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Abstract

Abstract

We show novel techniques of analysing complex dynamics of cellular
automata (CA) with chaotic behaviour. CA are well known computational
substrates for studying emergent collective behaviour, complexity,
randomness and interaction between order and disorder. A number of
attempts have been made to classify CA functions on their spatio-temporal
dynamics and to predict behaviour of any given function. Examples
include mechanical computation, λ and Z -parameters, mean field theory,
differential equations and number conserving features. We propose to
classify CA based on their behaviour when they act in a historical mode,
i.e. as CA with memory. We demonstrate that cell-state transition rules
enriched with memory quickly transform a chaotic system converging to a
complex global behaviour from almost any initial condition. Thus just in
few steps we can select chaotic rules without exhaustive computational
experiments or recurring to additional parameters. We provide analysis of
well-known chaotic functions in one-dimensional CA, and decompose
dynamics of the automata using majority memory.
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Introduction Antecedents

Objective and goal

In this talk we will display a simple tool to extract complex systems from a
family of chaotic discrete dynamical system.
We will employ a technique named memory based rule analysis of using
past history of a system to construct its present state and intent predict its
future.

chaotic 
CA

complex 
CA

transformed to

MEMORY: depend on the state and history of the system
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Introduction Antecedents

Cellular automata

Cellular automata (CA) are discrete dynamical systems evolving on an
infinite regular lattice.

Definition

A CA is a 4-tuple A =< Σ, u, ϕ, c0 > evolving in d-dimensional latice,
where d ∈ Z+. Such that:

Σ represents the alphabet

u the local connection, where, u = {x0,1,...,n−1:d |x ∈ Σ}, therefore, u
is a neigborhood

ϕ the local function, such that, ϕ : Σu → Σ

c0 the initial condition, such that, c0 ∈ ΣZ

Also, the local function induces a global transition between configurations:

Φϕ : ΣZ → ΣZ .
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Introduction Antecedents

Dynamics in one dimension

central cell

neigborhood

left neighbor right neighbor

t

t+1

t+n

boundary limit define a ring

evolution space Elemental CA (ECA) is defined as follow:

• Σ = {0, 1}
• u = {x1, x0, x−1} such that x ∈ Σ

• the local function ϕ : Σ3 → Σ

• c0 the initial condition is the first ring with t = 0
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Introduction Antecedents

Wolfram’s classification

Wolfram defines his classification in simple rules [Wolfram86], known as
ECA. Also, this classification is extended to n-dimension.

Classes

A CA is class I, if there is a stable state xi ∈ Σ, such that all finite
configurations evolve to the homogeneous configuration.

A CA is class II, if there is a stable state xi ∈ Σ, such that any finite
configuration become periodic.

A CA is class III, if there is a stable state, such that for some pair of
finite configurations ci and cj with the stable state, is decidable if ci

evolve to cj .

Class IV includes all CA also called complex CA.
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Introduction Antecedents

Wolfram’s classes

Rule 32 Rule 15

Rule 90 Rule 110

Figure: Behavior classes in ECA: uniform, periodic, chaotic and complex.
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Introduction Chaotic ECA

The case of study: ECA Rule 86 and 101

ϕR101 =
{

1 if 110, 101, 010, 000
0 if 111, 100, 011, 001ϕR86 =

{
1 if 110, 100, 010, 001
0 if 111, 101, 011, 000

Figure: Chaotic ECA evolution rules 86 and 101 respectively. Initial density start
with a 50% on a ring of 172 cells to 190 generations.
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Introduction Chaotic ECA

Mean field analysis

Mean field theory is a proven technique for discovering statistical properties of CA
without analyzing evolution spaces of individual rules. In this way, it was proposed to
explain Wolfram’s classes by probability theory, resulting in a classification based on
mean field theory curve:

class I: monotonic, entirely on one side of diagonal;

class II: horizontal tangency, never reaches diagonal;

class III: no tangencies, curve crosses diagonal.

class IV: horizontal plus diagonal tangency, no crossing;

Thus for one dimension we have:

pt+1 =
k2r+1−1X

j=0

ϕj(X )pv
t (1− pt)

n−v (1)

such that j is a number of relations from their neighborhoods and X the combination of

cells xi−r , . . . , xi , . . . , xi+r . n represents the number of cells in neighborhood, v indicates

how often state one occurs in Moore’s neighborhood, n − v shows how often state zero

occurs in the neighborhood, pt is a probability of cell being in state one, qt is a

probability of cell being in state zero (therefore q = 1− p).
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Introduction Chaotic ECA

Mean field polynomial for ϕR86 and ϕR101

Initially ϕR86 has produces states zero and one equiprobably. There is an equilibrium of states in
Φ. Initially ϕR86 has produces states 0 and 1 equiprobably. There is an equilibrium of states in
Φ. On the other hand, ϕR86 determines a surjective correspondence and therefore all the
configuration has at least one ancestor and no Garden of Eden configurations.
For ϕR101 has the same probability as ϕR86 to produce states one and zero. However ϕR101 is
not a surjective rule and therefore has the Garden of Eden configurations, i.e., not all
configurations have ancestors.

pt+1 = 2p2
t qt + ptq

2
t + q3

tpt+1 = 3ptq
2
t + p2

t qt

p p

q q

ϕR86 ϕR101
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ECA with memory

ECA with memory

Conventional CA are ahistoric (memoryless): i.e., the new state of a cell depends on the
neighborhood configuration solely at the preceding time step of ϕ. CA with memory can
be considered as an extension of the standard framework of CA where every cell xi is
allowed to remember some period of its previous evolution.
Thus to implement a memory we design a memory function φ, as follow:

φ(x t−τ
i , . . . , x t−1

i , x t
i )→ si (2)

such that τ < t determines the degree of memory backwards and each cell si ∈ Σ being
a state function of the series of states of the cell xi with memory up to time-step.
Finally to execute the evolution we apply the original rule as follows:

ϕ(. . . , s t
i−1, s

t
i , s

t
i+1, . . .)→ x t+1

i .

Thus in CA with memory, while the mapping ϕ remains unaltered, historic memory of all

past iterations is retained by featuring each cell as a summary of its past states from φ.

Therefore cells canalize memory to the map ϕ.
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ECA with memory

ECA with memory

classic ECA (ahistorical) ECA with memory

φm:τ

t− τ

...

{si}

t

ϕ

t

ϕ

...

t− 1

t + 1

t + 1

temporal ring storing memory

Figure: Dynamic of MEMORY working on ECA.
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ECA with memory

ECA with memory

Firstly we should consider a kind of memory, in this case the majority
memory φmaj and then a value for τ . This value represent the number of
cells backward to consider in the memory. Therefore a way to represent
functions with memory and one ECA associated is proposed as follow:

φCAm:τ (3)

such that ca represents the decimal notation of an specific ECA and m a
kind of memory given. This way the majority memory working in ECA rule
86 checking tree cells on its history is denoted simply as φR86maj :3.
Implementing the majority memory φmaj we can select some ECA and
experimentally look what is the effect.

Genaro (UWE UK) Complex Cellular Automata ICCSA 2009 13 / 25



ECA with memory ECA with memory on ϕR86 and ϕR101

Complex dynamics emerging in ϕR86 with majority memory

τ = 3 τ = 4 τ = 5

τ = 6 τ = 7 τ = 8 τ = 9

ϕR86

Figure: Majority memory φmaj working in ϕR86 with τ values of 3 to 9
respectively, evolving with the same random initial condition. Also a filter is used
to get a better view.
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ECA with memory ECA with memory on ϕR86 and ϕR101

Complex dynamics emerging in ϕR101 with majority
memory

τ = 3 τ = 4 τ = 5

τ = 6 τ = 7 τ = 8 τ = 9

ϕR101

Figure: Majority memory φmaj working in ϕR101 with τ values of 3 to 9
respectively. Also a filter is used to get a better view.
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ECA with memory ECA with memory on ϕR86 and ϕR101

Complex dynamics emerging since chaos

classic (ahistoric) with memory

selecting memory

φR101maj:4ϕR101
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ECA with memory ECA with memory on ϕR86 and ϕR101

Complex dynamics emerging since chaos

classic (ahistoric) with memory

selecting memory

ϕR86 φR86maj:8
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ECA with memory ECA with memory on ϕR86 and ϕR101

Complex dynamics emerging since chaos

Implementing memory on ECA with OSXCA systems. Free software
available since:

http://uncomp.uwe.ac.uk/genaro/OSXCASystems.html

some simulations ...
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ECA with memory Solving some problems with complex ECA

Self-organization by structure formation in φR101maj :4

Patterns as particles and non-trivial behavior emerging in these new ECA with memory
φR86maj and φR101maj , naturally conduce to known problems as self-organization.

∅g1 g2 g3 g4 g5

Figure: Self-organization by particle collisions to form the set GφR101maj :4
, also

evolution is filtered to get a better view.
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ECA with memory Solving some problems with complex ECA

Implementing basic functions (unconventional computing)

Also we can use the particles codification to represent solutions of some
basic functions. Of course, thinking how a complex systems could be
organized and controlled to get a construction, as computation.
Let consider the new ECA rule φR86maj :8. Because we want to implement
a simple function as addToHead working on two strings w1 = A1, . . . ,An

and w2 = B1, . . . ,Bm, such that, n,m ≥ 1. For example, if w1 = AAA,
w2 = BBB and w3 = w1w2 then the addToHead(|w2|) will yield:
w3 = w2w1. As the next diagram shows.

A     A     A     B     B     B

B     B     B     A     A     A

Figure: Schematic diagram adding the string w2 to head of the list w3.
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ECA with memory Solving some problems with complex ECA

Implementing basic functions (unconventional computing)

AAAAAAAAAAAAABBBBBBBBBBBB

Figure: A simple substitution system processing the word A12B12 to B12A12 with
ECA φR86maj :8 synchronizing particle reactions.
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ECA with memory Solving some problems with complex ECA

Implementing basic functions (unconventional computing)

Figure: middle state transition with multiple collisions ...
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ECA with memory Solving some problems with complex ECA

Implementing basic functions (unconventional computing)

BBBBBBBBBBBBAAAAAAAAAAAAA

Figure: The final production is reached to 6,888 generations with synchronization
of soliton reactions and coding particles.
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Final remarks Conclusions

Final remarks and future work

Conclusions

1 We have demonstrated that memory in ECA offers a new approach to
discover complex dynamics based on particles and non-trivial reactions
across them.

2 We have enriched some chaotic ECA rules with majority memory and
demonstrated that by applying certain filtering procedures we can extract
rich dynamics of travelling localizations, or particles.

3 This way the memory can be applied on any CA or dynamical system.

Next stage

Done a systematic analysis in ECA and other orders of CA, including more
dimensions.

Proof formally such results and inherent implications of types of memory.

Look universal computing devices since ECA with memory.
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Thanks

Thank you for your attention!
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