Analytically Redundant Controllers for Fault Tolerance: Implementation
with Separation of Concerns

Kashif Hameed, Rob Williams, Jim Smith

Abstract

Diversity or redundancy based software fault tolerance
encompasses the development of application domain
specific variants and error detection mechanisms. In
this regard, this paper presents an analytical design
strategy to develop the variants for a fault tolerant real-
time control system. This work also presents a
generalized error detection mechanism based on the
stability performance of a designed controller using the
Lyupanov Stability Criterion. The diverse redundant
fault tolerance is implemented with an aspect oriented
compiler to separate and thus reduce this additional
complexity. A Mathematical Model of an Inverted
Pendulum System has been used as a case study to
demonstrate the proposed design framework.

Keywords: diversity and redundancy, analytically
redundant controllers, aspect oriented design and
programming, fault tolerance, fault injection.

1. Introduction

The application of redundancy and diversity in order to
tolerate hardware, software and environmental faults is
not new [1]. The use of redundancy with respect to
time, design and data has been proved successful in
improving the dependability of computer based systems.
Since exact duplication of software components cannot
increase reliability when forced with software design
faults, some sort of diversity in the design and
implementation is required. The phrase “design
differently fails differently” summarizes the situation.
So, a group of diverse redundant variants communicates
only dependable output. The decision about the trusted
output is made with the help of adjudicators, voters or
an acceptance test. Dependability may be further
enhanced by distributing these variants on different
hardware platforms.

Recovery Blocks (RcB) scheme is one of the two
original diverse software fault tolerance techniques. It
was introduced by Horning, et al. [2], with early
implementations developed by Randell [3] and Hetcht
[4]. Tt utilizes sequential execution of software variants
and trusty output is communicated via an acceptance
test. It is a dynamic design diverse technique and output
of a variant is communicated as soon as the acceptance

test is passed otherwise next variant is tested. The
hardware fault-tolerant architecture equivalent to the
RcB scheme is stand-by sparing or passive dynamic
redundancy.

N-Version Programming (NVP) is also one of the
original diverse software fault tolerance design
techniques suggested by Elmendorf [5] and developed
by Avizienis and Chen [6, 7]. It is static technique in
which a task is executed by several processes or
programs sequentially on a single computer, or
concurrently on different computers and a result is
accepted only if it is adjudicated as an acceptable result,
through a voting mechanism. It is a static design diverse
technique as all the variants are executed and a final
voted result is communicated. The hardware fault
tolerance architecture related to the NVP is N-modular
redundancy.

The hybrid of these two design diverse techniques form
the basis of various other design diverse techniques like
Distributed Recovery Blocks (DRB) Kim [8] and
Consensus Recovery Blocks (CRB) suggested by Scott
[9].

Although a number of schemes to improve software
dependability of computer bases systems are proposed,
there is a need to address low level issues like designing
variants and generalized error detection mechanism for
particular application domains. Most real time control
software serves mission critical or safety critical
systems. It is therefore required to address some cost
effective design strategy that enhance the dependability.
The coming sections address analytically redundant
controllers design strategy in this regard. These
redundant controllers are backed with a model based
error detection mechanism. The proposed scheme is
demonstrated with an inverted pendulum model based
case study. In order to reduce the implementation
complexity of proposed scheme, an aspect oriented
version of such dependable framework is also provided.
This framework is ported to Matlab/Simulink using an
S-Function Wrapper for the validation of proposed
scheme.

2. Analytically Redundant Controllers Design

The development of redundant software components or
variants often requires some performance criterion on
the basis of which they are developed and ranked. A
very common example often provided in the academia

are the sorting algorithms [1] that are designed and
ranked based on their size and execution times.

In the domain of real-time control systems, performance
and stability measures such as settling time overshoot
and rise time may be used to design and rank controller
variants. Thus the variants designed and developed
based on such analytical measures are said to be
analytically redundant. One such definition is provided
by Lui [10] for real time controllers. In his definition
attributes like reliability, performance and stability have
been chosen as analytical measures. According to him a
software component Cl is analytical redundant to C2
with respect to Q;, the measure of quality attribute
provided:

R, <Q,(CH<Q,(C2)> Where R, is the minimal

requirement of Q;

For example, controllers are said analytically redundant
with respect to maintaining stability of the physical
system in a feasible region bounded by system states
and physical constraints if each one of the controllers
asymptotically stabilizes the physical system inside the
given region.

In order to demonstrate and analyze the design strategy
of analytically redundant controllers, an inverted
pendulum system model has been chosen.

2.1. Inverted Pendulum System

The inverted pendulum (IP) system is a very common
example used to validate a variety of controller design
strategies because of its non-linear dynamics and
inherently unstable behavior.

The IP system consists of a cart, driven by a DC motor,
and a pendulum attached to the cart. The cart can move
along a horizontal track, and the pendulum is able to
rotate freely in the range of [-30°, 30°] with respect to
vertical in the vertical plane parallel to the track. There
is no direct control applied to the pendulum. The
position of the cart X and angle ¢ are measured
through two potentiometers. The dynamics of the
system are described by the state of the system, which
consists of the cart position X, the cart velocity X , the
pendulum angle ¢, and the pendulum angular velocityg.
The physical system has state and control constraints.
Specifically, the cart position is restricted in a range
[-0.7, 0.7] meters, the maximum speed of the cart is
1.0 meter/second, the angle is constrained to [-30°, 30°]
and the motor input voltage is limited in the range
[-4.96, 4.96] volts.

A linearized state space model of IP system is derived to
following set of matrices as shown below.

X=Ax+Bu ... @)
y =Cx

0 1 0 0 0
0 —BXmL o — Ly s L
M-mL E(M_Lj 3 ML
L L L
A= B=
0 0 0 1 0
B, g K
0 L — mL 0 —(— mL
ﬁ[f-mjj _mL M[L—fj
| M]t]

0010
MomsM,L-Lrm
mL
Parameter Value
M (mass of cart) 0.5Kg
m (mass of pendulum 0.2 Kg
L (Half length of pendulum) 0.3 m

B, (Viscous Friction Co-efficient) | 0.1 Kg/s

I (moment of inertia) 0.006 Kg-m”
g (Acceleration due to gravity) 9.8 m/s”
K..(Input to Force Gain) 1

Analytically Redundant IP Controller:

A number of control synthesis are possible for inverted
pendulum system stabilization counting from non-robust
conventional PID [11] and state-space based pole
placement [12] to more robust Optimal Control
Strategies [13]. In this work we will concentrate on
optimal state feedback control using linear quadratic
regulator (LQR) [14].

In a LQR design, the feedback gain matrix K for a linear
state feedback control law uw=-Kx is found by
minimizing a quadratic cost function of the form:

J= ij(t)Qx(t) +u” () Ru(t)dt
0

Q and R are weighting parameters that penalize certain
states X and control inputs U respectively. By varying
the matrix Q and Scalar R, the analytically redundant
controller gains are obtained and the resulting control
algorithms may asymptotically stabilize the system at
the operating condition X=0.

The linearized model of IP system as in equation (1) has
been used to design and two different analytically
redundant controllers by choosing two different R: R =
0.01 and R=0.1 and assigning equal weigh age to
penalty on states

1000
o100
Q_0010
00 0 1

LQR problem has been solved to obtain the following
set of analytically redundant feedback gains:

K1 =[-10.0000 -15.8365 -79.1980 -18.5048],R1 = 0.01
K2 =[-3.1623 -5.3136 -33.4676 -7.1619]R2=0.1

These two variants of IP controller are simulated to
compare the performance measures of these variants.

-0.3
13 R=0.01
i/
2 0.1
8 . | —
0 1 2 3 4 5 6
Time (Sec)

[—R=0.01
< 0.05 -
K \ |—R=0.1
3 o0
2 oo\

c
<005\
0 1 3 5 6
Time (Sec)

Figure 1 K1 K2 Simulation Response

The performance of the two variants is measured with
following parameters as tabulated below

Table 1 Performance parameters

K1 K2
Performance Parameters (R=0.01) | (R=0.1)
Settling time 541 5.57
Overshoot 0 0
Maximum derivation 0.2396 0.2636
Settling time on quadratic
state error (QSE) 2.46 27
Steady-state value of
accumulated QSE 0.6687 12506

It can be seen that controller K1 performs better than K2
although both the controllers asymptotically stabilize the
inverted pendulum to the equilibrium position. The next
section investigates and compares safety and stability
characteristics of analytically redundant controllers and
deduces a design principle based on that.

2.2. Lyapunov Stability based Error Detection

Every dynamical system has constraints due to physical
limits, external environment and operating conditions.
These absolute behavior constraints also dictate the
boundary of a safe operating region. For example the
inverted pendulum case study under consideration has
constraints on cart displacement, car speed, pendulum
angular movement and maximum voltage of the DC
motor. These state constraints are represented by a
polygon in an n-dimensional space as shown in figure

10. A trusty inverted pendulum controller must generate
a subset of the states within the safety region and also
ensure that future trajectories must also lie within these
bounds. If so the stability and safety of the system is
ensured. This problem has been formalized
mathematically using Lyapunov stability criterion [15].
The solution of Lyapunov criterion based problem
provides a Lyapunov function V(x) illustrated by an
ellipsoid in Fig. 10. The breaching of safety region
boundary indicates a faulty system state or controller.
This indication is used to signal an exception or
switchover a redundant controller for recovery.

State Constraints

Figure 2 Safety Region and State Constraints

The IP controller problem is solved with LMI solver
tool CVX [16] to attain the safety regions (Lyapunov
Function) for three variants of IP controller. In addition
to the two controllers already designed as LQR problem
discussed earlier, the third controller is designed such
that it has largest safety region (SR). An important task
is to formulate the problem before presenting to CVX
tool.

Problem Formulation

We are considering a quadratic Lyapunov function
V(x) = x"Px where P is a positive definite matrix for a
Linear Time Invariant (LTI) system defined as
%= Ax+Bu. The necessary condition for Lyapunov
stability criterion V(x)<0 can be easily derived to a

linear matrix inequality (LMI) A™P + PA <0.

It is worth noting that V(x) is not unique for a given
system and controller combination, it is therefore
required to find largest safety region such that state
constraints polytope may not be restricted. The
maximum volume of ellipsoid defined by the safety
region S:{x:x"‘PxSl} is equivalent to minimize
(log det P) [17]. The final thing is the LMI based
formulation of input, output constraints of the system.
The complete set of problem is formulated and
presented to CVX tool as follows:

find Q that
minimizes logdetQ™ /*Maximise Ellipsoidal Volume*/
subject to

Q>0 /* Positive Definite and Symmetric*/

QA" +AQ <0 /*LMI based Stability Criterion*/
@,"Qa, <l,i=1.p /*Input State Constraints*/

B'QB <Lj=1.r
Next we consider a case where a controller with largest
safety region is to be found. Thus in this case K is also
unknown and we need to find K such that P=Q'
presents the largest safety region. Let Z=KQ"', the
complete LMI problem now becomes:

/*Output Constraints®/

find Q and Z that
minimizes logdetQ” /*Maximise Ellipsoidal Volume*/

subject to
0>0 /*Positive Definite and Symmetric*/

QA" +AQ+Z"B" +BZ<0 /*LMI Stability Criterion*/
a,"Qa, <li=1.p /*Input State Constraints*/
1 Bz

. /*Output Constraints™*/
>20,j=1.r

' Q

The inverted pendulum model has following state and
output constraints,

a"=[5 0 0 0] &,"=[5 0 0 0]
a,"=[0 1 0 0 «"=[0 -1 0 0]
a;"=[0 0 382 0] ,"=[0 0 -3.82 0]

T_K T__K
A T 495 P T 4.95

The solution of above two cases using CVX tool
provides P=Q and thus safety region for known
controller gains. Moreover the gain matrix K = ZQ™'thus
obtained presents the largest safety region. The resulting
safety regions have been projected to x1~x2 plane
(x3=x4=0) and x3~x4 plane (x1=x2=0) as shown below:

2

K1 (R=0.01) 2 K1 (R=0.01)
—K2 (R=0.1) 15 —K2 (R=0.1) ||
7 | —KsesRMan| | (\ — K3 (SRMax)
E 5 1
- o
2 @\ 305
s 0)
2 9 5
£ 3.05
S E’ '
><N- < -
x?
1.5
2 0 oz 02-01 0 01 02

x, Cart Position (m) X, Pendulum Angle (rad)

Figure 3 Safety Regions Comparison

In order to propose a design principle for analytically
redundant controllers designed above, a performance
comparison by the help of a simulation has been done.

= 0.3
E K1(R=0.01)
S 0.2 | —K2(R=0.1)
=] — K3 (SRMax)
w
2 0.1 . S SO N T i
5 S

0 2 4 6 8 10 12
T 041
S
= i
2 04
<
E -0.1 J|—K1(R=0.01) ||
3 —K2(R=0.1)
S 02 | — K3 (SRMax)
& "% 1 2 3 4 5

Time (Sec)
Finally table 2 & 3 summarizes the comparison of
performance and safety measures of the inverted
pendulum case study.

Table 2 Cart Position Performance

K1 K2 K3
5.57 | 14.61
0 0

Performance Parameters

Settling time (seconds) 5.41

Overshoot (meters) 0

Maximum derivation 02396 | 02636 | 0.23
(meters)
Measure of size of safety

region (4/det Q)

Table 3 Pendulum angle Performance

0.0074 | 0.0172 | 0.043

Performance Parameters K1 K2 K3
Settling time (seconds) 3.13 3.39 3.62
Overshoot (meters) 0.0726 | 0.0723 | 0.173

Maximum derivation
(meters)
Measure of size of safety

region(\/@) 0.0074 | 0.0172 | 0.043

0.0726 | 0.2636 | 0.173

It can be observed that controllers K1 and K2 show
better performance characteristics like improved settling
time, less overshoot but less stability/safety region. The
controller K3 on the other hand presents a larger
stability/safety region but poor performance.

The performance and the safety region analysis of the
three variants reveal that high performance controllers
exhibit smaller safety regions and vice versa. Thus high
performance controllers are selected as primary
controllers and safety controller as secondary one. The
three variants for IP controller are termed as

=

experimental, base-line and safety controller for future
reference. We are using the boundary of ellipsoid
associated with safety controller as error detection and
switching sala

The above debate proposes an analytically redundant
design framework applied to an inverted pendulum
system. Moreover Lyapunov stability criterion based
error detection mechanism has also been presented.
However an important consideration 1s dispatching a
dependable output to the external environment (plant). It
is required to switch to appropriate controller as desired.
In this regard we present a state machine that acts a
switching logic upon faulty controller detection.

2.3. State Machine Based Switching Logic
The IP controller may be in one of the three states
{experimental, base-line, safety} ranked from high
performance to large safety enveloped controllers
respectively. Once a controller is marked faulty, it is
disabled and we need two boolean state variables base
controller ready (bc_ready) and experimental controller
ready (ec_ready) to keep track of which controller is
available. In order to describe the behavior of the
physical system with relation to system safety and
recovery from a faulty situation, we define boolean
variables safe and to_bc with the following assignments:
o [f physical system is safe, safe=1 else safe=0
o If the active controller is safety controller and
system is ready for base-line control to_bc=1 else
to_bc=0
The state transition of the active controller is determined
by boolean variables bc_reay, ec ready, safe, to_bc.
Fig. 11 shows the state transition diagram of the active
controller when the boolean expressions on the
transition arcs evaluated to true

[ec_ready]

BASELINE
—

, fe 8&: d S —
[safe &8 ec_ready] | — ExPERIMENTAL >
[bc_ready 8& lec_ready && safe]_i o

Figure 4 State Transition for Active Controller Selection.

3. Separation of Fault Tolerance Concerns

Unfortunately fault tolerant diverse redundant
mechanisms do not come for free, bringing additional
cost and complexity to the core application. J. Xu [18]
has argued that application developers now have to
address both application dependent and redundancy-
related concerns in an intrusive way that complicates the

task of implementing and maintaining fault-tolerant
software.

One of solutions to reduce the additional complexity is
by separating and modularizing these non-functional
concerns from the core functionality. The evolving area
of Aspect-Oriented Programming & Design (AOP&D)
supports the modularized implementation of
crosscutting concerns. We are benefitting from the
power of aspect oriented compiler AspectC++ [19] to
weave redundancy related concerns in non-fault tolerant
experimental IP controller. The variants of IP controller,
error detection mechanism and state machine based
switching logic are separated in a well modularized
aspect. The static advice declarations like slice() of
AspectC++ are used to extend the IP controller object
functionality by weaving these concerns. Moreover
dynamic advice declarations like before(), after() and
around() are used to execute the fault tolerant strategy
using a fault tolerant framework and communicating the
non-faulty output to the external plant.

4. AOFT Controller Implementation in Simulink

A number of safety and mission critical control
applications are developed: designed and simulated in
modeling/simulation ~ based environments like
Matlab/Simulink [20]. Rather than conducting fault
injection experiments in the real world environment,
with all the associated cost and potential damage to
equipment and life, it is easy to employ software models
of the physical real time systems in which the software
is to be integrated or employed. The simulation
environments also help in designing and conducting a
variety of fault injection experiments.

In order to validate the proposed design strategy, the
AOFT IP controller is ported to modeling/simulation
environment Matlab/Simulink using C++ S-Function
Wrapper [21]. The transformation process involves the
mapping of the output file to an S-function C++
Wrapper after the weaver has merged the functional and
aspect code. The IP system is also modeled in Simulink.

K e LL\\

a '- FT
1P Managemenrt
Controller |- Aspect

(T
sy

YT
/,(S-Function A
= wrapper .)
)/
l Fault Tolerant

1 (s -)
| Kké\'/ 7
IP Controller /
o _

Figure S AOFT Controller Porting to S-Function

23 Sep 2009 09:55
already said all this.

The transformation steps are detailed as follows:

e The weaved code with inline and wrapper
functions for advice and aspects against the join
points is ported to global memory space in
simulation structure file template.

e Appropriate simulation work pointers are assigned
to the FT Object

e The modified AspectC++ wrapper functions are
called through Simulink work pointers.

e Appropriate Input & Output ports are assigned to
interact with the physical world model.

5. Fault Injection based Controller validation

Fault injection is a deliberate introduction of faults to
access the dependability of computer based systems or
validate a fault tolerant strategy. Faults may be injected
at the interface between components and external
environment or within a component itself. One of
commonly used technique is software implemented fault
injection (SWIFI). In this technique faults are injected at
the actual software of a computing system by corrupting
code or data [22]. Code Mutation is also a specific form
of static fault injection where source code is changed
instead of program/systems state. Actually different
versions of the same program are created by making
small syntactic changes [23].

The effect of actuator faults on an actuator control has
been modeled and simulated in a study by Theilliol et al.
[24]. They model the faults as additive and
multiplicative effects on the output delivered by the
controller.ui' =om; +u,,

Where u_if represents the faulty jth output, 0 < <1 is a
gain degradation factor, uj, is the constant offset in the

control output. Moreover sensor and actuator faults have
also been addressed as additive and multiplicative bias
at the input and output in separate studies by Kerrigan
and Theilliol et al. [25, 26].

The validation of our proposed design strategy is also
done by injecting realizable faults. In order to provide
better test coverage, faults are injected in the
input/output interfaces between controller and rest of
environment and also within the controller component.
The faults considered are ill designed faulty gains of the
controller and wrong polarity emulating a programming
fault. The input/output faults are considered additive and
multiplicative in nature simulating common sensor and
actuator fault models.

Faults are injected in the primary (experimental
controller) whereas other variants (base-line and safety
controllers) are assumed fault free.

5.1. Programming & Design Faults in IP Controller
In this case a mutant IP controller having inherent faulty
gains or wrong or opposite signs is used.

Casel: Faulty Controller Gains

The mission objective is to move the cart from its initial
position to 10 cm the left of the centre (-0.1m) such that
the inverted pendulum remains vertically stable. The
gains of the primary controller (experimental controller)
are tampered to faulty (ill designed) values.

X1-X2 Plane (X1: Cart Position, X2: Cart Velocity)

StJte Con :traintsg Boundary

Safety Reig(\m Ellipsoid gyatag Trajectory
\

Y
0.5 .

— X
\\ \ -—»-..\\
N 9 \

—

15
W25 02 015 01 005 0 006 01 0f5 02 025

X,

Figure 6 Safety Region & Trajectory without AOFT
Without AOFT

It can be observed from fig. 13 that IP system is unsafe
and unstable as the system states cross the safety
envelope and then boundary constraints as well. Thus
the mission objective is not achieved and results in a
failure.

With AOFT

It can be seen that from fig. 14 that upon detection of
bug at 0.26sec (error detection latency), the active
controller is switched to the safety control, and remained
under safety control until the physical system is ready
for the baseline control even the system is safe at
0.37sec. The Lyapunov function based check monitors
whether the system is ready for base-line controller.
Thus at 0.67sec the system is switched to intermediate
performance base line controller and remained in control
afterwards.

10 T T
: H —+— safety
= : baseline
% —+— experimental
o —<=— actual
£
s :
f=
S T |
U H
10 i i i
0 . - 0.7 0.8
a4
safe
w 2 —<— activeControl
% baseline
7 S S
5 /
S 1
=
o
O O —
-1
0 0.1 0.2 0.3 0.5 0.6 0.7 0.8

Figure 7 (a) Analytical Redundant Controllers Output (b) Safe: 1-Safe 0-Unsafe, Active Control

Figure 15 presents the trajectories of the physical system
and safety region plot. The trajectory terminates within
the safety region thus demonstrates that the system is
asymptotically stable and also converges to the
commanded values.

1 i
Safety Reigon Ellipsoid
0.5
<)
<0
A\)

-0.5

States Trajectory e
-1 : :

026 -02 -015 -01 -005 0 005 01 015 02 0.25

X

Figure 8 Safety Region & Trajectory with AOFT

Case2: Sign Bugs

In this case a mutant IP controller having wrong or
opposite signs is used.

Summary: The IP system is unstable and unsafe
without AOFT support as shown in figure 16. However
in the presence of AOFT, the fault is detected by the
help of safety check and recovered by switching over to
safety and base line controller for safe operation as
shown in figure 16.

1

States Trajectory Without AOFT

N0.5 <— \N\
-0.5 \;\ j

States Trajectory With. AOFT

-0.2 -0.1 0 0.1 0.2 0.3

X4

Figure 9 Safety Region & Trajectory

5.2. Input & Output Interface Faults in IP Controller
In this case input/output interface faults are simulated by
injecting multiplicative-additive faults (u'=au-+uy),
where u represents non-faulty input or output, a is gain
degradation factor and uyis an additive bias.

Casel: Multiplicative Output Faults

Here we did not consider the additive bias thus uy=0 and
only a is varied from 10% to 90% of actual output. It is
observed that up to 30% gain degradation may results in
43% of steady state error that is undetected and recovery
check is not validated with this degraded performance.
Next we are considering some cases where partial and
total failures are avoided by introducing proposed
AOFT framework.

Partial Failure Avoided (SS Error of 0.1m)

In this case output of experimental controller is
degraded by a factor of 0.5 started at about 2sec and
AOFT is enabled at Ssec. it is observed that 100%
steady state (SS) error is introduced without AOFT. As
soon as the AOFT is enabled, it results in system
recovery from this erroneous state and improves the
performance characteristics in terms of steady state
error. A steady state error may be considered as a partial
failure that is avoided in this case.

0.2 T
: ——Fault Free
04 Gain Degradation Effec :\?\;i;%;ite Error
Started !

AOFT using Analaytical Redundancy

Enabled
\\ SS§ Error // //

8 10 12 14 16 18 20
Time (sec)

Cart Position,x1 (m)
<
- o
//‘¢

S
N

&
w

o
N
S
@

Figure 10 Recovery from Partial Failure

Total Failure Avoided

In this case output of experimental controller is
degraded by a gain degradation factor of 0.1 started at
about 2sec. it is observed that without fault tolerance
measures the system is unsafe and unstable. However,
the proposed methodology avoided this failure. As soon
as the fault is detected, safety controller takes over first
and later delegates the control to base line controller for
better performance as shown below.

6[-Gain-Degradation Starts !
hd Safety Check Detects
= 4 Erroneous State
5
o
3 2
5
s O : ‘
§ 2 L e —— safety
(] baseline
B S A R —s+— experimental
; —&—actual
45 2 2.5 3 3.5

Figure 11 Active Controller Output

Case2: Additive Output Faults

Here we did not consider the multiplicative effect thus
a=1. It has been observed that offset (u,) added to the
output resulted in steady state error and makes system
unstable and unsafe. Again the proposed methodology
prevents such failures.

Simulating External Push Pull Force

Next we consider the case where a sinusoidal fault
distribution is applied and then remove after some time.
It simulates a transient external push pull force applied
by a human or some faulty output interface mechanism.
The result of this is the oscillation build up that may
lead to a failure. The proposed safety check provides a
basis to predict such occurrence before the system is not
controllable as shown below. The proposed AOFT helps
recovering the system from this failure.

=3 g
2 " 3: Experimental
] Lyapunov Safety Check ——2: BaselLine
§) Invalidated 1: Safety
[Controller Switchover ‘
g, /
1 1.5 2 2.5 3 3.5 4
- 5 Time
§ “[oscillation Buildup_
] \
3 \ /L
30 <
[
T
S
] 15 2 2.5 3 3.5 4
Time

Figure 12 Sinusoidal Fault & Recovery

Case3: Additive Input Faults

In this case additive faults are induced at the input stage
of the controller either simulating noisy input from the
sensors or buggy software interface between sensor and
controller. A sinusoidal disturbance is added to the input
stage of experimental controller. The proposed strategy

tolerates such faults by switching to analytical redundant
variants.

§ Error Detection & Controller ‘vsafe

2 4 Switchover | ~—activeControl

5 \

32 !/ 1

H [

0

[$) % 1 2 3 4 5 6
Time

[y —cart position

[— Sinusoidal Input Disturbance cart velocity

g-.' \ —angular position

] —angular velocity

4

P f—— I A M A\

£ R

g liivay

>

2

'
=Y

o
=
N
w»
I
o
(-2

Time
Figure 13 Sinusoidal Input Disturbance

6. Conclusions & Limitations

The work presented above adds on to the existing
knowledge in fault tolerance by proposing a design
strategy that dictates how diversity or redundancy based
software fault tolerance frameworks may be
incorporated in safety or mission critical control
components. It is demonstrated that fault tolerance
management issues like definition, initialization and
execution can be handled at meta-level i.e. in a separate
aspect. This would keep the functional design and code
oblivious to fault tolerance concerns. Moreover this
would help decreasing the tangling of functional code
with fault tolerant concerns as well.

This work presents an analytically redundant design
framework for incorporating diverse redundant software
fault tolerance strategies. The performance and safety
characteristic of three analytically redundant controllers
for inverted pendulum system are compared and
deduces that high performance controllers possess less
safety margin and vice versa. Thus the controller agility
compromises the safety or stability.

The aspect oriented fault tolerant inverted pendulum
controller has been ported to Modeling Simulation
environment Matlab/Simulink for validation. The
validation and dependability assessment of the fault
tolerant strategy has been done using fault injection at
the input output interfaces or within the inverted
pendulum controller.

The dependability assessment exercise shows that
design and programming mistakes like false gains or
wrong polarity (false signs) leading to mission failures
can be tolerated by proposed aspect oriented fault
tolerant framework. Moreover input or output interface
faults are also tolerated by avoiding partial (steady state
errors) or complete failures using the proposed strategy.
It has also been observed that faults introduced at the
output interface have large error detection latency as
compared to faults introduced at the input interface.

Although the proposed approach is focused on a
mathematical model of inverted pendulum system, yet
the principles derived and a general aspect oriented fault
tolerant framework proposed should be applicable to
other real time mission/safety critical controllers without
much difficulty. For example the proposed aspect
oriented fault tolerant framework dictates architecture to
modularize error detection, error recovery or masking
strategies in a non intrusive way. This can be applied
irrespective of any complex error detection mechanism.
Moreover the switch over logic can be scaled up to more
variants as well.

The proposed error detection mechanism is dependent
on a linearized model of system to be served. It is not
possible to attain a very clean 100% true model of a
system. However the safety check envelope may be
relaxed to cover modeling uncertainties. Moreover the
safety region based error detection (Lyupanov Stability
Criterion) approach used in this work is only suitable for
Linear Time Invariant dynamical mission or safety
critical systems.

7. References

[1] Lara L. Pullum,“Software Fault Tolerance Techniques
and Implementation”, Artech House Inc., 2001.

[2] HORNING, J. J., et al., “A Program Structure for Error
Detection and Recovery,” in E. Gelenbe and C. Kaiser
(eds.), Lecture Notes in Computer Science, Vol. 16,
New York: Springer-Verlag, 1974, pp. 171-187.

[3] RANDELL, B., “System Structure for Software Fault
Tolerance,” IEEE Transactions on Software
Engineering, Vol. SE-1, No. 2, 1975, pp. 220-232.

[4] HECHT, M., AND H. HECHT, “Fault Tolerant
Software Modules for SIFT,” SoHaR, Inc. Report TR-
81-04, April 1981.

[S] ELMENDORF, W. R., “Fault-Tolerant Programming,”
Proceedings of FTCS-2, Newton, MA, 1972, pp. 79-83.

[6] AVIZIENIS, A., “On the Implementation of N-Version
Programming for Software Fault-Tolerance during
Execution,” COMPSAC *77,

[77 CHEN, L., and A. AVIZIENIS, “N-Version
Programming: A Fault-Tolerance Approach to
Reliability of Software Operation,” Proceedings of
FTCS-8, Toulouse, France, 1978, pp. 3-9.

[8] Kim, K. H. and H. O. Welch, “Distributed Execution of
Recovery Blocks: An Approach for Uniform Treatment
of Hardware and Software Faults in Real-Time
Applications”, IEEE Transactions on Computers, Vol.
38, No. 5, 1989, pp. 626-636.

[9T Scott, et al.,” The Consensus Recovery Block”,
Proceedings of the Total Systems Reliability
Symposium, 1985, pp. 74-85.

[10] L. Sha., “Dependable system upgrade”, In Proceedings
of the IEEE Real-Time Systems Symposium, page 440,
IEEE Computer Society, 1998.

[11] M. Gopal, “Control Systems: Principles and Design”,
McGraw-Hill Inc., 2008.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
(20]

(21]

[22]

(23]

[24]

[25]

[26]

Marvin Bugeja,”Non-Linear Swing-Up and Stabilizing
Control of an Inverted Pendulum System”, In
EUROCON 2003: Computer as a Tool, 22-24 Sept.
2003.

Ghazi S.S.M , Jalali A.A.,” Low Frequencies Optimal
Control of an Inverted Pendulum”, International
Conference on E-Learning in Industrial Electronics, 18-
20 Dec. 2006.

K. Ogata, “Modern Control Engineering”, Prentice
Hall, USA, 1998.

D. Seto and L. Sha, “Engineering method for safety
region development,” Carnegie Mellon
University/Software Engineering Institute, Tech. Report
CMU/SEI-99-TR-018, Aug. 1999.

Stephen Boyd, Michael Grant, “CVX: Matlab software
for disciplined convex programming”, version 1.2 (build
710), available on-line: http://stanford.edu/~boyd/cvx,
accessed: December 7, 2008,

S. Boyd, L. E. Ghaoul, E. Feron, and V. Balakrishnan,
“Linear Matrix Inequality in Systems and Control
Theory”, Philadelphia, PA: SIAM Studies in Applied
Mathematics, 1997, pp. 70

J. Xu, B. Randell and A. Romanovsky. "A Generic
Approach to Structuring and Implementing Complex
Fault-Tolerant Software", Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC.02), 2002.

AspectC++ project homepage: http://www.aspectc.org
Domen V. and Rok O., "Extension to Matlab/Simulink
for design and implementation of distributed fault-
tolerant control systems", In ICEEE, 2004.

Mathworks, “Control flow of an S-Function”, Available
at:http://www.mathworks.com/company/newsletters/dig
est/sept98/controlflow.html, dated: 11-6-2008.

Eliane Martins, Amanda C.A.Rosa, “A Fault Injection
Approach Based on Reflective Programming”, In
Proceedings of Dependable Systems and Networks
(DSN), 2000.

Henrique Madeira, Diamantino Costa Marco Vieira,
“On the Emulation of Software Faults by Software Fault
Injection”, In Proceedings of Dependable Systems and
Networks (DSN), 2000.

D. Theilliol et al.,” Actuator Fault Tolerant Control
Design Based on a Reconfigurable Reference Input”,
Int. J. Applied Mathematics Computer Science, 2008,
Vol. 18, No. 4, 553-560.

Kerrigan, E.C. and Maciejowski, J.M., “Fault-Tolerant
Control of a Ship Propulsion System Using Model
Predictive Control”, In Proceedings of European Control
Conference, 1999.

Theilliol D., Noura H. and Ponsart J.C.,“Fault diagnosis
and accommodation of a three-tank system based on
analytical redundancy”, IS4 Transactions 41(3), 2002,
pp- 365-382.

