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Abstract— The major problem facing swarm robotics is that
of design. A recent promising approach is the application of evo-
lutionary algorithms to solve the problem of decomposing group
behaviour to that of interacting individual behaviours. This
paper presents work conducted so far towards implementing the
necessary framework to distribute an evolutionary algorithm
across a swarm of robots, augmented with an embedded
simulator to provide rapid life-time behavioural adaptability
to each robot. The principle has been demonstrated through
the distributed evolution of obstacle avoidance behaviour on
varying group sizes of physical robots This paper provides
preliminary results that validate the principle of an embedded
simulator incorporated with distributed evolution, and shows a
positive correlation between an increase in robot group size and
the rate of distributed evolution. Finally, this paper describes
further points to investigate in the presented experiment sce-
nario and potential directions for future research.

I. INTRODUCTION

Swarm robotics is the study of how a large
number of relatively simple physically embodied
agents can be designed such that a desired collec-
tive behaviour emerges from the local interactions
among the agents, and between the agents and the
environment. Erol Sahin[16].

Swarm Robotics is an alternative to the approach of en-
gineering a single robot to perform useful functions. Swarm
Robotics draws inspiration from the success of swarming
biological systems, such as the social insects, that demon-
strate the ability to complete tasks as a group that exceed
the physical and/or cognitive capability of any singular entity
from the swarm [16]. Such a characteristic would be useful
where the implementation scale is prohibitive to individual
robot complexity (such as nano-scale robotics) or where the
swarm would operate in remote or dangerous situations (such
as space). Particularly in the latter case, the redundancy
of a self-organised swarm system combined with individual
flexibility theoretically creates a system capable of graceful
degradation.

The major problem facing swarm robotics is that of design.
The desired group behaviour must first be decomposed into
interactions between individual robots, and the individual
robots must have a decomposition of their interaction with
the environment into an executable program [22]. A recent
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promising approach is the application of evolutionary algo-
rithms (EAs) to solve the problem of decomposing group
behaviour to that of interacting individual behaviours. Whilst
there have been many differing research examples of working
swarm robotic systems, the application of EAs provides a
consistent methodology for advancement of the field.

The goal of this project is to implement similar evolu-
tionary algorithms (EAs) as used in previous Evolutionary
Swarm Robotics research but to distribute the algorithm
throughout a swarm of operating robots. The motivation
is to allow the evolutionary algorithm to become a feature
of the self-organised swarm of robots, to provide life time
behavioural adaptation to each of the robots. By placing the
EA on a robot, it should become capable of responding to the
local situated demands of the robot. Furthermore, distributing
the EA capitalises on an inherent abundance of asynchronous
computing units within a swarm of robots.

However, in order to provide behavioural adaptability in a
rapid and continuous manner this implementation of a dis-
tributed evolutionary algorithm utilises a minimal simulation
embedded upon each operating robot in which to execute
evolutionary evaluations. This combination of a distributed
evolutionary algorithm and an embedded simulation is here-
after referred to as an Accelerated Distributed Evolutionary
Algorithm (ADEA). An important characteristic of ADEA
toward swarm robotics is the ability of an individual robot
to simulate itself interacting with other robots on the premise
that all robots will interact homogeneously. The isolated
development of individual robots necessitates the distribution
of the algorithm to facilitate cooperative convergence across
the swarm.

The typical constraints of a self-organised swarm of robots
combined with the idea of an embedded simulator to acceler-
ate distributed evolution, present several research questions.

¢ Can a distributed evolutionary algorithm provide adapt-
ability and scalability to the evolution of self-organised
behaviours?

o Can a swarm of robots running independent simulations
to evolve controllers for group behaviour converge in
reality on a self-organised solution?

o Will spatial and temporal distribution throughout the
swarm of robots have significant effect upon the evolu-
tionary development process of individual robots?

o Concerning the fitness function to guide artificial evo-
lution; Is it possible to evolve self-organising behaviour
from the scope of individual performance?

o Can the temporal credit assignment problem between



real world performance and simulated performance be
bridged or bypassed successfully?

This paper presents work conducted so far towards imple-
menting the necessary framework to investigate these ques-
tions. To date, the principle has been demonstrated through
the distributed evolution of obstacle avoidance behaviour
augmented with an embedded simulator on physical robots.
Section I proceeds to provide background context and related
work in biology, swarm robotics and evolutionary robotics.
Section II details the experiment methodology used for the
results presented in section III. Section IV draws conclusions
from these results, providing a scope to discuss the future
potential of research.

A. Biological Plausibility

Swarm robotics has a particularly strong influence from bi-
ological systems where self-organisation creates the observ-
able characteristics of scalability, flexibility and robustness to
disturbances [16]. To help position this work along a scale
of biological plausibility and engineering expectations, the
following brief section considers attributes of natural swarm
systems to justify subsequent technological implementation
decisions.

Self-organisation is a prevalent phenomenon in biology
whereby organisms attenuate their behaviour on the basis
of local information, resulting in coordination [3]. Local
information is context dependent, such as chemical secretions
from neighbouring cells, the deposition of material from
other worker ants or the trajectory of nearby flocking birds.
The locality of information refers to the perceptual abilities
of the individual, and the absence of an absolute perception
of the global state of the whole swarm. Therefore, a system
of many subunits using only local information can coordinate
without a centralised control mechanism, scaling to vast
population sizes. Furthermore, the subunits are adaptable to
their unique situations, demonstrating a robust response to
disturbances in their environment and flexibility toward new
challenges.

Whilst it may be possible to coordinate large numbers
through centralised control (such as multi-cellular organisms
with central nervous systems), Thomas Seeley [18] states
that:

...a biological system will be self-organized when
it possesses a large number of subunits, and these
subunits lack either the communicational abilities
or the computational abilities, or both, that are
needed to implement centralized control.

When considering examples like the social insects, it is
clear that they lack a biological mechanism to centrally
coordinate vast numbers of autonomous subunits over great
distances. Individuals seem selflessly predisposed to work
toward the benefit of the colony. In such a system, subunits
must independently ascertain their role in tasks based on their
local perception of their environment. Stigmergy is a special
case where subunits are influenced by the product of anothers
behaviour upon the environment. Whilst stigmergy is a way

for a single subunit to influence many other subunits, the
perception of the affected subunit remains local.

It is also important to note that the cognitive ability
of subunits need not necessarily be constrained in a self-
organised system [18]. Indeed, the decision making and
communicative abilities of the honey bee are astounding
(for example, see [19]). More importantly, the constraint
to perceive local information creates a robust, scalable and
flexible decentralised system, which can be mistaken for a
requirement of individual minimalism.

With these realisations in mind, we can isolate the princi-
ples that create a self-organised system and allow ourselves
the freedom to utilise appropriate levels of technology. As
previously stated, the state of available technology is primar-
ily governed by the implementation scale of the system. The
available hardware to this research, and therefore the types
of application domains, are definitively in the macro scale.
Whilst an embedded simulator may not be biologically plau-
sible, it should not necessarily inhibit the decentralisation of
a self-organised system. Furthermore, the implementation of
distributed evolutionary algorithm, so long as transactions
between robots occur locally, should not compromise the
benefits of flexibility, scalability and robustness.

B. The Progression of Swarm Robotics

Early experiments by Melhuish et al [11] demonstrate
the ability to effect group behaviour solely through direct
interaction with the environment (stigmergy). These robots
were exceptionally simple, but were able to sort objects into
clusters by colour, by each obeying simple rules without
centralised control. These experiments concentrated on how
much could be achieved with minimally complex robots,
referred to as Minimalist Collective Robotics. However it is
important to note that stigmergy is not limited to minimalist
robotics, as demonstrated by the complex team task inves-
tigated by Ijspeert et al [5] in the multi robot stick-pulling
experiments. A uniting feature of these experiments is the
use of stigmergy as the sole mechanism for coordination.

The emphasis on minimalist implementation remains a
current research interest [24], but the advancement of tech-
nology has allowed for the development of higher numbers
of more complex and reliable robots [20]. Whilst stigmergy
remains a vital mechanism [16], the dissimilarities between
natural and artificial systems has prompted the use of
’less-natural’ mechanisms to facilitate self-organised group
behaviour with robots. For example, Nouyan and Dorigo
utilise a colour based signalling mechanism to facilitate
chain formations with the SWARM-BOTS [14], and Jones
and Mataric investigated colour based signalling for division
of labour [8]. Furthermore, Ijspeert et al [5] found that
stigmergic collaboration between robots was improved with
a simple signalling mechanism. These recent advancements
hint that minimalism and stigmergy are not in fact the only
mechanisms for self-organised swarms of robots, so long as
decentralisation is facilitated through a constraint on local
interactions.



A recent trend is the movement away from purely reactive
robotic controllers. In early minimalist experiments with
stigmergy the behaviour of a robot was usually a rule set
that tightly coupled sensory stimulus with immediate action
[11], meaning that the robots were essentially working asyn-
chronously with little direct robot-to-robot interaction. The
development of experiments less reliant on stigmergy has
lead to robots equipped with communication [14], learning
[15], mapping and localisation [17]. This may be to provide
information to the robots that would otherwise have been
gained through stigmergic interaction.

The movement away from reactive robots and stigmergy
has increased the difficulty of designing the systems, as
the decomposition of group behaviour must further take
into account the cognitive abilities of robots and how this
will influence the interactions of the swarm [20]. Because
interactions are specifically between robots (not just through
the environment), spatial and temporal distribution have a
greater effect on the dynamics of interactions. The traditional
Swarm Intelligence approach to model the problem to extract
rules of interaction may become infeasible if the dynamics
of interaction continue to increase in complexity. This issue
has been termed the design problem by [22].

This brief review of the field of Swarm Robotics helps
to highlight the growing complexity in the field. A recent
advance has been the application of Evolutionary Algorithms
to bypass the design problem of group behaviour decomposi-
tion. The iterative trial-and-evaluate process of evolutionary
algorithms allows for the development and selection of
individual behaviours that optimise for the specifics of an
embodied robot and the dynamics of interaction [22]. An
important characteristic in this related work is the ability to
assess the group level behaviour from the global perspec-
tive of interacting individual controllers which may not be
feasible in a decentralised and distributed implementation.
Relating to this work, this issue remains a topic open for
discussion (Section IV).

C. Evolutionary Robotics

Evolutionary Robotics is the application of Evolutionary
Algorithms (EAs) for the generation of controller solutions
or physical morphology (or both) of autonomous robots [13].
Instead of a human decomposing the task into subtasks to
ease the generation of a robotic solution, EAs work by
an iterative process of evaluation, searching for a solution
against a selective criterion. An EA is therefore an incremen-
tal approach, synthesising solutions from the bottom-up. In
this way EAs are attractive because they abstract the design
problem by a process of trial-and-error.

When EAs are applied to robotics the fitness of evolved
solutions is either assessed on a real robot, or in a simulation.
In the first case, there is not a requirement to accurately
model the robot and the environment as this is experienced
directly by the robot, but development times can be pro-
hibitively long. In the second case, using a simulation tool
greatly improves the speed of synthesis, but there remains

a debate as to the viability of sufficiently representing ever
more complex problems.

This obvious conflict and the finer details [10] have been
the subject of research on many occasions. Watson [23]
successfully distributed an embodied evolutionary algorithm
across multiple robots to take advantage of the inherent
parallism in the system and speed up the evolutionary
process. Jackobi provides evidence that it is possible to
utilise minimal simulations to synthesis complex transferable
behaviours, provided that sufficient noise is injected upon
features that can not be modelled accurately [7][6]. There
are also many examples of success utilising the simulate-
and-transfer methodology [9], including the application of
the technique to Swarm Robotics [22].

Recently, the work of Bongard [2] has sought to unify
embodiment and simulation. By using adaptable self-models,
a quadrupedal robot is able to develop faster through the
utilisation of a simulation to develop walking gait patterns.
Importantly, the adaptable self-model (and consequently the
simulation) are grounded by periods of explorative behaviour
in the real world, representing a closed and complimentary
system. Further research proved that distributing the process
using multiple robots accelerated the self-modelling [1].

The work in this paper differs from previous work in
that the simulation is intended to model interactions between
robots towards the development of cooperative self-organised
behaviours. Specifically, this research will address issues
concerning the effects of distributing the algorithm and
the means to assess cooperative utility from the individual
perspective. So far, this work does not yet incorporate a
mechanism to integrate feedback from the real world opera-
tion but it is a definitive criterion to ensure the transferability
of solutions developed in simulation.

II. EXPERIMENTAL METHODOLOGY

The Accelerated Distributed Evolutionary Algorithm
framework has three core components: the simulation tool,
a genetic algorithm, and a communication mechanism to
distribute solutions to neighbouring robots. In this appli-
cation, the genetic algorithm searches for weightings for a
simplistic feed-forward artificial neural network controller to
provide obstacle avoidance behaviour to a simulated robot.
The best solution discerned from simulation is transferred to
the real robot for operation in the real world. Currently, the
performance of the robot in the real world does not provide
any measure of utility back into the system but does affect the
spatial distribution of the real robots. In these experiments,
the real robots operate within an enclosed circular arena
with a diameter of 600mm free from obstacles. In these
experiments, sets of 2, 4, 6 and 8 robots were initialised
simultaneously and allowed to evolve over a period of 1 hour.
The results are presented in Section III. Further experiment
details are provided throughout this section.

A. Robots

The experiments presented in this paper are performed
using the e-puck robots (see figure 1), which are two wheel



differential robots featuring a variety of sensors measuring
70mm in diameter [12]. For these experiments, only 6 infra-
red proximity sensors positioned on the forward facing
portion of the robot are used for proximity detection. The
robots also use the Linux Board Extension (LBE) that has
been designed at the Bristol Robotics Laboratory by Dr. W.
Liu to provide compuational parallelism. The LBE provides
the Linux based operating system and superior computing
power, used to execute the evolutionary algorithms by way
of simulation tool. The LBE is capable of exchanging
information with the native e-puck hardware over an SPI bus
connection. The SPI bus connection provides a method to
synchronise the operation of the e-puck with the simulation
tool (see Section II-B ), providing discrete operation in
40ms time increments. A final feature used is the Infra-red
(IR) Communication library authored by Alexandre Campo.
IR Communcation is used to distribute genetic information
between robots (see Section II-D) and has the relatively short
range of transmission of two body lengths of the e-pucks,
maintaining locality in communication.
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Fig. 1. Photograph of an e-puck robot fitted with the Linux Board Extension
and a Wi-Fi card. The annotations to the right of the image illustrate the
capabilities of the configuration.

B. Simulation

A minimal simulation has been written in the C program-
ming language in order to execute on board the LBE as
quickly as possible. The minimal simulation is based on the
assumption that e-pucks are light weight and have relatively
high motor torque, negating the need for accurate modelling
of physical properties such as mass, inertia and momentum.
The simulation of robots and objects in the environment are
represented on a 2d plane as single points with a radius
(in effect, circles), reducing the representation to simple
trigonometry. The simulated robots are moved on the basis
of the two-wheel differential kinematics equations from [21]
and the specifics of the e-puck robots. The infra-red sensors
are represented with a triangular field of view. Raw sensor
data has been captured from the real robot sensors to provide
a look-up table emulation of the physical sensors, to which
uniform noise is added.

Whilst not strictly necessary in these experiments, the
simulation instantiates four robots within the same simulated
environment. This feature is towards future work which
will specifically investigate interactions between robots, but
for the time being facilitates parallel evaluation in a more

dynamic environment. The simulation is advanced in 40ms
time intervals.

C. Artificial Neural Network

The robotics controller is a discrete time feed-forward
artificial neural network. The network is simplistic, not using
any thresholding or transfer functions, relying on weighted
connections between nodes w;;. Two output nodes, y; and
142, are fully connected to the two hidden nodes, h; and hs.
This connectivity creates four weight values in this layer.

yi =Y _wih; (1)
J

Hidden node h; takes weighted input from the three infra-
red proximity sensors on the left side of the robot body
(z1.3), whilst hidden node h, takes weighted input from
the three proximity sensors on the right side of the robot
body (x4.¢). This connectivity creates 6 weight values in
this layer.

3
hy = Zwljl"j (2)
j=1
6
hy = Zw2j93j (3)
j=4

This network is therefore shaped by the 10 weight values
of the connections between nodes, in the range [-1.0,+1.0].
The output nodes are used as the control signal for the two
motor outputs, limited to a value in the range [-100,+100]
percent of motor speed. The output nodes also each receive
a fixed bias value representing +30% motor speed to force
forward motion of the robot.

D. Accelerated Distributed Evolutionary Algorithm

The ADEA in these experiments uses a steady-state ge-
netic algorithm (GA) to search for solutions to the obstacle
avoidance problem. The GA population genomes are each
composed of 10 genes, representing the connection weights
through the ANN (see section II-C). Selection for reproduc-
tion is rank based and elitist, where 50% of the population is
used to overwrite the lower ranking percentage. During the
overwrite process, each gene of the child genome is subjected
to probabilistic mutation in the range of [-1.0,+1.0] with a
14% chance of occurrence. The GA features mutation as the
only mechanism to introduce variation.

The GA executes exclusively onboard the LBE of each
robot in the experiment. The GA maintains a population of
10 solutions evaluating each genome sequentially. An eval-
uation in simulation constitutes the cloning of the genome
onto the 4 simulated robots which then operate concurrently
in the same simulated environment (see section II-B). Upon
the initialisation of each new evaluation, the position and
orientation of the robots is randomly determined.

The simulated evaluation period is 1500 steps, the equiv-
alent to 60 seconds of real time in simulation, although



evaluation is terminated prematurely if any of the four robots
collides with either another robot or an obstruction. Each of
the four robots in simulation is assessed for utility, and at the
end of the evaluation the lowest score is taken to represent
the utility of the genome. The fitness metric is as originally
used by [4], given by:

F=V-(1-vVAv)-(1-p)

0<V <L 0<Av<l, 0<p<l

where V is the average absolute wheel speed between both
motors, AV is the average difference in motor speeds, and p
is the average activation value of the most active proximity
sensor. The combination of these elements promote higher
motor speed, consistent directionality and to avoid obstruc-
tions occurring on the proximity sensors.

At the end of a GA generation, defined by each genome
of the population being evaluated once, the solution from
simulated evaluation with the highest utility is transfered and
instantiated on to the e-puck robot. When this has occurred
once, the robot is henceforth able to collect genomic infor-
mation from neighbouring e-pucks. Each e-puck therefore
continually transmits the currently instantiated solution via
IR Communication in all directions. A single transmission
is composed of the gene value and the corresponding gene
position index (along the length of the complete genome).
Therefore, an e-puck transmits each gene sequentially.

An e-puck maintains only one representation of collected
genetic information in which the latest received genes over-
write any previous data. It is important to note therefore,
that the genetic information collected may be composed from
several neighbouring e-puck broadcasts. When a subsequent
update occurs from the LBE with a new simulated solution
to instantiate on the e-puck, the collected genetic information
is uploaded into the GA onboard the LBE, directly replacing
the solution in the population with the current lowest utility.
This integrates the collected genetic information into the
simulation tool to be evaluated in the next generation of
genomes.

III. RESULTS

In all experiments the robots are capable of finding a
correct set of weights for the ANN topology to provide
consistent obstacle avoidance movement through the arena,
avoiding the arena walls and other robots. An interesting
behavioural observation in the earlier stages of these experi-
ments was the oscillatory behaviour in response to obstacles
in the experiment due to incorrect weight assignments, corre-
sponding to poor sensory-motor mapping. The functionality
of the embedded simulator allows for human-observable
adaptation of the ANN through the increasing consistency
in movement, which is also represented by the improving
fitness function values in figure 2.

Figure 2 represents the average fitness progression over 30
generations from 10 experiment runs for each of the sized
groups of robots (2, 4, 6 & 8). From each experiment run
using a group of robots, one participating robot was selected
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Fig. 2. The average fitness progression for each sized group of robots

taken across 10 experiments for each group size.

at random to represent the group. The results show that
there is a distinction between group sizes and the rate of
fitness progression. In all cases, the rate of fitness progression
increased with group size, which can be attributed to the
distribution of the search process across the number of robots
participating.
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Fig. 3. The time taken to simulate each generation through evolutionary
development. The results are based on the 10 experiments conducted for
the group size of 2 robots. The average time to evolve 30 generations is 41
minutes.

A secondary interesting result is the time taken to conduct
the evolutionary evaluation using the embedded simulation
tool. Figure 3 demonstrates that as evolution progresses the
time taken to simulate takes longer, with variance decreasing
with respect to the progression of evolutionary generations.
This is occurs for two reasons. First, the evaluation of initial
solutions are aborted prematurely when any of the four
simulated robots collide with an obstruction. Given that the
initial solutions are randomised, this occurs frequently. The
reduction of variance is also due to the population of so-



lutions gaining a convergence on more successful solutions.
Towards the later generations, simulation time stabilises at
approximately 100 seconds per generation.

IV. CONCLUSION & FUTURE WORK

This paper presented a methodology for accelerating a
distributed and embedded evolutionary algorithm. The prin-
ciple finding from these experiments is that accelerated
distributed evolution is possible in real time, implemented
entirely using physical robots. Furthermore, the experiment
also demonstrates that the ADEA is sufficient to provide
life-time adaptable behaviour to robots. The development of
obstacle avoidance occurred on average within 41 minutes
which is within the operable life-time of the e-puck robot.
In the worst approximate case of 100 real-time seconds per
generational evaluation, four simulated robots interact for
each GA population member, representing a total of 600
seconds of simulated time. An interesting consequence of
this methodology is that the embedded simulation tool allows
for the exploration of potentially unstable behaviours whilst
the robot can continue to operate with the last best known
stable behaviour.

However, the scenario constructed for this proof of concept
is very simplistic and requires further evaluation. In this
experiment, the parameters of the genetic algorithm were
arbitrarily selected and should be varied to test the sensi-
tivity of the results. It would be interesting to conduct an
analysis of the efficiency of movement by the physical robots
through the course of experiment runs. Through observation,
oscillatory behaviour is reduced as the experiment transpires
and empirical proof could provide a strong point of further
analysis. Furthermore, communication transactions between
physical robots is currently not traceable. If transactions
could be monitored, it might be possible to form an anal-
ysis on the progression of evolution based on the spatial
distribution of robots and the frequency that meaningful
transactions occur. Currently, the sources and quality of
transactions between robots is unknown. As well as the
specific transactions, it should be possible to trace the state
of genetic representation between physical robots to analyse
points of evolutionary convergence and how this may relate
to spatial and temporal distribution of physical robots. These
elements of future work acknowledge that there is currently
a lack of implementation in the physical domain of the
algorithm.

A major current deficiency is the lack of utility feedback
from the physical activity of the robots. This means that the
simulation tool is not grounded, and the actual performance
of simulated solutions in the real world is unknown to
the robot. The exact method to incorporate physical per-
formance feedback presents an interesting problem. If the
simulated evolution is paused for periods of evaluation in
the real world, the acceleration gained would be lost and the
behaviour of the robot would be punctuated. If simulated
evolution occurs continuously, the rate of generational ad-
vancement may outstrip the evaluation conducted in the real

world, causing any measure of utility gained to be out of
date.

The experiment presented in this paper is just a starting
point for further research. Beyond a more rigorous analysis
of the current experiment scenario, the intention is to apply
pressure to the algorithm to ascertain whether it holds ben-
efits towards adaptable behaviour for the swarm as a whole,
rather than just the individual. An example scenario would be
foraging, where the energy efficiency of the swarm could be
analysed against a variable distribution of collectable food. A
definitive direction of future research is to increase the state
space of the robots, such as higher sensor modality and more
complex tasks, and whether or not a minimal simulation
remains a viable solution for life-time adaptable behaviour.

A distributed algorithm also has interesting avenues of
research towards the flow of information across the swarm
population. Further research could investigate spatial seg-
regation and the possibility of divergence within the same
swarm. This also alludes to the potential for foreign members
of the swarm (either those separated for large amounts of
time, or newly introduced) to utilise the distributed nature of
the algorithm to accelerate their own behavioural synthesis
toward the current state of the collective.

Finally, there are interesting specifics of the embedded
simulation tool developed for this research that offers wider
potential. The current ability of the embedded simulator
allows multiple simulated robots to interact and for this to
be observed from any perspective (a global perspective, or
local to any one of the simulated robots) by the physical
hosting robot. This could provide a mechanism by which
observed behaviour of other robots in the real world could
be reformulated within the embedded simulation - in effect
a brute force search - to find a best fit model of what
occurred. The ability to change the simulated environment
and view multiple perspectives may allow a robot to translate
observed behaviour into motor actuation for itself, as a form
of imitation.

REFERENCES

[1] J Bongard. Exploiting multiple robots to accelerate self-modeling. In
Proceedings of the 9th Annual Conference on Genetic and Evolution-
ary Computation, pages 214-221, New York, NY, USA, 2007. ACM.

[2] J. Bongard, V. Zykov, and H. Lipson. Resilient machines through
continuous self-modeling. Science, 314:1118-1121, 2006.

[3] Scott Camazine, Nigel R. Franks, James Sneyd, Eric Bonabeau, Jean-
Louis Deneubourg, and Guy Theraula. Self-Organization in Biological
Systems. Princeton University Press, Princeton, NJ, USA, 2001.

[4] Dario Floreano and Francesco Mondada. Evolution of homing navi-
gation in a real mobile robot. IEEE Transactions on Systems, Man,
and Cybernetics-Part B, 26:396-407, 1996.

[5] Aukejan Ijspeert, Alcherio Martinoli, Aude Billard, and Lucamaria
Gambardella. Collaboration through the exploitation of local interac-
tions in autonomous collective robotics: The stick pulling experiment.
Autonomous Robots, 11(2):149-171, 2001.

[6] Nick Jakobi. Half-baked, ad-hoc and noisy: Minimal simulations for
evolutionary robotics. In Fourth European Conference on Artificial
Life, pages 348-357. MIT Press, 1993.

[7]1 Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality
gap: The use of simulation in evolutionary robotics. In Advances in
Artificial Life: Proc. 3rd European Conference on Artificial Life, pages
704-720. Springer-Verlag, 1995.



[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

Chris Jones and Maja J Mataric. Adaptive division of labor in
large-scale minimalist multi-robot systems. In JEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 27-31, 2003.
Tan Macinnes and Ezequiel Di Paolo. Crawling out of the simulation:
Evolving real robot morphologies using cheap reusable modules. In
In Artificial Life IX: Proc. Ninth Intl. Conf. on the Simulation and
Synthesis of Life, pages 94-99. MIT Press, 2004.

Maja Mataric and Dave Cliff. Challenges in evolving controllers for
physical robots. Robots and Autonomous Systems, Special Issue on
Evolutional Robotics, pages 67-83, 1996.

Chris Melhuish, Owen Holland, and Steve Hoddell. Collective sorting
and segregation in robots with minimal sensing. In Proceedings of the
fifth international conference on simulation of adaptive behavior on
From animals to animats 5, pages 465470, Cambridge, MA, USA,
1998. MIT Press.

Bonani M. Raemy X. Pugh J. Cianci C. Klaptocz A. Magnenat S.
Zufferey J.-C. Floreano D. Mondada, F. and A. Martinoli. The e-
puck, a robot designed for education in engineering. In Proceedings of
the 9th Conference on Autonomous Robot Systems and Competitions,
pages 59-65, 2009.

S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines. Cambridge,
MA: MIT Press/Bradford Books, 2000.

S. Nouyan and M Dorigo. Chain based path formation in swarms
of robots. In Proceedings of ANTS 2006, pages 120-131, Berlin,
Germany, 2006. Springer Verlag.

Lynne E. Parker, Claude Touzet, and David Jung. Learning and
adaptation in multi-robot teams. In Proc. 18th Symp. on Energy
Engineering Sciences, pages 177-185, 2000.

Erol Sahin. Swarm robotics: From sources of inspiration to domains
of application. Swarm Robotics, pages 10-20, 2005.

M. Schwager, J. McLurkin, J. J. E. Slotine, and D. Rus. From theory
to practice: Distributed coverage control experiments with groups of
robots. In Proceedings of International Symposium on Experimental
Robotics, Athens, Greece, 2008.

Thomas D. Seeley. When is self-organization used in biological
systems? Biological Bulletin, 202(3):314-318, June 2002.

Thomas D. Seeley. Consensus building during nest-site selection in
honey bee swarms: the expiration of dissent. Behavioral Ecology and
Sociobiology, 53(6):417-424, May 2003.

Amanda J. C. Sharkey. Swarm robotics and minimalism. Connect.
Sci, 19(3):245-260, 2007.

Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous
Mobile Robots. Bradford Book, 2004.

Vito Trianni. On the Evolution of Self-Organising Behaviours in
a Swarm of Autonomous Robots. PhD thesis, Faculty of Applied
Sciences, Universite Libre de Bruxelles, Brussels, Belgium, 2006.

R. Watson, S. Ficici, and J. Pollack. Embodied evolution: Distributing
an evolutionary algorithm in a population of robots. Robotics and
Autonomous Systems, 39(1):1-18, 2002.

Matt Wilson, Chris Melhuish, Ana B. Sendova-Franks, and Samuel
Scholes. Algorithms for building annular structures with minimalist
robots inspired by brood sorting in ant colonies. Autonomous Robots,
17(2-3):115-136, 2004.



