These three shaders were called; Zapp, Diffusion and Simulation.

Zapp was closest to traditional GPGPU applications in so far as it used a texture. The
C** wrapper read in from the same basic input file used by our original code on when /how to
apply next the stimulation to simulation. This data was written out to a linear texture’s RGB
components (alpha being unused). Red contained the index of the cell to be stimulated, green
the type of stimulation (see Table III) and blue contained a value used by the stimulation
as also described in Table ITI. An index buffer counting up to the number of cells excited
is passed to the vertex shader, for each index the pixel of the same value was read in and
then the appropriate cell’s vertex Position and FK4v are read in, the stimulus applied and
then the vertex was updated via memory export.

Diffusion used flexible fetching to obtain the position values of each of a cell’s neighbours
using the neigh component of the vertex, totaled up their V,,, values and this was memory
exported into the DV,,(dif f) component of the cell vertex. This summation is required as
part of the standard Euler integration of the diffusion component of Equation 1i:

T

OV, SVE—A4V,, DV(diff)
oz T oz ot

amns
e~
Ne—"

The final shader, Simulation, used DV, to calculate and apply the diffusion term and
then carried out updates to v, w, d and V,,, due to ion currents as per Equation 1, using the
MNNY 7 /- 1

same variable time step as mentioned previous. DV, (int) and all other values of the vertex

were then updated using memory export.

B. Construction of a NOR gate in FK4v

Of the two universal logic gates we choose to construct a NOR gate within a 2-D sheet of
FK4v simulated cardiac cells. We did this by constructing an OR gate, in a manner similar
to early work by Motoike and Yoshikawa [27] using the FitzHugh-Nagumo model [46]. This
was then concatenated with a NOT gate. However, the previous work had a neurological
basis and we have made choices more in line with cardiac tissue behaviour.

The principal layout for our OR is a simple Y shape shown in Figure 2. The two top
points of the Y being the inputs and the base being the output. This is implemented as

normally active endocardial cells, whilst the rest of the sheet is made up of one of two

10

abnormal cell types. As per our previous work [45], these are either diffusive or zero flux
cells.

Diffusive cells are completely non-excitable whilst still allowing membrane voltage to
diffuse through them, these are modelled by setting /;,, = 0 in Equation 1. Zero Flux Cells
(ZFCs) allow no membrane voltage to enter them and present themselves to neighbouring
cells like zero-flux boundary conditions. These can be seen as the extreme form of reduce
excitability and reduced connectivity respectively, so any conclusions derived from these cell
types could be extrapolated to more realistic cells with a length scaling.

In standard logic circuits, the presence of a voltage indicates 1/true, whilst the absence
indicates 0/false. We choose a better fit to a cardiac model context in that we used a train
of APs at an interval of 0.8 s and a base time of zero for 1/true, and a delayed train also
at an 0.8 s interval but with a base of 0.4 s. Hence, 0 and 1 side by side would be seen to
alternate.

Voltage plots against time for locations near to each input and the output, for the ZFC
abnormal cells and each input regime (11, 01, 10 and 00) can be seen in Figure 4. The
output for the diffusive abnormal cells being essentially the same.

In the 11 and 00 cases the synchronous signals merely pass through the system unchanged,
whilst in the 01 and 10 case the 1 travels back up the other input and blocks it and also
continues on to produce the output. Clearly, if we take a base time of ~ 0.2 s at the output
we obtain the necessary output for an OR gate.

Using this half interval time delay to differential between 0 and 1 allows us to create
a NOT gate by simply sending our conductive track on a detour that takes the AP the
additional half interval to navigate.

One problem of this run back to cancel out the 0 if this gate were to be used in a wider
logic circuit, is that it would continue into previous gates and interfere with their function.
This can be rectified easily in the diffusive cell case by implementing a diode after each logic
gate. By diode we mean some form of structure which only allows the passage of an AP in
one direction. Such a structure with diode function has already been constructed in other
RD media {27, 47, 48], and was easily transferred to the FK4v cardiac model with diffusive
cells. See Figure 5 for a systematic diagram, and Figure 6 for snapshots of the system in

action.

It is not clear as to how to carry out the same function with ZFCs, but it must be kept

11

in mind that they are the limiting case and we would expect real reduced conductivity cells
to have a reduced diffusion coefficient not zero. As such the equivalent diode structure can

also be constructed with a reduced diffusion coefficient abnormal cells.

VII. SPEED COMPARISON OF CPU & GPGPU
GPGPU techniques are often suggested to yield great computational efficiency gains, to

get a simple measure of this in our case we implemented our previous cardiac simulation

ANTYTT

code on the XBox as both a standard CPU and as a GPGPU programme.
In the CPU case we essentially cut and paste our old code into a stand alone C**
class which was then implement in a base code used at Rare to develop prototypes and

technical demonstrations. This loaded the simulation input data, built the system, ticked

the simulation and interfaced with it to produce both the standard and graphical output.

Importantly, we just changed enough to get the original code to work within the framework,

1 ;

and no optimization was carried out to take advantage of running on the XBox.

N ANTYTT 1

In as similar manner as possible our GPGPU code was also set up within the same

framework, with the primary difference being the simulation and the production of the

—TT

graphical output being carried out exclusively on the GPU.
To compare the two programmes we carried out the obvious comparison and ran each
code with a series of progressively larger squares of simulated tissue, and calculated the

number of iterations per second in each case. A plot of this can be seen in Figure 3. This

14

shows that even with a small 10 X 10 square, the GPGPU simulation is more than twice as
fast as the CPU. The CPU simulation rapidly drops to 14 iterations per second, whilst at
200 X 200 the GPGPU is still at 354 iteration per second.

As previously stated the CPU code was not optimized for running on the XBox, but the
original code was always designed more for ease of expansion and use for muitipie types
of model and system, than for speed. So optimizing the code could yield a marked speed
increase. However, the GPU code was also not optimized, being essentially the first pass at

getting the simulation in a GPGPU form. So optimization could make both codes far faster,

1 .1 ANTTT 1

but it is highly unlikely that the CPU code could gain the needed orders of magnitude to

e} TT 1 .

beat the GPGPU code as it currently stands, let alone after it was also optimized.
g

TT

The speed gains here for our GPGPU version allowed us a very much more “hands-

12

on” approach to producing structures to be simulated. The program was run with given
input, the simulation could be observed running if not in precisely real-time then in a user
comfortable amount of time, the input was updated in light of the simulation and the
process repeated. This allowed for very rapid development of the required structures for the
simulations here presented, certainly at a speed impossible with the previous CPU based
code framework even when running in a parallel form.

Of course these gains in speed were heavily predicated on us using the special features of
the XBox 360 available to professional games developers. The memory export function for

X7NT A

example is disabled for security reasons in the publicly available XNA XBox development

1

environment. However, it is to be expected that near equivalent gains could have been made
using a traditional texture based GPGPU approach and further that as interest in GPGPU
increases with the sophistication of GPUs that such improved memory access will become
standard for GPUs and their APIs.

One final benefit of GPGPU techniques is in the area of visualization. If one wishes to do
3-D visualization for a general simulation on modern graphics hardware one must convert
your simulation data in to a GPU useable form i.e. vertices and textures. However, if you are
using GPGPU then this has already been done, and essentially “free” visualization can be
achieved by simply tacking onto the end of the simulation shaders the required calculations
for visualization. Although not shown here, we produced a number of such visualization
shaders. For example, one which used the v, w and d parameters of the FK4v model and
mapped them to the red, green and biue colours of the displayed tissue, allowing easy
observation of the evolution of the simulation parameters in “real-time”. We also produced
a pixel shader which highlighted phase singularities, so called filaments. The structure and

dynamics of which being an important area of study in cardiac simulations.

VIII. PREDICTION OF RE-ENTRY

Interestingly, much of the previous work on producing computational structures in RD
systems concentrated on neurological models and drew conclusions on such systems informed
by computational concepts, as shown by many of the references in this work. These in general
suggested links between computational functionality between neurons and electronics. We

shall now draw higher level conclusions for cardiac systems based on the theoretical basis of

13

computation itself rather than specific computational functions / structures.

Something of a Holy Grail in the field of cardiac electrophysiology would be a technique
which can observe an arbitrary piece of heart tissue, pin point the location of where tissue
behaviour is altered by disease or injury, and then states whether an electrical excitation
would be both re-entrant and self-sustaining. However, in so far as this would require analysis
of APs interacting with diseased cell structures within a cardiac model, this amounts to
asking if the program of a Turing-machine does not halt. Reversing the Halting problem in
this manner does nothing to render it any less impossible so such a technique is a logical
impossibility.

Although, one can play a get out of gaol free card in that long term re-entry sufficient to
cause iliness or death may not be the same as infinitely self-sustained. As such behaviour
merely needs to continue for a given finite period to produce ill effects/death. This does
not fall foul of the halting problem as the question “does this program keep running for a
given finite time” is quite possible. At the most basic level one just runs the program for
the given time and observes if it terminates. Although, the impossibility tends to leak into
the possible side, as the infinite form is merely a limiting case of the finite. Therefore, any
solution past this trivial one is likely to be extremely difficult.

This Turing completeness even suggests the possibility that cardiac cells could be used
as the basis of a bio-mechanical computing device, using either techniques close to that of a
TRDM or more prosaically using advanced cell patterning techniques, for example directed
cell growth using micro-contact printing of adhesive proteins [49], and essentially grow the

required logic circuit from heart tissue.

IX. CONCLUSION

In this work we have constructed the universal logic gate NOR using simulated cardiac
cells of two base defective types, clearly showing that diseased cells in simulated cardiac
tissue interacting with APs can be considered a Turing complete system. From this we
highlight that a methodology for deducing whether a given arrangement of abnormal tissue

produces self-sustaining re-entry is therefore a logical impossibility as it equates to a solution

of the Halting problem.

TX7T

e have further shown that GPGP

TT * 11

is a highly effective way of carrying out high end par-

14

allel computing on “domestic” hardware for cardiac simulations. Although major reworking
of any previous code framework is required, this cost can easily be out-wayed by the benefits
in gained computational power and speed, as well as the relative ease of visualization of the

system.

Acknowledgments

TYX7T

We would like to thank our current colleagues Tom Grove and Sebastian Sylvan of Rare
Ltd. (www.rareware.com) for assistance with the GPGPU aspects of this work. We would
also like to thank our previous colleagues Richard Clayton and Susheel Varma of the Uni-

versity of Sheffield for assistance with the cardiac aspects.

[1] D. P. Zipes and H. J. Wellers. Sudden Cardiac Death. Circuiation, 98:2334-51, 1998.
[2] M. J. Davies. Pathological view of sudden cardiac death. Br. Heart J., 45:88-96, 1981.
[3] S. Goldstein, J. R. Londis, R. Leighton, G. Ritter, C. M. Vasu, and A. Lantis. Characteristics of

the resuscitated out-of-hospital cardiac arrest victim with coronary heart disease. Circulation,

[4] A. Turing. The Chemical Basis of Morphogenesis. Philos. Trans. of the Royal Soc. of London
Series B, 237:631, 1952.

[5] http://www.gpgpu.org.

[6] R. H. Clayton. Computational models of normal and abnormal action potential propagation
in cardiac tissue: Linking experimental and clinical cardiology. Physiological Measurement,
22:R15-R34, 2001.

[7] A. Turing. On computable numbers, with an application to the entscheidungsproblem. Proc.
of the London Math. Soc., 42:230-265, 1936.

[8] L. Kuhnert. Photochemische Manipulation von chemischen Wellen. Naturwissenschaften,
76:96-7, 1986.

[9] L. Kuhnert, K. L. Agladze, and V. I. Krinsky. Image processing using light-sensitive chemical

waves. Nature, 337:244-7, 1989.

15

A. Adamatzky. Collision-based computing in Belousov-Zhabotinsky medium. Chaos, Solitons
and Fractals, 21:1259-64, 2004.

A. Adamatzky. Computing in Nonlinear Media and Automata Collectives. ToP, London, 2001.
A. Adamatzky. Computing with waves in chemical media: massively parallel reaction-diffusion
processors. IEICE Trans, 11:1748-56, 2004.

A. Adamatzky. Programming Reaction-Diffusion Processors. Lec. Notes in Comp. Sci.,
356:33-46, 2005.

N. G. Rambidi. Chemical-based computing and problems of high computational complexity:
The reaction-diffusion paradigm. In: Molecular Computing. The MIT Press, USA, 2003.

A. Adamatzky and B. P. J. De Lacy Costello. Collision-free path planning in the Belousov-
Zhabotinsky medium assisted by a cellular automaton. Naturwissenschaften, 89:474-8, 2002.
K. Agladze, N. Magome, R. Aliev, T. Yamaguchi, and K. Yoshikawa. Finding the optimal
path with the aid of chemical wave. Physica D, 106:247-54, 1997.

N. G. Rambidi and D. Rakovenchuck. Finding path in a labyrinth based on reaction-diffusion
media. Adv. Mater. Opt. Electron., 7:67-72, 1999.

O. Steinbock, A. Téth, and K. Showalter. Navigating complex labyrinths: optimal paths from
chemical waves. Science, 267:868-71, 1995.

A. Adamatzky, P. Arena, A. Basile, R. Carmona-Galan, B. De Lacy Costello, L. Fortuna, and

et al. Reaction-diffusion navigation robot control: from chemical to VLSI analogic processors.
IEEE T Circuits Syst-1, 51:926-38, 2004.

A. Adamatzky, B. De Lacy Costello, C. Mehuish, and N. Ratcliffe. Experimental implemen-
tation of mobile robot taxis with on board Belousov-Zhabotinsky chemical medium. Mat Sci
Eng C; 24:541-8, 2004.

H. Yamada T. Nakagaki and A. Téth. Intelligence: Maze solving by an amoeboid organism.
Nature, 407:470, 2000.

T. Nakagaki. Smart behaviour of true slime mould in a Labyrinth. Res. Microbol., 152:767-70,
2001.

A. Téth and K. Showalter. Logic gates in excitable media. J. Chem. Phys., 103:2058-66,
1995.

T. Ichino, Y. Igarashi, I. N. Motoike, and K. Yoshikawa. Different operations on a single

circuit: Field computation on an excitable chemical system. .J. Chem. Phys., 118:8185-90,

16

&2

[37]

)
2,

‘W
=/

[41]

2003.

I. N. Motoike and K. Yoshikawa. Information operations with multiple pulses on an excitable
field. Chaos, Solitons and Fractals, 17:455-61, 2003.

J. Sielewiesiuk and J. Gorecki. On the response of simple reactors to regular trains of impulses.
Phys. Chem. Chem. Phys, 4:1326-33, 2002.

I. Motoike and K. Yoshikawa. Information operations with an excitable field. Phys. Rev. E,

~r

‘oshikawa, and Y. Igarashi. On Chemical Reactors That Count. J. Phys.

(-
a
Q
=
@
aQ
e
\‘b—‘
o
!

Chem. A, 107:1664-9, 2003.

I. N. Motoike, K. Yoshikawa, Y. Iguchi, and S. Nakata. Real-time memory on an excitable
field. Phys. Rev. E, 63:036220, 2001.

C. Simone and S. Bandini. The reaction-diffusion metaphor for modelling cooperative work.
Prestige J. of Management and Research, 2:1-21, 1998.

S. Bandini and C. Simone. Integrating Form of Interaction in a Distributed Model. Funda-
menta Informaticae, 61:1-17, 2004.

S. Bandini, G. Mauri, G. Pavesi, and C. Simone. Computing with a Distributed Reaction-
Diffusion Model. Lec. Notes in Comp. Sci., 3354:93-103, 2005.

Crackdown. Realtime Worlds, Microsoft Game Studios, 2007.

Okami. Capcom, 2006.

Prince of Persia. Ubisoft, To be published.

A. Lake. Cartoon Rendering Using Texture Mapping and Programmable Vertex Shaders.
Game Programming Gems, 2:444-51, 2001.

B. Freudenberg, M. Masuch, and T. Strothotte. Real-Time Halftoning: Fast and Simple
Stylized Shading. Game Programming Gems, 4:443-9, 2004.

M. Harris. Mapping Computational Concepts to GPUs. GPU Gems, 2:Chapter 31, 2005.

J. D. Owens et al. A Survey of General-Purpose Computation on Graphics Hardware. Furo-
physics 2005, State of the Art Reports:21-51, 2005.

W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig. Accelerating molecular dynamics sim-

ulations using Graphics Processing Units with CUDA. Compuier Physics Communications,

179:634-641, 2008.

C)

P. Richmond and S. Coakley. A High Performance Agent Based Modelling Framework on

17

Graphics Card Hardware with CUDA. Proc. of 8th Int. Conf. on Autonomous Agents and
Multi-agent systems, to be published.

M. Nagle. Games Consoles Reveal their Hidden Power. New Scientist, 2643:26—7, 2008.

D. Robson. From CPU to GPU. HPC for Science, 1:8-10, 2008.

F. Fenton and A. Karma. Vortex dynamics in three-dimensional continuous myocardium with
fibre rotation: Filament instability and fibrillation. Chaos, 8:20—47, 1998.

S. Scarle and R. H. Clayton. Initiation of re-entry in an excitable medium: A Structural
investigation of cardiac tissue using a genetic algorithm. Chaos, 16:03315, 2006.

R. FitzHugh. Biophysics. J., 1:1961, 2008.

T. Yamaguchi K. Agladze, R. Aliev and K. Yoshikawa. Chemical Diode. J. Phys. Chem.,
100:13895-7, 1996.

T. Yamaguchi et al. Unidirectionality of Chemical Diodes. ACH-Models in Chem., 135:401,
1998.

J. Tan et al. Simple approach to micro-pattern cells on common culture substrates by tuning

wettability. Tissue Eng., 10:865-72, 2004.

18

input
Gate| 1 | 2 |Output
AND|1 |1 1
110 0
0|1 0
010 0
OR |1]1 1
110 1
011 1
010 0
NOT|1 |- 0
0]- 1
XOR|1 |1 0
110 1
011 1
010 0

TABLE I: The standard logic gates.

J | description | ion

f

so|slow outward | Kt

fast inward |Nat

o~

si| slow inward |Cat

‘ABLE II: Description of ionic currents used in the Fenton Karma 4 variable model.

19

green value description
0 set V,,, to blue
1 add blue to V,,
2 add blue percent to V,,
3 reset all cells values to starting values

ABLE III: Types of stimulation that can be applied by the Zapp shader.

| MARD

MARD

| MNARD

FIG. 1: Example of the universality of the NAND gate, the function of an OR gate produced from

a set of NAND gates.

FIG. 2: Screen capture from the XBox 360 showing the basic structure of our OR gate. Blue being

the abnormal cells and black being normal endocardial cells.

20

ond

,,,,,,,

sec

per

1000

Iterations

w
(e}
(e}

™~
N
AN
AN]
AN
o
AN
AN
AN
AN
“ 4
.
AN
AN
AN
AN
_]
.
\
\‘\
N
\
* \ . B
NA
. T~
50 100 150 200

Square Size / cells to a side

FIG. 3: Plot comparing speed of simulation in frames/iterations per second for varying sizes of

simulated tissue square for the CPU and GPGPU implementations. Broken line being CPU and

solid line being GPU.

21

Output

Input

Input 1

P — —
\L \\\\\\\ |] | :
- B |

\b : 5 \\\\\\\A, o | 5
- - = - = ; -

. \L“ \\\\\\\Af \\\\\\\ J.

[[===
=
—
\Lw e
\L . \L st \\\\l\ﬁ : - F :
- T
A S S lH [J,_) L .l,,;
3 ¢ _— : _— 4 :
— ===
. 2 = 2 = [RE
g (P (B
; N I i

ﬁo L) I \F, N)

e ZFC abnormal cell type.

lots of voltage against time for each input regime and th

a W

Abscissa being membrane voltage in arbitrary units and the ordinate being the simulated time in

seconds.

22

FIG. 5: A detail of a screen shot from the XBox 360 showing diode structure. Blue being the

diffusive abnormal cells and black being normal endocardial cells.

23

FIG. 6: Snapshots of the diode in action, showing and outward AP passing through and the block

of a returning AP.

