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Abstract

This paper presents a novel X-ray Computed Tomography (CT) image analy-

sis method to characterise the Fracture Process Zone (FPZ) in scaled centre-

notched quasi-isotropic carbon/epoxy laminates. A total of 61 CT images of

a small specimen were used to fine-tune a pre-trained Convolutional Neural

Network (CNN) (i.e., VGG16) to classify fibre orientations. The proposed

CNN model achieves a 100% accuracy when tested on the CT images of the

same scale as the training set. However, the accuracy drops to a maximum of

84% when tested on unlabelled images of the specimens having larger scales

potentially due to their lower resolutions. Another code was developed to
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automatically measure the size of the FPZ based on the CNN identified 0◦

plies in the largest specimen which agrees well with the manual measurement

(on average within 3.3%). The whole classification and measurement process

can be automated without human intervention.

Keywords: Laminates; Fracture; X-ray Computed Tomography;

Convolutional Neural Network

1. Introduction

A size effect describes the change of strength with specimen dimensions [1].

It has significant implications on the strength prediction of full-scale aerospace

structures, which were proven to be challenging [2, 3]. Previously, in-plane

scaled centre-notched quasi-isotropic (QI) carbon/epoxy specimens were tested,5

and the tensile strength was found to decrease with increasing specimen di-

mensions [4]. The size effect was associated with a Fracture Process Zone

(FPZ) ahead of the centre-notch tips. It is crucial to characterise the FPZ

in order to explain the size effect in QI laminates.

FPZ was studied by using a variety of techniques including Digital Image10

Correlation (DIC) [5, 6, 7], and X-ray Computed Tomography (CT) [4, 8, 9].

DIC can generate surface strain fields automatically, which is then associated

with the size of FPZ via some assumptions, e.g., force equilibrium being

achieved at the FPZ boundary in [6]. Compared with DIC, CT scanning

can objectively quantify internal damage, such as in 0◦ plies, and accurately15

determine the size of the FPZ. By using CT scans, it was found that the

size of the FPZ, which was quantified by the fibre breakage length in the

0◦ plies, initially scaled with the notch size and then approached a plateau
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at larger scales, leading to a change of scaling law [4]. However, processing

CT data is a time-consuming manual process. Automation of CT analysis20

for FPZ characterisation can potentially further promote the adoption of CT

scanning.

Convolutional Neural Networks (CNN) are an excellent tool for computer

vision tasks like image recognition and classification. CNNs are usually built

using three types of layers: i) convolutional layers, ii) sub-sampling layers,25

and iii) fully connected layers. The convolutional layers employ a set of filter

masks, also called feature detectors, to capture the relevant patterns (i.e.,

feature maps) in the dataset images. Once the relevant features of the images

are detected, sub-sampling (or pooling) layers are usually utilized to decrease

the feature maps’ spatial resolution, which in turn reduces the reliance on30

precise positioning within feature maps produced by the convolutional lay-

ers. Disregarding the exact position of features within a feature map while

maintaining the relative position of features with respect to each other al-

lows for a better CNN performance on inputs that relatively differ from the

training data. The final convolutional or sub-sampling layer is flattened and35

connected to fully connected layer(s) to perform the classification task.

CNNs have been used to analyse images of advanced materials, such as a

bicontinuously nanostructured copolymer [10], and 3D-printed metal [11] to

characterise cracks. Trained by finite element simulations, these CNNs de-

rived accurate fracture properties, including crack length and fracture tough-40

ness. CNNs have been widely applied to medical CT analysis, such as for

intraoperative imaging, to improve surgical precision as reviewed by Alam

et al. [12]. However, only a few articles were published on CT analysis of
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advanced composites using CNNs. For example, Yang et al. [13] adopted a U-

net CNN to reconstruct a rubber composite structure from only tens of µCT45

images. Chen et al. [14] also adopted a U-net deep CNN to create digital ma-

terial twins for woven ceramic-matrix composites from µCT images. Tian et

al. [15] used a mask and regional CNN to detect local cracks from CT images

of concrete. A deep CNN was also used to detect surface or near-surface

defects in composites from X-rays [16]. Some work on characterization of50

individual fiber orientation has been done using dictionary-learning [17] in

which a segmentation method could accurately extract individual fibres from

low contrast X-ray scans of composites with high fibre volume fraction. How-

ever, classification of fibre orientations using CNNs from CT images has not

been done. This is extremely useful for the determination of fracture prop-55

erties of composites, such as the size of the FPZ.

This paper presents a novel CT analysis method using a CNN for classi-

fication of fibre orientations and then another code to measure FPZs. The

proposed workflow is established to automatically measure the FPZ size in

centre-notched QI carbon/epoxy laminates in two steps. First, a pre-trained,60

fine-tuned VGG16 CNN was trained using labelled CT images of the centre-

notched specimens from interrupted tests at 95% of average failure load.

Then, the CNN was applied to the unlabelled CT images of the other centre-

notched specimens having different scales to classify their fibre orientations.

A test accuracy of 100% for the former and a maximum prediction accuracy65

of 84% for the latter were achieved. After the 0◦ plies were identified, the

size of the FPZ in the largest centre-notched specimen was automatically

measured to understand the size effect by using an image analysis workflow.
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To the author’s best knowledge, this paper is the first to use a CNN for the

classification of fibre orientations in multi-directional composites from CT70

images. The present method can potentially automate CT analyses for FPZ

evolution with notches. In doing so, it can improve accuracy and efficiency

and reduce potential human errors.

2. Experiments

A schematic of the in-plane scaled centre-notched QI specimens is shown75

in Figure 1(a). The specimens with a notch length of C = 3.2 mm is referred

to as the baseline, C = 6.4 mm as Scale 2, C = 12.7 mm as Scale 4 and C =

25.4 mm as Scale 8. The schematic of the largest centre-notched specimens

with a notch length of C = 50.8 mm (Scale 16) is shown in Figure 1(b).

Only their width and notch length are doubled from the Scale 8 specimens,80

while their gauge length remains the same. Scale 16 specimens were not fully

scaled due to limitations of the facilities. It was found that the specimens

with a halved gauge length of the baseline specimens had a similar tensile

strength within 3% [4].

The material used was HexPly® (Hexcel, US) IM7/8552 carbon-epoxy85

unidirectional pre-preg with a cured nominal ply thickness of 0.125 mm.

The stacking sequence was [45/90/-45/0]4s, for all the sizes. The nominal

specimen thickness was 4 mm. The centre notches were cut with a 1 mm end

mill on a Computer Numerical Controlled milling machine. Then the notch

tips were manually extended by using 0.25 mm-wide piercing saw blades.90

250kN Instron and 500kN Dartec hydraulic-driven test machines were

used. The scaled specimens were tested under tension using displacement
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control with scaled loading rates for different gauge lengths, e.g., 0.25 mm/min

for the baseline, 0.5 mm/min for Scale 2, 1 mm/min for Scale 4, 2 mm/min

for Scale 8 and Scale 16. Interrupted tests in which the tests were stopped95

at 95% of the average failure load were carried out. The tensile test results

were documented in by Xu et al. [4].

A single specimen from each size was examined by CT scanning to mea-

sure the FPZ, so a total of five specimens were scanned. The specimen from

the interrupted tests were soaked in a bath of zinc iodide penetrant for three100

days. A Nikon XT H 225 ST CT scanner was used to scan the specimens

from interrupted tests. The scanner has a 3 µm focal spot size, but the spa-

tial resolution varies with the specimen size. For example, the CT images

of the scaled centre-notched specimens reported by Xu et al. [4] had a pixel

size of 18 µm for the baseline, 20 µm for Scale 2, 47 µm for Scale 4 and 71105

µm for Scale 8. The CT images of the largest Scale 16 specimens were not

reported by by Xu et al. [4] because they were too large for the CT scan-

ner to generate quality images. In this paper, the largest Scale 16 specimen

from the interrupted test for CT scanning was cut down to a narrower strip

parallel to the centre notch, so the X-ray source could be placed closer to110

the notch tips to achieve a pixel size of 106 µm. The edges of the strip were

kept away from the centre notch, so no further damage was introduced to the

existing FPZ at the notch tip as shown in Figure 2. The 3D CT volumes were

segmented into 2D CT images for each ply through the specimen thickness

in VG Studio Max (Volume Graphics, Germany). The previously labelled115

CT images from the single CT scan of the Scale 2 specimen were used for

training, validation, and testing of the CNN for image classification. Then
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the CNN was applied to the unlabelled CT images of Scale 4, Scale 8, and

the new Scale 16 specimens to classify their fibre orientations. The details

are explained in Section 4.1.120

3. CNN Methodology

Training a CNN from scratch to obtain a high classifier accuracy requires

significantly more training data than is feasible in this case due to the expen-

sive nature and the human resources necessary to run the CT scans. Data

augmentation and transfer learning were used in this paper to overcome the125

relatively limited training set size. Additionally, the CT images were stan-

dardized by making the mean of the entire dataset equal to zero and the

standard deviation equal to one. Transfer learning allows for good accuracy

when dealing with small datasets by taking a pre-trained Neural Network and

re-purposing its learned features and weights to model a different dataset.130

The ability of several well-known CNN architectures and weights to fit and

classify our dataset was investigated (e.g., ResNet50 [18], InceptionV3 [19],

and VGG16 [20]). A fine-tuned version of VGG16 yielded the best accuracy

in our case, with a 100% ability to provide the correct classification for the

considered testing set using labelled CT images.135

VGG16 won the first and second places in the ImageNet large-scale vi-

sual recognition competition (ILSVRC) 2014 in the localization and the

classification tasks, respectively. The ImageNet dataset used in training

VGG16 includes over 14 million images belonging to around 22 thousand

categories [20, 21]. VGG16 comprises 16 trainable layers interspersed with140

sub-sampling layers, as shown in Figure 3, and is considered as one of the
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excellent vision model architectures. In this paper, the pre-trained weights of

the convolutional layers have been maintained while optimizing the weights of

the two last fully connected layers to model the dataset. A stochastic gradient

descent optimizer was adopted with a learning rate of 10−3, a decay of 10−6,145

and a 0.9 momentum paired with Nesterov’s accelerated gradient [22, 23].

4. Results

4.1. Classification of fibre orientations using a CNN

The objective of the proposed CNN is to classify fibre orientations in

the in-plane scaled center-notched specimens into three classes, 0◦, 45◦, and150

90◦ plies, based on CT images from the interrupted tests according to the

flowchart in Figure 6. A total of 61 labelled CT images from the Scale 2

interrupted test were used for the i) training, ii) validation and iii) testing of

the CNN. All above images were augmented by horizontal flipping, rotating,

and shifting the original CT images in each set using Keras’s image data155

generator class [22]. The baseline specimen has a different damage pattern

in the centre 0◦ ply compared to other sizes, so it is not used in the CNN.

The Scale 2 images have better quality than the even larger scales, so are

chosen for training. The Scale 2 images were approximately split into an 80%

training set and a 20% validation & testing set. Specifically, the training160

set comprised 12 CT images of the 0◦ plies, 25 of the 45◦ plies, and 12 of

the 90◦ plies. The validation & testing set contained 4 CT images of the

0◦, 4 of the 45◦, and 4 of the 90◦ plies. Each ply was sliced once. The

CNN reached a 100% model accuracy after 20 epochs, based on a categorical

cross-entropy loss function. Figure 4 contains the accuracy (left) and loss165
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function value (right) of a trained model showing a 100% model accuracy.

The corresponding confusion matrix normalized by the numbers of tested

images for each considered fibre orientation is shown in Figure 5. It shows

fibre orientation prediction; diagonal-terms all being 1 mean that the trained

model identified all fibre orientation correctly. They show that the predicted170

fibre orientations agree extremely well with the true fibre orientations within

the training set. The total run time was 1.7 seconds and the time per step at

the final epoch was 0.27 seconds, demonstrating the computational efficiency

of the current CNN model.

Once training, validation, and testing were completed based on the Scale175

2 CT images, the CNN was also applied to Scales 4, 8, and the new Scale

16 CT images to predict their fibre orientations. The prediction accuracy

dropped to 83.9% for Scale 4, 62.6% for Scale 8, and 60.1% for Scale 16 as

shown in Figure 7. This means that when the scale of the target CT images

is closer to that of the training dataset, the prediction accuracy is higher.180

However, it was preferred to use the CNN trained by the Scale 2 CT images to

identify the 0◦ plies of the largest Scale 16 specimen for two practical reasons:

i) this proposed bottom-up approach is more in line with the test pyramid

approach for real-world applications and ii) the new FPZ measurements for

Scale 16 specimens are more representative of the material properties since185

the FPZ from the smaller specimens are not fully developed [4].

4.2. FPZ characterisation

The FPZ size is defined as the average horizontal distance between the

furthest fibre breakage point to the notch tip in the single 0◦ plies. The

furthest fibre breakage point is often marked by the last 0◦ split in the speci-190
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men, but practically represented the furthest pixel in black in the CT images.

Previously, the size of FPZ was measured manually for the baseline, Scale 2,

Scale 4, and Scale 8 specimens as shown in Figure 8 [4]. In the current study,

the FPZ measurements were done both manually and automatically based

on the new set of CT images from the Scale 16 specimen. A spatial scale was195

printed on the images during the CT analysis (Figure 9). After the CNN was

trained and used to identify the 0◦ plies, a workflow was developed to auto-

matically post-process the CT images by isolating the spatial scale and the

crack to measure its dimensions as shown in Figure 6. First, the images were

cropped and resized while preserving the original images’ aspect ratio. The200

crack and spatial scale’s colour gamut was then isolated from the rest of the

image. The scale to pixel ratio was then calculated from the filtered image,

which was then used to calculate the size of the FPZ based on the number of

pixels occupied by the crack. As a comparison, manual measurements were

also done using the software Image J (National Institutes of Health, US) by205

comparing the number of pixels for the FPZ and that for the scale.

The automatic measurements of the FPZ are compared with the manually

measured values in Table 1. From the first 9 images out of the total 12

considered, the automatically measured FPZ size is 2.79 mm, with an average

relative percentage error of 3.3% from the manual measurement. The last210

three measurements, however, show a large discrepancy. The reason for this

is because some excessive dye penetrant remains in the pre-existing crack tip,

which misleads the code to believe that it is part of the FPZ (Figure 10).

These three measurements are an artifact of the image processing analysis,

so they are excluded when calculating the size of the FPZ.215
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5. Discussion

One may argue that this satisfactory result (a 100% model accuracy)

emanates from over-interpretation (or over-fitting) of the training dataset.

This may be true for a small dataset (≤ 100 data) used for training. In

this work, a VGG16 is a backbone CNN architecture and fine-tuned with220

optimizing the weights of only last fully connected layers (Figure 3). As

previously stated, data augmentation and transfer learning was applied to

try to avoid potential over-fitting of the model. The CNN model is currently

being improved with cross-validation, feature selection, and regularization

techniques to simplify its architecture, thus overcoming potential over-fitting225

issue.

It is not surprising that the accuracy drops, depending on how different

the scale of the target CT images is from the training dataset. The CNN

generally predicts the fibre orientations from the CT images of the relatively

smaller specimens (Scale 4) more accurately than from the larger specimens230

(Scales 8 and 16). This is partially due to nosier CT data and poorer CT

image quality at the larger scales. More work is needed to improve the

proposed CNN prediction accuracy when dealing with the unlabelled CT

images of different specimen sizes.

A question that arises from this paper is, “Human vs. Machine learning,235

which is better?”. When identifying the fibre orientations in the centre-

notched QI carbon/epoxy laminates, the CNN initially showed a high accu-

racy level. However, the code showed limitations when measuring the FPZ

from the identified 0◦ plies, such as not recognizing the excessive dye pene-

trant. This illustrates that the second automated step for FPZ measurement240
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could be further improved, e.g., by creating a mask using a threshold opti-

mized for each CT image.

The new CT images confirm that the measured FPZ size of the Scale 16

specimens (C = 50.8 mm) does not double when compared to the previously

reported 2.28 mm for the Scale 8 specimens (C = 25.4 mm) [4]. Instead,245

it approaches an approximately constant size while the notched strength

approaches a fracture-mechanics scaling asymptote [4].

6. Conclusions

A Convolutional Neural Network (CNN) has been successfully imple-

mented for in-plane scaled centre-notched carbon/epoxy quasi-isotropic (QI)250

laminates to classify fibre orientations based on X-ray Computed Tomogra-

phy (CT) images. It achieved a 100% test accuracy on the labelled Scale 2

CT images (the same scale as the training set) and a maximum prediction

accuracy of 84% using the unlabelled CT images of the other sized spec-

imens (Scales 4, 8 and 16). After the 0◦ plies were identified, the size of255

the FPZ from the new CT images of the Scale 16 specimens was automati-

cally measured using another newly developed image processing code. The

automatically measured FPZ size agrees well with the manually measured

average value using Image J with an average relative error of 3.3%. The

current method enables the automation of FPZ characterisation from CT260

images, potentially eliminating human interventions while maintaining good

accuracy.
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(a) (b)

Figure 1: Schematic of (a) in-plane scaled centre-notched specimens with C = 3.2 to 25.4

mm and (b) largest specimen with C = 50.8 mm.

(a) (b)

(c) (d)

Figure 2: Typical CT images of Scale 16 specimen (a) 45◦ (b) 90◦ (c) -45◦ (d) 0◦.
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Figure 3: Proposed CNN architecture based on VGG16 with fine-tuning.

Figure 4: Proposed CNN model: model accuracy (left) and loss function value (right) over

epochs.
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Figure 5: Normalized confusion matrix showing an excellent agreement between actual

and predicted fibre orientations; diagonal terms being 1 means 100% accuracy, using the

training dataset.
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Figure 6: Two-step FPZ characterization process: CNN for fibre orientation identification

and followed by automated post-processing for FPZ characterisation.

Figure 7: CNN model prediction accuracy on unlabelled CT images (not to scale).
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Figure 8: CT images of typical single 0◦ plies in scaled centre-notched specimens.

Figure 9: Automated crack measurements using the CT image of a 0◦ ply.
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Figure 10: Over-estimated crack length due to excessive dye penetrant (in red circle).

Table 1: Comparison of FPZ measurements based on the 0◦ plies.

Image No. Manual measurement Automatic measurement Error

1 2.85 2.79 -2.11%

2 2.74 2.71 -1.09%

3 2.74 2.81 2.55%

4 2.96 2.92 -1.35%

5 2.74 2.69 -1.85%

6 2.96 2.69 -9.12%

7 3.28 3.16 -3.66%

8 2.74 2.61 -4.74%

9 2.96 2.72 -8.11%

Mean 2.88 2.79 -3.27%

CVa 6.23% 5.92%

10b 2.96 4.99 68.8%

11b 2.85 4.74 66.5%

12b 3.39 5.34 57.3%
a Coefficient of Variation

b Measurements influenced by excessive dye penetrant are excluded

23


	Introduction
	Experiments
	CNN Methodology
	Results
	Classification of fibre orientations using a CNN
	FPZ characterisation

	Discussion
	Conclusions
	Acknowledgements
	Data availability

