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Abstract
Dual-arm robot manipulation is applicable to many domains, such as industrial, medical, and home service scenes. Learning from 
demonstrations is a highly effective paradigm for robotic learning, where a robot learns from human actions directly and can be 
used autonomously for new tasks, avoiding the complicated analytical calculation for motion programming. However, the learned 
skills are not easy to generalize to new cases where special constraints such as varying relative distance limitation of robotic end 
effectors for human-like cooperative manipulations exist. In this paper, we propose a dynamic movement primitives (DMPs) based 
skills learning framework for redundant dual-arm robots. The method, with a coupling acceleration term to the DMPs function, is 
inspired by the transient performance control of Barrier Lyapunov Functions. The additional coupling acceleration term is calculated 
based on the constant joint distance and varying relative distance limitations of end effectors for object-approaching actions. In 
addition, we integrate the generated actions in joint space and the solution for a redundant dual-arm robot to complete a human-
like manipulation. Simulations undertaken in Matlab and Gazebo environments certify the effectiveness of the proposed method.

Keywords  Dynamic movement primitives (DMPs) · Robotic skill learning · Barrier Lyapunov Functions (BLFs) · 
Cooperative manipulation · Redundant robot arm

Introduction

With the development of artificial intelligence (AI) and mod-
ern engineering technology, robots are widely used in the 
industry and military domains [1, 2] to complete dexterous 
manipulation such as grasping and holding [3] objects, etc. 
Compared with a single-arm robot, the dual-arm robot can 
complete more complex tasks and take heavier objects through 
the cooperative actions of two robot arms [4], which draws a 
great of attention in academic and industrial areas [5–7].

Different from traditional analytical methods spending 
a lot of time for system modelling, trajectory planning, 
and force control, learning from demonstration (LfD) is a 
new paradigm that robots acquire new skills by learning to 
imitate an expert that is easy to be extended and adapted 
to novel situations and draws more and more attention in 
recent years [8–11]. Some researchers used a dual-arm 
robot for robotic skill learning and training which benefits 

the isomorphic structure of the two arms: the operator use 
one arm to record robotic motions and the other robot arm is 
used as an actuator [12–15]. There are great series of robotic 
skill learning methods, such as the Hidden Markov model 
(HMM), Gaussian mixture model (GMM) and Gaussian 
mixture regression (GMR), and Dynamic movement primi-
tives (DMPs). Compared with HMM and GMM-GMR, 
DMPs are easier to be explained and have linearity in the 
parameters of expressions with robustness, and continuity.

Due to the advantages, DMPs were widely used for dual-
arm robot skill learning. Kulvicius et al. proposed sensory 
feedback together with a predictive learning mechanism that 
allows tightly coupled dual-agent systems to learn an adap-
tive, sensor-driven interaction based on DMPs [16]. Gams 
et al. reckoned that the original DMPs function should be 
modified by adding not only acceleration term but also veloc-
ity term, to get a smoother interaction. So they proposed the 
coupling of originally independent robotic trajectories by 
expanding framework of DMPs, which enables the biman-
ual execution tightly coupled for cooperative tasks [17]. 
Zhao et al. presented a reinforcement learning (RL) algo-
rithm called the policy improvement with path integrals for 
sequences of DMPs (SDMPs) to learn and adjust recorded 
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trajectories of dual-arm robot cooperative manipulation 
[18]. Colome et al. studied simultaneously learning a DMP-
characterized robot motion and the joint couplings through 
linear dimensionality reduction (DR), which provides valu-
able qualitative information leading to a reduced and intuitive 
algebraic description of such motion [19]. Lee et al. inte-
grated a similar method for cooperative aerial transportation 
with the random tree star (RRT*) to enable cooperative aerial 
manipulators to carry a common object and keep reducing 
the interaction force between multiple robots while avoiding 
an obstacle in the unstructured environment [20].

Seen from the above-mentioned methods, it is not hard to 
notice that the original DMPs function is modified by adding 
coupling terms calculated by the relative distance or force 
errors to change the path and ensure the relative distance 
tracking errors converge to 0. But, the dynamic performance 
of the trajectories such as how to enlarge and reduce relative 
distance flexibly and avoidance obstacles are not considered 
for the moving process. If we only use a fixed relative distance 
limitation for the dual arms, the object-approaching skills such 
as changes of the speed and contact forces will be ignored.

In this paper, we will integrate the control strategy of Barrier 
Lyapunov Functions (BLFs) and DMPs to enable the generate 
trajectories to satisfy predesigned transient performance for the 
relative distance of robot end effects. As the trajectory generalized 
by DMPs is determined by three variables: the start and end points 
and sampling time interval, and the measured data with errors and 
noises will be processed (e.g. aligning, filtering etc.) for skill learn-
ing, even for the processed data, the data-driven learned results 
may be against physical limitations. The proposed method based 
on the integration of BLFs and DMPs will address this problem. 
Similar ideas combining control and motion planning methods for 
manipulation have been explored in previous work [21–23].

Additionally, we will combine the generated actions in 
the joint space with the solution of a redundant dual-arm 
robot to perform human-like operations. Though a similar 
study about human-like coordinative learning in the Car-
tesian and joint space for a redundant dual-arm robot has 
been studied by Qu et al. [24], we will propose another idea 
by defining a “swivel angle” and combining the null-space 
method and the results of DMPs with distance constraints. 
With the dual-arm demonstration data acquired through a 
Kinect, an experiment is taken based on Matlab and Gazebo 
to verify the effectiveness of the proposed method.

The rest of the paper is organized as follows: “Problem descrip-
tion” makes a brief introduction about DMPs and the problems of 
skill learning for dual-arm redundant robots. “BLFs-based improved 
DMPs for human-like skill learning and redundancy resolution” 
presents the DMPs and BLFs framework and related three calculat-
ing modules. “Experiment” masks three experiments to certify the 
effectiveness and application of the proposed method. Finally, in 
“Conclusion”, the conclusions of this paper are summarized.

Problem description

General DMPs model

DMPs model is firstly proposed in [25] and updated by 
Ijspeert et al. [26], whose function is expressed as

where 𝛼z, 𝛽z > 0 are coefficients of a two-order function 
as the linear part in (1), ensuring the convergence of the 
generated trajectory to the unique attractor point at x = g

, v = 0, f (s) = �TΨ(s) is a forcing function and a linear 
combination of nonlinear radial basis functions, and � = [
w1, w2,… ,wn

]T
,Ψ(s) =

[
�1,�2 ,… ,�n

]T and

where ck and hk > 0 are centers and widths of radial basis 
functions respectively. 𝜏 > 0 is a timing parameter adjusting 
speed before execution of movements and s is a phase vari-
able to achieve dependency of function f (s) out of time. The 
dynamics of s is expressed by a canonical system

Term s has implicit relation with time that can modify the 
convergence time by changing � , and � can be learned by 
supervised learning algorithms e.g. locally weighted regres-
sion (LWR). The purpose of the calculating process is to 
minimize the error function:

where f (s) is the forcing function in (1), and f Tar(s) repre-
sents the target value of f (s):

DMP‑based dual‑arm robot manipulation

From human demonstrations to the skills learned and gen-
eralized by robots, we will solve the following three prob-
lems: joint distance restriction, redundant joint resolution, 
and relative distance limitations (Fig. 1).

Joint distance restriction is caused by the bone lengths 
of the adjacent joints such as the elbow and the wrist or 
the elbow and the shoulder. It is a constant. The redundant 
joint resolution is to plan the robot arm joints to achieve 
human-like motions and the relative distance limitations 
provide constraints to the robot end effectors.

(1)

{
𝜏 v̇ = 𝛼z

(
𝛽z(g − x) − v

)
+ f (s)

𝜏 ẋ = v
,

�k =
�k(s)s∑n

k=1
�i(s)

,�k(s) = exp(−hk(s − ck)
2), k = 1, 2,… n,

(2)𝜏 ṡ = −𝛾s, 𝛾 > 0.

(3)min
∑(

f Tar(s) − f (s)
)
, x = g, v = 0, 𝜏 > 0,

(4)f Tar(s) = 𝜏 v̇ − 𝛼z
(
𝛽z(g − x) − v

)
.
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Meanwhile, measuring noise is acquired together with 
raw data. If we use the data for skill learning, then learned 
results will be influenced by noise and measuring errors. 
Therefore, the signals such as EMG measurements will be 
processed before learning procedures. Images and videos 
affected by occlusions are reconstructed, which may cause 
new uncertainties and errors. An example shown in Fig. 2 
reveals the measuring errors of hand positions are larger 
than the ones of the shoulders and elbows. Based on the 
pre-knowledge such as the size of the object, bone length 
between the elbow and the shoulder, or exact position of 
the object, we can re-plan joints and positions of the end 
effector’s to suit new cases. Here, we argue that the known 
conditions have fixed constraints and propose a new DMP 
-based framework for dual-arm robot cooperative skill 
learning with consideration of the above three problems.

Robotic human-like manipulation has been studied for sev-
eral decades. By using the nullspace method for the redundant 
robotic arm, robots can avoid conflicts with own arms and 
outer obstacles with multiple joint motion planning results. 
As the skills for robot ends and joints are generated in both the 
Cartesian and joint space, the previous researches like [9] and 
[13] only for the joint or Cartesian space cases are not applica-
ble. We will combine the constrained skills and the nullspace 
method for skill generalization for redundant dual-arm robots.

BLFs‑based improved DMPs for human‑like 
skill learning and redundancy resolution

In this section, we propose three solutions for the above rela-
tive distance limitation, joint distance restriction, and redun-
dant joint resolution in three subsections. We firstly specify 
mathematical symbols in the following paragraphs in Table 1.

Integrated BLFs and DMPs skills learning for relative 
distance limitation

Interactive actions of robot end effectors can be seen as a com-
mon effect of relative distance and posture changes. For the 
cooperative actions e.g. folding clothes, grasping and placing 
objects, relative distance is always changing during the inter-
action process with environmental objects. Too large relative 
tracking errors may cause operational failure such as losing 
control of the object or conflict with the obstacle.

Following robotic desired relative distance d
j
(t) , we set 

predesigned error boundaries as �
ij
, i = 1, 2 , which means 

boundary violation is not allowed throughout the coopera-
tive manipulation process, then the relationship of the jth 
hand �

wj
 and its cooperative role �

wj̄
 is

(5)𝜎
−
j
≤
‖‖‖�wj̄ − �

wj

‖‖‖2 − d
j
(t) ≤ 𝜎̄

j
.

Fig. 1   Problems for dual-arm robot manipulation
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Fig. 2   Position measuring errors of shoulders, elbows and hands 
measured by Kinect

Table 1   Mathematical symbols and meanings

Symbols Meanings

∙
j
, j = l, r, Variables of left and right arms (or robot arms)

∙
j̄
, j = l, r, Cooperative role of the jth arm

∙i, i = 1, 2, 3 Variables of the ith dimension
1∙, 2∙ Calculations in the first and second round
�
wj

Position vector of the hands (wrists)
�
ej

Position vector of the elbow
�
sj

Position vector of the shoulder
𝜎̄
j
 , �

−
j

Upper and lower boundaries of position errors
d
e
, ds Desired constant distances from the wrist 

to the elbow, and from the elbow to the 
shoulder

dj(t) Desired varying distances of the hands (wrists)
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The expression of DMPs model can be rewritten as a 
strict feedback nonlinear system as

where u has the same usage with the forcing function f (s) 
in (6), while in (1) of [27], it represents the input signal to 

modify output y . Set 𝜅̄ i
j
= kz

(
𝜎̄i
j
+ di

j

)
 , �

−

i

j
= kz

(
�
−

i

j
+ di

j

)
 , and 

zi
1
= kz

(
xi
j̄
− xi

j

)
 , and kz is a positive factor, 𝜎̄i

j
,�
−

i

j
 and di

j
 are 

decomposed values of the ith dimension, and xi
j
 and xi

j̄
 are 

general variables that can be instantiated as xi
wj

 and xi
wj̄

 in (5). 
Then (5) can be expressed as 𝜅

−

i

j
≤ zi

1
≤ 𝜅̄ i

j
 . Inspired by the 

asymmetric BLFs candidate in [27], we define a new vari-
able as zi

2
= dz

(
𝛼2 − vi

j

)
, dz > 0 , where �2 is a function to be 

designed and build the Lyaponov candidate as

The difference of Vc can be calculated as

(6)

⎧
⎪⎪⎨⎪⎪⎩

ẋ = v∕𝜏

v̇ = 𝛼z
�
𝛽z(g − x) − v

��
𝜏 + u

u = f (s)∕𝜏

y = x

,

(7)Vc =
1

2
log

(
𝜅̄ i
j
− 𝜅

−

i

j

)2

4
(
𝜅̄ i
j
− zi

1

)(
zi
1
− 𝜅

−
i

j

) +
1

2

(
zi
2

)2
.

Theorem 1  Considering the DMPs function described as (6) 
under the condition of (5), if the initial conditions are such 
that 𝜅

−

i

j
(0) ≤ zi

1
(0) ≤ 𝜅̄ i

j
(0) and (9) is satisfied, then the output 

constraint is never violated and all the closed loop signals 
are bounded.

Proof  Taking the expressions of zi
2
 and (6) into (8), we have

(8)

V̇c =

zi
1
−

(
𝜅̄ i
j
+ 𝜅

−

i

j

)/
2

(
𝜅̄ i
j
− zi

1

)(
zi
1
− 𝜅

−
i

j

) żi
1
+ zi

2
żi
2

=

zi
1
−

(
𝜅̄ i
j
+ 𝜅

−

i

j

)/
2

(
𝜅̄ i
j
− zi

1

)(
zi
1
− 𝜅

−
i

j

)kz𝜏
(
ẋi
j̄
− ẋi

j

)
+ zi

2
dz𝜏

(
𝛼̇2 − v̇i

j

)
.

(9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛼2 =

𝜏dzẋ
i

j̄
+ zi

1
−

�
𝜅̄ i
j
+ 𝜅

−

i

j

��
2

dz

ui
j
= 𝛼̇2 −

�
𝛼z

�
𝛽z

�
gi
j
− xi

j

�
− vi

j

���
𝜏 + knz

i
2

kn =
kz

4𝜏d2
z

�
𝜅̄ i
j
− zi

1

��
zi
1
− 𝜅

−
i

j

�

.

V̇c =

zi
1
−

�
𝜅̄ i
j
+ 𝜅

−

i

j

��
2

�
𝜅̄ i
j
− zi

1

��
zi
1
− 𝜅

−
i

j

�kz𝜏
�
ẋi
j̄
− 𝛼2∕𝜏 + zi

2

��
𝜏dz

��
+ z2dz𝜏

�
𝛼̇2 − 𝛼z

�
𝛽z

�
gi
j
− xi

j

�
− vi

j

��
𝜏 − ui

j

�

= kzz
i
2

zi
1
−

�
𝜅̄ i
j
+ 𝜅

−

i

j

��
2

dz

�
𝜅̄ i
j
− zi

1

��
zi
1
− 𝜅

−
i

j

� +

zi
1
−

�
𝜅̄ i
j
+ 𝜅

−

i

j

��
2

�
𝜅̄ i
j
− zi

1

��
zi
1
− 𝜅

−
i

j

�kz𝜏
�
ẋi
j̄
− 𝛼2∕𝜏

�

+ zi
2
dz𝜏

�
𝛼̇2 − 𝛼z

�
𝛽z

�
gi
j
− xi

j

�
− vi

j

��
𝜏 − ui

j

�

= −

kz

�
zi
1
−

�
𝜅̄ i
j
+ 𝜅

−

i

j
− zi

2

��
2

�2

dz

�
𝜅̄ i
j
− zi

1

��
zi
1
− 𝜅

−
i

j

� + kz

zi
1
−

�
𝜅̄ i
j
+ 𝜅

−

i

j

��
2

�
𝜅̄ i
j
− zi

1

��
zi
1
− 𝜅

−
i

j

�
⎡⎢⎢⎢⎢⎣

zi
1
−

�
𝜅̄ i
j
+ 𝜅

−

i

j

��
2

dz
+ 𝜏 ẋi

j̄
− 𝛼2

⎤⎥⎥⎥⎥⎦

+zi
2
dz𝜏

�
𝛼̇2 − 𝛼z

�
𝛽z

�
gi
j
− xi

j

�
− vi

j

��
𝜏 − ui

j
+

kzz
i
2

4𝜏d2
z

�
𝜅̄ i
j
− zi

1

��
zi
1
− 𝜅

−
i

j

�
⎞⎟⎟⎟⎟⎠
,
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where k2 > 0 is a positive number. As kz > 0 , and terms 
zi
1
−
(
� i
2j
+ � i

1j

)/
2 and zi

2
dz are not always 0 , then the suf-

ficient condition for V̇c < 0 is

Then we can get the expressions of �2,uij and kn in (9). 
According to lemma 1 in [27], zi

1
 will be kept within the 

range of 
(
𝜅
−

i

j
(t), 𝜅̄ i

j
(t)

)
 . Following the expression of f Tar in 

(4), the target value of ui
j
 in (6) can be expressed as

Furthermore, we use f (s) to replace 
(
f i
j

)Tar

 based on the 
error function of (3) and get

where Δui
j
= knz

i
2
+ żi

2

/
dz , which means that Δui

j
 will be cal-

culated by two steps: first, using (3) to get the forcing func-
tion f (s) ; second, calculating zi

1
 and zi

2
 timely and adding 

them to (12). Then the output y is determined by the com-
mon function of f (s) and the zi

2
 generated by BLFs 

function.

Remark 1  Similar to the improved DMPs for multi-agent 
formation [16–20], by adding a term Δui

j
 , the original path 

point x (or output y ) is modified to fit the constraints in (5). 
However, the proposed method in (9) is more general com-
pared with the previous special designs only providing limi-
tations for the end effectors or point shape of multi-agent 
formation. The following subsection will extend this method 
to the case of joint distance restriction.

Integrated BLFs and DMPs skills learning with joint 
distance restriction

The challenges for the joint distance restrictions are modify-
ing the distance between the adjacent joints such as the 
elbow and the shoulder or the elbow and twist. Following 

(10)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜏 ẋi
j̄
− 𝛼2 +

zi
1
−

�
𝜅̄ i
j
+ 𝜅

−

i

j

��
2

dz
= 0

𝛼̇2 −
�
𝛼z

�
𝛽z

�
gi
j
− xi

j

�
− vi

j

���
𝜏 − ui

j
+

kzz
i
2

4𝜏d2
z

�
𝜅̄ i
j
− zi

1

��
zi
1
− 𝜅

−
i

j

� = 0

(11)

(
ui
j

)Tar

= 𝛼̇2 − v̇i
j
+
(
f i
j

)Tar
/

𝜏 + knz
i
2

=
(
f i
j

)Tar
/

𝜏 + knz
i
2
+ żi

2

/
dz.

(12)ui
j
= f (s)∕𝜏 + knz

i
2
+ żi

2

/
dz = f (s)∕𝜏 + Δui

j
,

the definitions in Table 2, the distance errors ranges (like �
ij
 

for relative distance limitation) are set as �
e
 and �

s
 . Similar 

to (5), we can use the following inequalities to reshape the 
elbow and shoulder positions as

However, as mentioned in “Problem description”, if we 
want to replan positions of the elbow and the shoulder, we 
should take the real measurements of the elbow and the 
shoulder as reference, but they are limited by the hands’ 
relative distance conditions. Therefore, we will reshape the 
elbow and the shoulder distance satisfying both (5) and (13) 
by calculating a common result for the two conditions.

Additionally, following Fig. 2, the measuring errors of the 
hands are larger than those of the elbows. There are meas-
uring mistakes due to the occupations, then the errors are 
processed in the following two steps:

1.	 Satisfy limitations for hands’ motions 1�
wj

 as:

where 1�
wj

 represents the results for the first round. 
Equation (14) is used to filter the data of hands first by 
the elbow measurements.

2.	 Synchronized constraints for the hands, elbows and 
shoulders

where 2�
wj

 represents the results for the second round 
and Eqs. (15) to (17) consider both limitations of the 
relative distance and joint distance to rebuild 
trajectory.

Remark 2  The calculating basis for (15) and (16) is to find a 
common conditional result satisfying both two inequalities. 
But, sometimes there is no overlap area for the two condi-
tions. Here, we reckon that the priority of joint distance 

(13)

⎧
⎪⎨⎪⎩

���
����ej − �

wj

���2 − d
e

��� < 𝜎
e

���
����ej − �

sj

���2 − d
s

��� < 𝜎
s

.

(14)1�
wj
∶=

|||
‖‖‖�ej −

1 �
wj

‖‖‖2 − d
e
(t)
||| < 𝜎

e
,

(15)2�
wj
∶=

⎧⎪⎨⎪⎩

𝜎
1j
<
���
2�

wj̄
−2 �

wj

���2 − d
j
(t) < 𝜎

2j

−𝜎
e
<
����ej −

2 �
wj

���2 − d
e
(t) < 𝜎

e

,

(16)�
ej
∶=

⎧⎪⎨⎪⎩

−𝜎
s
<
����ej − �

sj

���2 − d
s
(t) < 𝜎

s

−𝜎
e
<
����ej − �

wj

���2 − d
e
(t) < 𝜎

e

,

(17)�
sj
∶=

|||
‖‖‖�ej − �

sj

‖‖‖2 − d
s
(t)
||| < 𝜎

s
,
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restriction is higher than that of relative distance, thus the 
inequality of joint distance restriction will be first considered 
and then �

j
 will be modified to adapt to the condition 

� i
1j
(k) ≤ zi

1
(k) ≤ � i

2j
(k) for the kth calculation.

Remark 3  Similar to the methods in [16–20], the skill learn-
ing process will be handled first, and then by adding new 
term Δui

j
 , the trajectory will be generalized. Here, we will 

learn and generalize angle skills for the elbow and the shoul-
der first without using any limitations. Then the integrated 
BLFs and DMPs skills learning are used to modify the gen-
eralized trajectory to suit inequalities (15) to (17). The 
improved DMPs hold the properties of normal DMPs and 
dynamic performance determined by the factors: start and 
end points, sampling interval.

Based on the BLFs and DMPs integrated skill learning 
method, we present the general calculation procedure as 
follows:

In Fig. 3, f (s) in (12) of DMPs and constraints (like (5), 
(13)–(17)) of BLFs are firstly designed separately. After ini-
tialing Δui

j
 in (12), ui

j
 will be calculated to generate new tra-

jectories, and the new position and velocity information will 
be used to update Δui

j
 for the next circulation till the 

destination.

Robotic human‑like redundancy resolution

For replanning robotic actions based on the learned skill 
from demonstrations, some previous researches proposed 
human-like swivel motion by using its redundant degrees 

of the manipulator [28, 29]. After rebuilding positions of 
the hand, elbow, and shoulder, we can generalize the joints 
and end effectors of the redundant robots. Following the 
depictions in [28], arm plane is the plane built with three 
joint points of the wrist, elbow and shoulder and reference 
plane is set as the vertical plane to the human body. We set 
the swivel angle �j, j = l, r as the angle of arm plane and 
reference plane, shown in Fig. 4.

Set the joint velocities of 7-Dof redundant robot arm as 
𝐪̇j ∈ R7×1, j = l, f  , and set the generalized end effectors’ 
positions as 2𝐱̄

wj
∈ R3×1, j = l, f  , and the distance between 

the hand and the wrist are ignored for the two-arm holding 
actions as 𝐱̄

hj
≈2 𝐱̄

wj
 (in fact due to the object occlusion, all 

hand positions cannot be well got). Then by extending 𝐱̄
hj

 
with gestures of the end effectors to �

hj
 , we have 𝐗̇

hj
= 𝐉j𝐪̇j , 

and �j ∈ R6×7 represents a Jacobian matrix. Following null-
space projection, we calculate the redundancy solution of a 
redundant robot arm as

where �Ej ∈ R3×7 is the Jacobian matrix from the elbow of 
the robot to the robot base as well as the mapping between 
the swivel angle and joint velocities [28]. ��j

 is defined as 
the velocity director of swivel motion:

where ����⃗SE = �
sj
− �

ej
 represents a vector from the shoulder 

to the elbow and �����⃗EW = 𝐱
ej
−2 𝐱̄

wj
 represents a vector from 

the elbow to the wrist for the generalized human demonstra-
tions. Then the vector will be used for the robot joint plan-
ning and calculation of � shown in Fig. 1.

(18)𝐪̇j = 𝐉+
j
𝐗̇

hj
+
(
𝐈 − 𝐉+

j
𝐉
j

)
𝐉+
Ej
�j𝐔�j

,

(19)�𝜓j
=

����⃗SE × �����⃗EW
‖‖‖����⃗SE × �����⃗EW

‖‖‖
,

Demonstra�ons

f(s) learning Constraints

New 
requirements

u(s) calcula�on u 

New trajectory

DMPs BLFs

x,v

Fig. 3   Procedure of the integrated skills learning method

Fig. 4   Definition of swivel angle of dual arms



2879Complex & Intelligent Systems (2022) 8:2873–2882	

1 3

Experiment

In the experiment, we will achieve demonstration data by 

Kinect and verify the manipulation effect through the virtual 

model in Gazebo. The skeleton data of a task of holding and 

Fig. 5   Human demonstrations and skeleton data

(a)

(b)

Fig. 6   Desired and real shoulder, elbow and wrist movements a changes of trajectories, b changes of skeletons

(a)

(b)

Fig. 7   Errors of the desired and real the elbow and wrist positions a results of the left arm, b results of the right arm
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placing a box is recorded for demonstrations. The positions 
of joints (the elbow, shoulder and wrist) are used for skill 
training in Cartesian space as Fig. 5 shown. The upper fig-
ures (a) to (g) are the illustrations of human demonstrations 
and the lower figures (a) to (g) show the human skeleton data 
acquired by Kinect. But, we can find the acquired sampling 
data has errors such as the left leg motions in (b) and (d) 
and the hand motions in (e), which are caused by obstacle 
occupation.

Figures 6 and 7 are the results based on the initialization 
of hand’s positions using (14). Figure 6 presents changes of 
the trajectories and skeletons of the original and modified 
DMPs. Figure 7 presents tracking errors to the predesigned 
referring trajectory fitting the constraints in (14) to (17). 
Combining with Fig. 7, we can see that the trajectories of 
both the left and right arms are changed to avoid violation 
(14) to (17). Seen from the blue lines (results of original 
DMPs) in Fig. 7, the amplitudes of the errors in each axis 
vary from − 0.1 to about 0.05, causing the final distance 
of the elbow and the wrist changed within a large range of 
(0.12, 0.25) , which seriously against to the fact.

As the distance is measured between the elbow and 
the hand contact point (palm) to about 0.28 m, namely 
d
e
(∞) = 0.28 . Setting �

e
= 0.01 , then the generalized results 

show that the errors to desired position decrease to the range 
of (−0.01, 0.01) after the first few steps and the distance con-
verges to the value around the desired value of 0.28 for both 
hands. The initial distance errors are large. It needs about 15 
iterations to guide the large distance errors to decrease to the 
desired conditions in (14), which is further processed in step 
2 by using (15) to (17). Figure 8a, b presents the original 
distance of the joints (the elbow and wrist, and the elbow 
and shoulder). It shows that the joint distance varies within a 
range of (0.13, 0.32) for both the elbow and the shoulder, and 
the elbow and the wrist of both arms. Using the proposed 
two-step method, we can get the fixed distance for the joint 
links and the varying relative distance for the dual hands’ 
manipulation, both of which converge to a stable interval 
(Figs. 9a, b, 10).

As we set the desired joint distance as d
e
≡ 0.28 and 

d
s
≡ 0.22 by actual measurements, and the error range as 

0.01, the results presented in Fig. 9 verify the effectiveness 
of the proposed method even for the large initial errors. The 
performance functions for the upper and lower boundaries 
are set as

where k represents the sampling times. Additionally, we 
compare the results with the method in [17] and set the 
desired distance as d

j
(t) ≡ 0.3 . Figure 10 shows the meas-

ured relative distances of human two hands (blue lines). The 
black dash lines present the boundaries of relative distance 
that decrease from 0.32 to the interval (0.29, 0.31) . The 
method in [17] enables the relative distance to quickly 
decrease and keep the value around 0.305, but the relative 

(20)

{
�
2j
= 0.02e−k∕10 + 0.01

�
1j
= −0.02e−k∕10 − 0.01

,

(a) (b)

Fig. 8   Joint distances of the right and left arms. a Results of the left 
arm, b results of the right arm

(a) (b)

Fig. 9   Modified joint distances of the right and left arms. a Modified 
distance of the joints of the left arm. b Modified joint of the joints of 
the right arm

Fig. 10   Original, modified and compared relative distance of the 
wrists
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distance cannot change along with dynamic performance 
like (20).

The last step is extending the learned skills to new task. 
We select two Franka robots as manipulators to hold and 
place an object with width of 0.3 m, the base of which 
located at [0.2, 0, 0.4] and [−0.2, 0, 0.4] . The simulations 
are taken in Matlab and then the results are transferred and 
certified in the Gazebo environment. Here, we select the 
4th joint as the elbow joint to solve the redundant solution. 
Figure 11 presents the simulation process that Two Franka 
robots are controlled to move the object to follow the trajec-
tories generated in Matlab under the PD control. During the 
simulation, we set the object and robot end effectors have a 
certain degree of deformation to counteract the influence of 
the relative distance tracking errors.

Conclusion

In this paper, we proposed a new DMP-based skill learning 
and generalization framework for the dual-arm redundant 
cooperative manipulation. The framework has three func-
tions: skill learning and generalization for the relative dis-
tance limitation, trajectory replanning for the joint distance 
restriction, and redundant solution for multi-Dof robot based 
on the generalized dual-arm skills. The two former skill/
trajectory learning and generalization methods are studied 
based on the integration of BLFs and DMPs methods. Using 
the demonstration data acquired by Kinect, the effectiveness 
of the proposed framework is verified by a task of holding 
and placing an object based on the simulations in Matlab 
and Gazebo. Each technical method is proved and explained 
by the simulation results. The future work is hopeful to be 
taken on the real robotic system to complete skill learning 
autonomously.
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