Separation of Fault Tolerance and other Non-Functional
Concerns: Aspect Oriented Patterns and Evaluation

Kashif Hameed, Rob Williams, Jim Smith

Abstract

Dependable computer based systems employing fault
tolerance and robust software development techniques
demand additional error detection and recovery tasks.
This results in the tangling of core functionality with these
cross-cutting, non-functional concerns. This work
identifies dependability as a non-functional concern and
proposes design and implementation solutions in an
aspect-oriented framework that modularizes and
separates them from core functionality. The degree of
separation has been quantified using software metrics. A
Lego NXT Robot based case study has been completed to
evaluate the proposed design framework.

Keywords: aspect oriented design and programming,
separation of concerns, executable assertions, exception
handling, fault tolerance, software metrics.

1. Introduction

Adding fault tolerance (FT) measures to safety critical or
mission critical applications unavoidably introduces
additional complexity to the core application. By

incorporating handler code, for error detection,
checkpointing, exception handling, and
redundancy/diversity =~ management, the additional

complexity may adversely affect the overall dependability
of such critical systems.

One of the solutions to reduce this complexity is to
modularize and separate such concerns from the true
functionality.

Although Rate of Change (ROC) based plausibility checks
for error detection and recovery have been addressed by
[2] [3], none of the previous studies propose the
separation of error handling concerns from core
functionality to avoid complexity.

At the level of design and programming, several
approaches have been utilized that aim at separating
functional and non-functional aspects. Component level
approach like IFTC [5], computational reflection and
meta-object protocol based MOP [6] have all shown that
dependability issues can be implemented independently of
functional requirements.

This work is supported by BIT, UWE, Frenchay Campus,
Cold Harbour Lane Bristol, BS16 1QY, (email:
kashif3.hameed@uwe.ac.uk)

The evolving area of Aspect-Oriented Programming &
Design (AOP&D) offers the same level of independence
by supporting the modularized implementation of
crosscutting concerns.

Aspect-oriented language extensions, like Aspect][7] and
AspectC++[1] provide mechanisms like Advice
(behavioural and structural changes) that may be applied
by a pre-processor at specific locations in the program
called join point. These are designated by pointcut
expressions. In addition to that, static modifications to a
program are incorporated by slices which can affect the
static structure of classes and functions.

The current work proposes some generalized aspect
oriented design patterns representing fault tolerance error
detection and recovery mechanisms using ROC
plausibility checks, exception handling, checkpointing and
watchdog supervision. Moreover some additional design
patterns for developing robust mission/safety critical
software are presented. Software metrics like coupling,
cohesion and size have been applied quite successfully to
assess and evaluate the quality attributes of OO software
systems [16] [17]. However the separation of concerns
(SOC) as addressed by AO software development
demands some additional metrics for their evaluation. The
current work reviews additional metrics such as concern
diffusion over the components (CDC), concern diffusion
over the operations (CDO) and concern diffusion over the
lines of code (CDLOC). The SOC metric suite is later
applied on the proposed AO patterns in an empirical case
study. This helps evaluating the degree to which AOP
modularizes the FT concerns and its impact on other
quality attributes.

The validation and dependability assessment of proposed
design patterns has already been presented in an earlier
work [4].

2. Aspect Oriented Exception Handling Patterns
Exception handling has been deployed as a key
mechanism in implementing software fault tolerance
through forward and backward error recovery
mechanisms. It provides a convenient means of structuring
software that has to deal with erroneous conditions [11].
In [8], the author address the weaknesses of exception
handling mechanisms provided by mainstream
programming languages like Java, Ada, C++, C#. In their
experience, exception handling code is tangled with the
normal code. This hinders maintenance and reuse of both
normal and exception handling code.

Moreover as argued by [9], exception handling is difficult
to develop and has not been well understood. This is due
to the fact that it introduces additional complexity and has
been misused when applied to a novel application domain.
This has further increased the ratio of system failures due
to poorly designed fault tolerance strategies.

Fault tolerance measures using exception handling should
make it possible to produce software where (i) error
handling code and normal code are separated logically
and physically; (ii) the impact of complexity on the
overall system is minimized; and (iii) the fault tolerance
strategy may be maintainable and evolvable with
increasing demands of dependability.

In this respect, [6] has proposed an architectural pattern
for exception handling. They address the issues like
specification, signaling and hanling of exceptions. These
architectural and design patterns have been influenced by
computational reflection and meta-object protocol.
However, most meta-programming languages suffer
performance penalties due to the increase in computation
at run-time. This is because most of the decisions about
semantics are made at run-time by the meta-objects, and
the overhead to invoke the meta-objects reduces the
system performance [10].

Therefore we propose generalized aspect based patterns
for monitoring, error detection, exception raising and
exception handling using a static aspect weaver. These
patterns would integrate to deliver a robust and
dependable fault tolerant software. The following design
notations have been used to express aspect-oriented
design patterns.

Design INotations

Class

Aspect

Join Point

_Advice(). Before Advice
Advice(d Mfrter Advice
Advice(Around Advice

Figure 1 Aspect Oriented Design Notations

2.1. Error Detection and Exception Throwing Aspect
Error detection and signaling erroneous condition has
been an anchor for implementing any fault tolerance
strategy. This aspect detects faults and throws exceptions
for range, input and output errors. The overall structure of
this aspect is shown below. The GenThrowErrExcept join
points the NormalClass via three pointcut expressions for
each type of fault tolerance case.

RangeErrPc: this join points the contexMethod() only. It
initiates a before advice to check for range type errors
before executing the contextMethod(). In case the
assertions don’t remain valid or acceptable behavior
constraints are not met, RangeErrExc exception is raised.
InputErrPe: this join points the contextMethod() further
scoped down to the input arguments of the
contextMethod(). It initiates a before advice to check for
valid input before the execution of the context method. In
case the input is not valid, it raises InputErrExc.
OutputErrPc: this join points the contextMethod()
further scoped down to the output results of the
contextMethod(). It initiates an after advice to check for
valid output after the execution of the context method. In
case the output is not valid, it raises OutputErrExc.

Safety Critical
Class

NormalClass e

+contextMethod()

—Gen ThrowEr E)-(?:E[itj —

/[Exceptions Definition & Initialization ﬁ

...l fields
...ll methods
_Advice():RangeErrPc b RangeErrPc
bgfore() { _) _ — InputErrPc
if(Func((input_max,input_min)) OutputErrPc

)throw RangeErrorExc; [/ raise range exception —advice(): RangeErrPc

_advice(): InputErrPc
advice()_:OutputErrPc

_Advice():linputErrPc

before(input) {

if(Func (input))

throw InputErrorExc; // raise input exception

}

Advice()_:OutputErrPc

after(output) {

if(Func (output))

throw util::OutputErrorExc; / raise output exception

}

Figure 2 Error Detection, Exception Throwing

2.2. Rate of Change Plausibility Aspect

This aspect is responsible for checking the state of the
system based on the rate of change of critical signal/data
values. Once an erroneous state is detected, the respective
exception is raised. Various exceptions are also defined
and initialized in this aspect. The pointcut GetSensorData
defines the location where error checking plausibility
checks are weaved whenever a critical data/sensor reading
function is called. The light weight ROC plausibility
assertions are executed in the advice part of this aspect.

Safety Critical
Class

NormalClass

GetSensorData->Call(% Sensor::GetSensorData(...)) &&
within(contextMethod()) && result(output)
+contextMethod) === .- V

T
~—ROCPlausibilityCheck—

IlExceptions Definition & Initiali ionbl

...l fields

Advice()_:GetSensorData I |...// methods
after(output: y)

{ GetSensorData
if (y > yold) /i Monotonically Increasing
risnt=Func1(*tjp->result(),yold); gz:;::r(‘]s:;mata

rmean=Func2(*tjp-result(),yold); // ROC Error Detection
rold = Func3(yold);

if(rinst > RmaxIncr &8 rmean > Rmeanlncr))

throw ROCPGreater; // ROC Greater exception

if(rinst < Rminlncr))

throw ROCPLess; // ROC Less exception

}

if (y < yold) Il Monotonically decreasing
risnt=Func4(*tjp->result(),yold);
rmean=Func5(*tjp-result(),yold); // ROC Error Detection
rold = Func6(yold);

if(rinst > RmaxDecr && rmean > RmeanDecr))

throw ROCNGreater; // ROC Greater exception

if(rinst < RminDecr))

throw ROCNLess; // ROC Less exception

}
)

Figure 3 Rate of Change Aspect Pattern Structure

ClientClass | | :NormalClass 4
|

Faultlnjection [> < :ROCPlausibility [>

contextiethod) |

U; Contfu\FIuw‘W ~
Pointcut:
GejSensordata |

|

/ |

Erecuts Fau\tlniectinnl Generate Faults & |
Advice i

; ’“'l Hodiy heSensorDeta :

|

|

«injects>> ’)
oo E

xacute Rate of Change
Plausibility Advice()_

Detects Erroneous
States using ROC
Assertions &
Raise Exceptions

<<lses>>
fmm e - —_——

Figure 4 Rate of Change Aspect Pattern Dynamics

2.3. Catcher Handler Aspect

The CatcherHandler aspect as shown below is responsible
for identifying and invoking the appropriate handler. This
pattern addresses two run-time handling strategies.

The first strategy is designated by an exit_main pointcut
expression. It checks the run-time main() function for
various fatal error exceptions and finally aborts or exits
the main program upon error detection. This aspect may
be wused to implement safe shut-down or restart
mechanisms when a fatal error occurs or safety is
breached.

The second strategy returns from the called function as
soon as the error is detected. The raised exception is
caught after giving warning or doing some effective action
in the catch block. This can help in preventing error
propagation. Using this aspect, every call to critical
functions is secured under a try/catch block to ensure
effective fault tolerance against an erroneous state.

It can be seen in the diagram below that exit main
pointcut expression join points the main() run-time
function. Whereas caller return pointcut expression join
points every call to the contextMethod(). Moreover
exit_main and caller _return pointcut expressions are
associated with an around advice to implement error
handling. The tjp>proceed() allows the execution run-
time main() and called functions in the try block.

The advice block of the catcher handler identifies the
exception raised as a result of inappropriate changes in the
rate of signal or data. Once the exception is identified, the
recovery mechanism is initiated that assign new values to
signal or data variables based on previous trends or
history of the variable.

2.4. Dynamics of the Exception Handling Aspect

This scenario shows an error handling aspect. It simulates
two error handling strategies. In the first case, control is
returned from the caller to stop the propagation of errors
along with a system warning. In the second case the
program exits due to a fatal error. This may be used to
implement shutdown or restart actions. Moreover the
extension of a class member function with a #ry block is
also explained. A client object invokes the
contextMethod() on an instance of NormalClass. The
control is transferred to CatcherHandler aspect that
extends the contextMethod() by wrapping it in a #ry block
and executes the normal code. In case an exception is
raised by previous aspect, the exception is caught by the
CatcherHandler aspect. This is shown by the catch
message. The condition shows the type of exception e to
be handled by the handler aspect. CatcherHandler aspect
handles the exception e. the caller return strategy warns
or signals the client about the exception and returns from
the caller. The client may invoke the contextMethod2() as
appropriate. In exit main strategy, the control is retuned
to client that exits the current instances as shown by the
life line end status.

>
>

caller_return - call (NoramlClass.contextMethod()) exit_main—> main()

Advice(): caller_return L : :
froundo —— CatherHandier ———
— CatherHandler
try
{ ...l fields
{jp->proceedy(); ..dl methods
catch (Exception) exit_main
caller_return
if (RangeErrorExc) printf("Range Error");
if (InputErrorExc) printf("Input Error") _advice()_: exit_main
if (OutputErrorExc) printf("Output Error") —— _advice()_: caller_return
}
}

Advice():exit_main
around() { try

{

tjip->proceed();

catch (Exception)

printf("Fatal Error, Exit from program\n");

}

:ClientClass |

| :NormalClass ‘ <] CatcherHandler |::>
contextMethod() J|_ Executes Catcher

Handler Advice |
. ey |

Normal <<ExtendedOP>>try
Scenario e 1o

Extends the
contextMethod()
with try block &

_ Execute Normal

Code

[IsClagsof(e , Exception Type)]!

<<Catch>> catch(e)

Abnormal

Scenario warn and caller_return

e oo B andle exception e
contextMethod2() Py Recover

Erroneous States

P
atal Error] warn & main_exit

=

Figure 5 Catcher Handler Aspect (a) Structure (b) Dynamics

3. Watch Dog Aspect

A watchdog is a common concept used in real time
systems for detecting and handling errors in real time
systems. It is a component that detects error by receiving a
delayed or null service response. Based on such timing
faults, it initiates a corrective action, such as reset,
shutdown, alarm to notify attending personnel, or
signaling more elaborate error-recovery mechanisms.
Sometimes software watchdogs are more active by
performing periodic built-in-tests (BIT). Synchronous
tasks are more prone to such timing based faults resulting
in mission failures.

In this regard we present a watchdog aspect (figure 6) to
make such tasks fault tolerant by weaving an advice code.
Thus every synchronous mission critical task is monitored
against a deadline that is derived from the worst case

execution time of the overall task. As the dead line is
expired, the mission is aborted. The watchdog aspect is
presented below. It can be seen that every call to a
contextMethod() of a NormalClass is weaved with a
timing check to see whether time delay between current
and previous call exceeds the dead line or not. The
watchdog aspect communicates with an external clock
interface to receive time stamps. Thus the watch dog
aspect separates timing concerns from the true
functionality. It also localizes the definition and signaling
of exceptions.

Safety Critical
Class

NormalClass

TimingCheck->Call(% NormalClass::contextMethod(...))

+contextMethod()

WatchDog

/IExceptions Definition & Initialization Iy
IlLocal Variables ..M fields
int TimeNow, TimePrevious, Deadline;

...[l methods

TimingCheck ‘

-O)— _advice(): TimingCheck

ExternalTimerinterface

+getTime()

_Advice():TimingCheck
before

if (TimeNow-TimePrevious > Deadline) throw TimeOutException

Figure 6 Watchdog Aspect

4. Save Data and Checkpointing Aspect

Some tasks require context related critical data to be
stored for post analysis and executing recovery
mechanisms. Every call to these tasks is weaved with a
data saving advice. SaveData aspect provides
checkpointed stable recovery data to be used in ROC
based error detection and recovery mechanisms.

Safety Critical
Class

NormalClass

CriticalTask—>Call(% NormalClass::contextMethod(...))

+contextMethod()

IILocal Variables [

Memorylnterface
+save() . PN
+restore() o)>— advice()_: CriticalTask

Figure 7 Save Data & Checkpointing Aspect

m
— SaveData __ _

..Ml fields

.../l methods

CriticalTask ‘

Whenever a critical function is called, SaveData aspect
stores the contextual state information with the help of
Memorylnterface.

5. System Configuration & Initialization Aspect

Most real time systems rely on sensors inorder to attain
physical information from the external environment.
These sensors need to be configured and initialized
depending upon the modes of operation. For example a
Lego NXT robot (Tribot) used in our case study uses
light, ultrasonic and rotation sensors to carry out tasks.
These sensors must be initialized before starting their
actual tasks. It has also been observed that rotation
sensors are reinitialized as the direction of rotation
changes (when Tribot start traversing backward). All such
requirements either cut-across true functional concern or
emerges as additional non-functional requirements. Such
requirements have been implemented in an aspect thus
separating them from true functional concern. This aspect
is weaved as a startup advice in the control flow of main
program.

6. Mission Pre-Conditions Aspect

Mission critical real time systems require some pre-
conditions or constraints to be met before starting the core
task. For example Tribot check the voltage level of
batteries and ambient light before staring its mission so
that it could fulfill its tasks reliably. If the above
constraints are not met, the mission is aborted. Such
constraints are cross cutting to core functional
requirements and thus implemented as a separate aspect as
shown below.

main()

Apointcut->call(%softlnit (...))

—_ _tﬁj_@;] onPreCon Asié_s::g:::t:-«

I -

...dI fields

llExceptions Definition & Initialization
liLocal Variables

.../l methods
Sensorinterface Apointcut
+getData CJ‘F _advice(): Apointcut

Advice()_: Apointcut
after:

if (!PreCondition) throw PreConditionFailure

}

Figure 8 Mission Pre-Condition Aspect

As soon as the software finishes system initialization, the
aspect acquires environmental data from the

SensorInteface and checks against the pre-conditions or
constraints. If the constraints are not satisfied, an
exception is thrown and the mission is aborted.

7. Case Study

In order to evaluate the proposed AO design patterns, a
case study has been carried out using a LEGO NXT Robot
(Tribot). This uses an Atmel 32-bit ARM processor with a
development environment utilizing AspectC++ 1.0pre3
aspect oriented compiler [1].

The Tribot has been built consisting of two front wheels
driven by servo motors, a small rear wheel and an arm
holding a hockey stick with the help of some standard
Lego parts. Ultrasonic and light sensors are also available
for navigation and guidance purposes.

An interesting task has been chosen to validate our design.
In this example Tribot hits a red ball with its hockey stick
while avoiding the blue ball placed on the same ball stand.
It makes use of ultrasonic and light sensors to complete
this task. This task is mapped on a goal-tree diagram as
shown below.

Lego NXT
Hockey Player

Hit Eed Ball

Mizs Blue Ball

Move Forward & Stop
25 cm short of ball post

Differentiate Ball

Figure 9 Lego NXT Robot Case Study: Goal Tree Diagram

Any deviation in full-filling the OR goals and
corresponding AND sub-goals is considered as a mission
failure.

8. Aspects Evaluation via software Metrics

Software metrics like coupling, cohesion and code size
have been used to access the software quality for quite
some time. But the separation of concerns, especially
cross cutting ones implemented with the aid of aspect
oriented compilers demand some additional metrics suite
for its assessment. In this regard [13, 14, 15] have
proposed an additional metric suite for the separation of
concerns. This metric suite has been utilized in [12] to
assess the quality of some large scale software systems.
These additional metrics measure the degree to which a
single concern in the system maps to the design
components (classes and aspects), operations (methods
and advice), and lines of code. For all the employed

metrics, a lower value implies a better result. Some of
these metrics used in our study are explained below:

8.1. Separation of Concerns Metrics

Separation of concerns (SoC) refers to the ability to
identify, encapsulate and manipulate those parts of
software that are relevant to a particular concern. The
metrics for SoC measurement are:

Concern Diffusion over Components (CDC)

This metric measures the degree to which a single concern
in the system maps to the components in the software
design. The more direct a concern maps to the
components, the easier it is to understand. It is also easier
to modify and reuse the existing components.

Definition: CDC is measured by counting the number of
primary components whose main purpose is to contribute
to the implementation of a concern. Furthermore, it counts
the number of components that access the primary
components by using them in attribute declarations,
formal parameters, return types, throws declarations and
local variables, or call their methods.

Concern Diffusion over Operations (CDO)

One way of measuring the code tangling is by counting
the number of operations affected by a concern. If a
concern could be evoked by many operations, it becomes
harder to maintain and reuse.

Definition: CDO is measured by counting the number of
primary operations whose main purpose is to contribute to
the implementation of a concern. In addition, it counts the
number of methods and advices that access any primary
component by calling their methods or using them in
formal parameters, return types, throws declarations and
local wvariables. Constructors also are counted as
operations.

Concern Diffusion over LOC (CDLOC)

The intuition behind this metric is to find concern
switching within lines of code. For each concern, the
program text is analyzed line by line in order to count
transition points. The higher the CDLOC, the more
intermingled is the concern code within the
implementation of the components; the lower the CDLOC,
the more localized is the concern code

Definition: CDLOC counts the number of transition
points for each concern through the lines of code. The use
of this metric requires a shadowing process that partitions
the code into shadowed areas and non-shadowed areas.
The shadowed areas are lines of code that implement a
given concern. Transition points are the points in the code
where there is a transition from a non-shadowed area to a
shadowed area and vice-versa. An extensive set of
guidelines to assist the shadowing process is reported in
[14].

8.2. Coupling Metrics

Coupling is an indication of the strength of
interconnections between the components in a system.
Highly coupled systems have strong interconnections,
with program units dependent on each other [13]. The
larger the number of couples, the higher the sensitivity to
changes in other parts of the design and therefore
maintenance is more difficult. Excessive coupling
between components is detrimental to modular design and
prevents reuse. The more independent a component is, the
easier it is to reuse it in another application [3]. The
metrics in this category are Coupling Between
Components (CBC) and Depth of Inheritance Tree (DIT).

O0SsD AOSD
(C4) (C5) —=, A =
A A :[\2.. B A < £ | \.\/a ..
S e RN oL abstract P
A
A el B> < =
A (C3) B | / (/4
P concrete P
A
COMPOMENTS
I:I Class | - Introduction
- P - Pointcuts
<> Aspect A - Advices

Figure 10 Coupling Dimensions on AOSD [13]

Coupling between Components (CBC)

This counts the coupling between classes, classes and
aspects and between other aspects. It counts the classes
used in attribute declarations i.e. C2 and C3 depicted in
Figure below. It also counts the number of components
declared in formal parameters, return types, throws
declarations and local variables. Moreover classes and
aspects from which attribute and method selections are
made are also included.

New coupling dimension are also defined in [2] in order
to support aspect oriented software development (AOSD).
For e.g. access to aspect methods and attributes defined by
introduction (couplings C4, C5, C7, C8, C10), and the
relationships between aspects and classes or other aspects
defined in the pointcut (couplings C6, C9) as depicted in
figure 10. Thus overall this metric encompasses nine
coupling dimensions (from C2 to C10). If a component is

coupled to another component in an arbitrary number of
forms, CBC counts only once.

Depth of Inheritance Tree (DIT)

DIT is defined as the maximum length from a node to the
root of the tree. It counts how far down the inheritance
hierarchy a class or aspect is declared. This metric
encompasses the coupling dimensions Cl and CI1
illustrated in figure 10.

8.3. Lego NXT Robot Case Study Measures Analysis
Software metrics are attained for the Lego NXT Robot
case study as shown below. In this case study, a C++
based true functionality has been made fault tolerant by
weaving various concerns in 30 places using 7 aspects and
10 independent point cut expressions. These 7 aspects
represent different concerns that otherwise may be added
to actual true concern making the code more tangled, non
maintainable and non reusable.

Components Operatlons_ Exception Handling Separation of
Advice Concerns
Type of Concerns E -
Concerns (Cross Cutting Class/ functions Dxc%eptt_lon try/catch Pointcut Couping
Places) Interface | Aspects Before| After |Around| ~° '2' fon rglgzk‘; coc | cpo |epLoc
Throwing
Tribot Case Study (TCS) Functional 3 0 17 0 0 7 | 17 2 3
Concern
Mission Pre-Condition Non-Functional
(MPC) (1 place) 1 1 2 1 2 0 1 3 3 0 3
System Configuration and| Cross-Cutting
Initialization (SCI) (2 places) 1 1 1 0 0 2 2 3 0 2
Save Data (SD) Cross-Cutting 2 1 4 0 0 1 2 3 0 3
(5 places)
WatchDog (WD) Cross-Cutiing 1 1 1 0 1 1 3 0 1
(5 places)
ROC Plausibiltiy Check Cross-Cutting
Error Detection (ROC) (2 places) ! 1 4 0 1 1 1 2 1
Exit-Main Catcher Handler| Cross-Cutting
(EMH) (1 place) 1 2 1 0 1 1 1 3 1 1
Return Caller Catcher Cross-Cutting
Handler (RCH) (14 places) ! 2 0 2 3 2 7 1 3
True Functionality (TF) 0 3 0 17 0 0 0 0 0 7 17 2 3
cmss'c”t:g‘g)c""cems 30 4 7 10 2 3 7 3 10 12 | 23| 4 14

Figure 11 Metrics for Lego NXT Robot (Tribot)Case Study

Separation of Concern Measures

Separation of concerns has been evaluated using CDC,
CDO and CDLOC figures attained in the above case
study.

The Concern Diffusion over the components (CDC)
metrics measures the mapping of a single concern on
various components. It “L‘T inferred from figure 12

below that there is 649 = Jction in mapping of true
concern on the componentd present in the system due the
introduction of aspects. Moreover the individual aspects
implementing cross cutting concerns don’t present large

CDC figures that means, the aspects are loosely coupled
with the system and thus can be more powerful
candidates for reusability.

The same behavior has been observed in CDO measures.
As argued in [14] and [15], the code tangling may be
visualized by observing the diffusion of a concern across
different operations. Again the true concern seems more
tangled in different operations as compared to cross
cutting concerns implemented as aspects.

23 Sep 2009 09:40
maybe I need to read it again, but i don't see what the 64% reduction is compared with

RCH

EMH 1%
5% N
ROC
%

wo
5%

L,
%

TR
s
et
atesatetey

50 &
1%

SCI MPC
1% 16%

Figure 12 CDC Dispersion

RCH
1%

858
355
o

el
e
35055
35355
ot
35055
35355
S
fatale!

o
ﬁ?
ﬁ%

o

EMH
&%

ROC

=

3% et
WD
8%
sD
8% SCI MPC
7% T

Figure 13 CDO Dispersion

Concern diffusion over the lines of code (CDOLC) is a
measure of how much tangled and inter-winded is the
code implemented for a component. The larger the value,

more tangled is the code with other concerns.

CDLOC for the core functionality (TCS) counts to 2 that
seems a reasonable reduction as compared to non aspect
oriented implementation. The seven non-functional/cross
cutting concerns may add to present a larger CDLOC.

It can also be observed from the CDLOC dispersion that
there are some indicators of bit code tangling with the true
functionality especially for the aspects responsible for
error detection and exception handling. Upon code
reviewing it was observed that some critical contextual
information is required that resulted in concern switching.
Apart from that, overall concern switching for each
component is reasonably small to be considered better
candidates for reusability and maintainability. There were
four concerns implemented with null concern switching in

this study.

EMH, 1

Figure 14 CDLOC Dispersion

Coupling Measures

As observed in the study by [12], the coupling between
components for various concerns has not increased a lot in
our case as well. Coupling between components seem to
be uniformly distributed with an average value of 2. Apart
from core functionality (TCS), the increased coupling has
been observed in the concerns implementing error
detection and recovery mechanisms. This is due to the fact
that aspects implementing these concerns are coupled with
the core concern for acquiring contextual information
used in error detection and recovery mechanisms.

v

RCH, 3

iy

5
52535
S5
2505050
S
358
555

P
3
o

’:::0
’::
L

0:‘:
ag0sees
ATt
&

L
e
e

ENH, 1/

%

ROC, 1 MPC, 3

wo, 1

SD, 3 SCI, 2

Figure 15 Coupling between Components

Exception Throwing & Handling Measures

It can be seen from figures 16(a) and 16(b) that exceptions
definition and throwing have been localized in the
components responsible for error detection like ROC
plausibility Checks and Watch Dog. Moreover, exception
handling has also been localized in their respective
aspects without diffusing any other component as shown
in the figure below.

ROC, 4

Lty
Py

oSN

batately
2505

s

£

o
ey
G5
{565
2545

Tt
355
3535
45055
GRS
ol
45255

S5
o

5%

e
&

]
S
S

e

1:
’:
%
1:4
5

+305

RCH, 2 %

Figure 16 (a) Exceptions define & throw (b) try/catch blocks

9. Conclusions & Future Work

The current work proposes aspect oriented design patterns
for developing fault tolerant and robust software
applications. The aspect oriented design patterns under
this framework bring additional benefits such as the
localization of error handling code. Thus error handling
code is not duplicated as the same error detection and
handling aspect is responsible for all the calling contexts
of a safety critical function. Reusability has also been
improved because different error handling strategies can
be plugged in separately. In this way, both aspect and
functional code may be ported more easily to new
systems.

Although a detailed analysis of concerns separation
through aspects by refactoring large scale software
application has been provided in [12]. Our case study
compliments some of the results. It has been observed that
localization of exception management (definition,
initialization and throwing) and exception handling
improves modularity. It has been observed that fault
tolerant concerns, when implemented as aspects, have
resulted in considerable reduction in diffusion of concerns
over the core functionality. The concern diffusion in terms
of LOC does indicate clear separation and localization of
error management related issues. However some increased
code tangling has been observed with error detection

based aspects. This is due to the necessary sharing of
context information for detecting erroneous states. Apart
from that, CDLOC measures are small for the core
functionality. Coupling has been increased in the
components responsible for error detection. Thus overall
there has been an improvement in separation of concerns
at the cost of slightly increased coupling.

This further probes the need for incorporating an error
masking strategy like Recovery Blocks and N-Version
Programming. An aspect oriented design version of these
strategies is also under consideration.

10. References

[1] AspectC++ project homepage: http://www.aspectc.org.

[2] Martin Hiller, et. al., “Executable Assertions for Detecting
Data Errors in Embedded Control Systems”, In
Proceedings of the International Conference on
Dependable Systems & Networks, 2000.

[3] Martin Hiller. "Error Recovery Using Forced Validity
Assisted by Executable Assertions for Error Detection: An
Experimental Evaluation", In 25th EUROMICRO, Milan,
Italy, 1999.

[4] Kashif Hameed, Rob Williams, Jim Smith, “ Aspect
Oriented Software Fault Tolerance”, In Proceeding of
ICCSE (WCE09), Imperial College London, 1-3 July
2009.

[5] Paulo Asterio, et al. "Structuring Exception Handling for
Dependable Component-Based Software Systems”, In
Proceedings of the 30th EUROMICRO Conference
(EUROMICRO'04), 2004.

[6] Alessandro F. Garcia, Delano M. Beder, Cecilia M. F.
Rubira. "An Exception Handling Software Architecture
for Developing Fault-Tolerant Software" Proceedings of
the 5th IEEE HASE USA, pp. 311-32, November: 2000

[7] Aspect] project homepage: http://eclipse.org/aspectj/

[8] Fernando Castor filho, et al. "Error Handling as an
Aspect", In Workshop BPAOSD '07, 12-13 March,
Vancouver, BC, Canada, 2007.

[9] Alexander Romanovsky. "A Looming Fault Tolerance
Software Crisis", In ACM SIGSOFT Software
Engineering Notes Volume 32, No. 2, page 1, March
2007

[10] Kenich Murata, R. Nigel Horspool, Eric G. Manning,
Yasuhkio Yokote, and Mario Tokoro, “Unification of
Compile-time and Run-time Metaobject Protocol”,
appeared in ECOOP Workshop in Advances in Meta
object Protocols and Reflection (Meta'95), Aug., 1995.

[11] Laura L. Pullum, "Software Fault Tolerance Techniques
and Implementation", Artech House Inc., 2001.

[12] Fernando Castor Filho, et al.,”Exceptions and aspects: the
devil in details”, Proceedings of the 14" ACM SIGSOFT
international symposium on foundations of software
engineering, Portland, Oregon, USA, November 05-11-
2006.

[13] C. Sant’Anna et al. "On the reuse and maintenance of
aspect-oriented software: An assessment framework”, In
Proceedings of the 17th Brazilian Symposium on
Software Engineering, October 2003, pages 19-34.

[14]

[15]

[16]

[17]

Garcia, A. et al. “Agents and Objects: An Empirical Study
on Software Engineering”, Technical Report 06-03,
Computer Science Department, PUC-Rio, February 2003.
Available at fip://ftp.inf.puc-rio.br/pub/docs/techreports/
(file 03_06_garcia.pdf).

Garcia, A. et al. “Agents and Objects: An Empirical Study
on the Design and Implementation of Multi-Agent
Systems”. Proc. of the SELMAS’03 Workshop at
ICSE’03, Portland, USA, May 2003, pp. 11-22.
Chidamber, S., Kemerer, C. “A Metrics Suite for Object
Oriented Design”. IEEE Transactions on Software
Engineering, 20 (6), June 1994, pp. 476-493

Basili, V., Briand, L., Melo, W. “A Validation of Object -
Oriented Design Metrics as Quality Indicators”, IEEE
Trans. on Software Eng., 22 (10), October 1996, pp. 751 -
761.

