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Abstract: When checking frequency and magnitude tables for disclosure risk, the cell 

threshold (the minimum number of observations in each cell) is a crucial parameter. In 

rules-based environments, this is a hard limit on what can or can’t be published. In 

principles-based environments, this is less important but has an impact on the operational 

effectiveness of statistical disclosure control (SDC) processes.  

Determining the appropriate threshold is an unsolved problem. Ten is a common 

threshold value for both national statistics and research outputs, but five or twenty are 

also popular. Some organisations use multiple thresholds for different data sources. 

These higher thresholds are all entirely subjective. Three is the only threshold which has 

an objective statistical foundation, but most organisations argue that this leaves little 

margin for error. Unfortunately, there is no equivalent statistical case for any number 

larger than three: ten is popular because it is popular. This is particularly the case for 

research environments, where there is no guidance. 

This paper provides the first empirical foundation for threshold selection by modelling 

alternative threshold values on both synthetic data and real datasets. The paper 

demonstrates that this is a complex question. The trade-off between risk and value is well-

known, but we demonstrate that the protection of a higher threshold depends on the risk 

measure. There is no monotonic relation between a threshold and risk, as higher 

thresholds can increase disclosure risk in particular scenarios. The blind application of 

high-threshold rules might mask new risks. There is no unambiguous result, other than 

the simplistic ones that more observations reduces risk and higher thresholds reduce 

utility. 

Finally, the paper notes that a reconsideration of disclosure checking practices can 

reduce risk irrespective of the threshold for some risk scenarios. 

 

  

mailto:Felix.ritchie@uwe.ac.uk


10 is the safest number that there’s ever been 1003 
 

 

 

 

 

TRANSACTIONS ON DATA PRIVACY (2022) 

1 Introduction 

When checking frequency and magnitude tables for disclosure risk, the cell 

threshold (the minimum number of observations in each cell) is a crucial 

parameter. In rules-based environments, this is a hard limit on what can or cannot 

be published. In principles-based environments, this is the default rule which 

determines how conversations about acceptable outputs will go (see [1], for a 

description of the difference between rules- and principles-based checking 

schemes).  

This threshold, often the first rule in any statistical disclosure control (SDC) 

guide, has to do a lot of heavy lifting. In a rules-based world, that one number 

has to balance usability and confidentiality of outputs. This is an impossible task 

for a single measure, and it is straightforward to demonstrate how it can fail to 

achieve either outcome [2]. In ad-hoc or principles-based environments, where 

there is flexibility in specific cases and the threshold is a crude measure to 

distinguish between ‘generally safe’ and ‘generally unsafe’ outputs, the actual 

value is less important; but a poorly-chosen limit can still affect the efficiency of 

the environment and the credibility of the organisation setting the rules. 

The problem is: what is an appropriate threshold? Three is the only value which 

has an objective logical basis; indeed [3] argues that ‘minimum frequency larger 

than three normally does not make much sense’ (p120); but many practitioners 

would argue that this leaves little margin for error, and encourages the idea that 

there is a statistically ‘safe’ answer. Ten is a popular number for both national 

statistics institutes (NSIs) and research outputs, but five comes close behind. 

Some organisations use multiple levels eg five for standard outputs, ten for 

outputs based on more sensitive data. One UK organisation uses thirty for 

research output but less for its own statistics.  

NSIs offer training to their own staff and to researchers, but rarely admit to the 

truth: that ten (or five, or twenty) is a subjective choice. I have observed training 

courses where the trainers try to defend ten as if it has some inherent, magical 

power. Trainers who try to do this invariably lose the argument, and thus their 

credibility, because the statistical case is absent. Ten is popular because (a) it is a 

memorable round number (b) other people use it. In a world of uncertainty, doing 

what others do can be the easiest and most defensible option.  

For a limit above three, the main rationale is that a higher limit reduces the 

likelihood of disclosure by differencing. In the early 2000s, some simple statistical 

analysis (now lost) was carried out using randomly generated data by the Virtual 
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Microdata Laboratory (VML) team at the UK Office for National Statistics (ONS). 

This suggested that the opportunities for disclosure by differencing decrease very 

rapidly once cell thresholds rise above five or six. In the research environment 

managed by the VML team, ten therefore seemed a very safe threshold to require 

of research outputs, and one which was acceptable to researchers. 

At that time, the decision to use ten as the threshold by the VML was unusual, 

and not even common within ONS; the statistical minimum of three was 

preferred. Some fifteen years later, ten seems the most popular number applied 

to research outputs worldwide, as well as becoming more common in official 

statistics. 

However, there is still no statistical case for this, and it is an important question. 

A higher threshold is expected to reduce risk, but is also expected to restrict the 

publication of useful outputs. Evidence on the balance of risks is useful to 

statistics producers keen to maximise the value of data. 

Unfortunately, the issue is not amenable to analytical review. This paper instead 

offers empirical analysis of how thresholds affect risk and utility by modelling 

alternative threshold assumptions on both synthetic data and on a real dataset 

used by researchers. The aim is not to prove that any particular threshold is ‘best’ 

– this is not possible – but to provide supporting evidence for the subjective 

decisions that NSIs make. 

The paper demonstrates the expected conclusion that more observations reduce 

risk, and higher thresholds reduce the utility of outputs. However, the novel key 

findings of the paper are that: 

• risk is not a monotonic function of the threshold: a higher threshold can 

lead to higher risk as well as lower risk, and 

• the relationship between risk and threshold varies with the type of risk 

• non-statistical measures (in particular, clearer guidance on outputs) can 

reduce risk more effectively than higher thresholds 

There is no extant literature on this topic. The next section therefore introduces 

the conceptual framework. Section 3 describes the approach taken, and section 4 

findings. Section 5 concludes. 
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2 Conceptual review 

2.1 Strong versus weak differencing 

A threshold rule is applied to linear tabulations to prevent (a) direct re-

identification of an individual and confidential data associated with them, and 

(b) indirect re-identification through differencing. 

A single observation in a cell means that the characteristics of the cell 

respondent are unique and may be unambiguously associated with confidential 

information published using the same classification data. Two observations does 

not allow the general reader to uncover data about either respondent, but it 

affords each cell respondent an opportunity to find out something about the other 

(on the assumption that the respondents knows his or her own tabulated values). 

Three observations guarantees no confidentiality breach, on the assumption that 

respondents do not co-operate in the re-identification of others. Hence, most 

standard texts (eg [3, 4]) use three as the threshold for exposition: it solves the 

problem of direct identification with a clear, objective logical justification.  

Note that, while a single observation in a cell can in theory disclose information 

about the individual, in practice this is unlikely. Identity disclosure requires 

population uniqueness, or known membership and sample uniqueness; attribute 

disclosure requires either identity disclosure explicitly linked to other values, or 

class disclosure and class membership. Nevertheless, SDC can afford to be 

cautious as cells with one or two values are unlikely to have statistical value. 

There is also an argument that avoiding small numbers is important for the NSI 

or data holder to publicly demonstrate that it is not taking risks with 

confidentiality.  We therefore follow convention and assume that cells with one 

or two contributors are to be avoided. 

In contrast to direct identification from small cell values, indirect identification 

through differencing (exploiting different numbers of observations across 

multiple tables to infer single observations) has no theoretical solution. For any 

table A there exists a second table B such that (A-B) has single observations in it. 

NSIs invest considerable time and effort to ensure that A and B are not both 

generated, but this is not a guarantee of protection. Even if B is not published, 

how can the NSI guarantee that B could not be created by some combination of 

some other tables C, D, E, F…? A proof that a table cannot be differenced would 

require knowledge of every other table produced in the past, present and future 

on that data, which is theoretically impossible in realistic circumstances, and 

practically impossible for a functioning output checking process. 
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The theoretical impossibility of proving non-differencing is a straw man: no 

experienced organisation claims that as its target. However, organisations may 

have what could be described as a ‘strong differencing’ policy: 

Strong differencing: thresholds, and the choice of related tables to 

be checked, are chosen to ensure that there is no reasonable chance of 

differencing between published tables, given the likely set of 

published tables 

Strong differencing has two implications. 

First, tabular data protection is determined by history: the first table to be 

produced determines which others may be produced. This is a feasible policy for 

the official statistics produced by NSIs, where the full range of published outputs 

(including all the approved tables) is typically planned in advance, and 

differencing checks are carried out in parallel. However, even NSIs cannot review 

all possible combinations (this is computationally prohibitive in operational 

circumstances), and there remains  a potential risk [5]. This is much more 

problematic for research outputs, where table production is determined by the 

interests of individual researchers on an ad-hoc basis.  

The second problem is that strong differencing pays no attention to the value of 

published outputs. While the publication of confidential data is clearly 

problematic, the non-publication of non-confidential data due to unfounded 

confidentiality concerns can lead to public benefits being lost.  

Avoiding cell counts of one or two to prevent direct identification seems a 

sensible precaution, as such small cells are also likely to be of little value. In 

contrast, it is not at all clear that the same standards need to be applied to small 

counts arising from differencing; these require the difference to be noticed, as well 

as present. 

An alternative approach might be described as a ‘weak differencing’ policy: 

Weak differencing: thresholds, and the choice of related tables to 

be checked, are chosen to ensure that the likelihood of differenced 

values being disclosive is balanced with the likely loss to public 

benefit of not producing the tables. 

This differs from strong differencing by acknowledging three things: 

• The reasonable possibility of differencing 

• The uncertain disclosiveness of differenced tables 
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• The potential loss from unrealised public benefit 

This is much more explicitly a risk-benefit model, with the risks and benefits 

being very subjective. As a result, the perspective of the decision-maker has a 

strong influence over the table-checking regime and the choice of threshold.  

For example, the author has encountered ‘default-closed’ [6] data holders who 

argue that the public benefit of any particular table in social science research is 

negligible; hence, the possibility of disclosure by differencing must be 

exceedingly low to be outweighed by the benefit. In contrast, data holders 

following the EDRU ethos (evidence-based, default-open, risk-managed, user-

centred [7, 8]) would assume that the public benefit has already been established 

by the decision to use the data for research or official statistics, and therefore the 

onus is on those suggesting a cell be suppressed to prove the substantive case for 

a breach.  

2.2 The choice of threshold 

NSIs and other data holders, if they describe any policy on differencing, typically 

cite a strong differencing model as this allows them to establish credibility in 

protecting confidentiality. As noted, this is feasible for official statistics. However, 

for ad hoc and research outputs, most organisations apply weak differencing 

(even if default closed), and so the choice of threshold is highly subjective. 

In 2003 ONS’s Virtual Microdata Laboratory (VML), a secure facility for 

researchers, began using a threshold of ten instead of the three then in use. This 

was justified by (1) reference to Monte Carlo simulations of differencing (now 

lost) which showed the likelihood of difference became negligible after a 

threshold above 5; and (2) an analysis [8] which argued that this gave confidence 

that simple threshold checks would also deal with the problem of multiple 

respondents from the same business when dealing with hierarchical data. 

However, a primary motivation for the specific choice of ten was that it was high 

enough to avoid questions of differencing but also acceptable to researchers 

(source: personal discussion). 

The VML was not the first such research centre, but since 2003 the number of 

them has grown steadily, and almost all use a threshold higher than three. Ten 

appears to be the most popular, but we are not aware of any justification other 

than that this seems to be popular. In other words, everyone uses ten because 

everyone else uses it. In a world where data holders face considerable pressure to 
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show that they are not unduly taking risks, following common practice is a 

sensible strategy. 

This is not universal. In just the secure facilities in UK public sector, values from 

three to thirty are used. One organisation uses five as its default, but raises the 

threshold to ten for more ‘sensitive data’. This, it seems likely, is primarily to 

demonstrate that some data is more sensitive/risky and that the organisation is 

taking a more active approach than just applying a blanket rule. 

All discussions about confidentiality protection involve a large amount of 

subjective reasoning [9, 10]. However, for the threshold rule this is complicated 

by the apparent absence of any objective statistical evidence.  

Two approaches may be considered to improve data holders’ confidence in their 

judgments. One is to create tables from a genuine research data source, and 

evaluate the impact alternative thresholds might have had on both disclosure and 

usability. The alternative is to carry out the same analysis but using simulated 

datasets to investigate the effect of different data profiles. 

Both of these approaches are tried here. The analyses cannot be definitive, as 

they are specific to the context (either categories chosen for the real data, or the 

simulation characteristics). Rather, the aim is to explore whether sufficiently 

general lessons can be learned from trying a range of alternative specifications. 

3 Method 

We tackle the impact of threshold by considering three cases which seem to 

present the most obvious problems, and then examining the impact of different 

thresholds in these cases using simualted and real data. 

We consider two risk measures; the choice of measure has a significant effect on 

results.The first is that cell counts of 1 and 2 are the values to avoid, irrespective 

of the formal threshold. In other words, the aim of the threhold is simply to 

prevent the unambiguously unacceptable values. 

The second is that cell counts below the threshold are not uncovered (for 

example, if the threshold is 5, that the difference between two tables is also not 

less than 5). In this case, the view of a threshold T is that a cell value below T is 

problematic, and therefore this should be avoided whether the frequency is 

explicit in the table or implied by differencing or complementing. For example, 

some UK government departments require this (although this is implicit rater 

than explicit in their rules). 
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For simplicity, we assume that cells with counts below the threhold are 

suppressed. Alternative control measures such as rounding and table redesign 

could have been used, but programming them is complex and adds additional 

choice fields. We return to this in the conclusion.  

We also need to balance the cost to the user of higher threholds, as a reuction in 

statistical details is likely to involve a loss of public benefit. We use a simple 

measure, the number of cells which have non-suppressed values. As we are only 

considering frequency tables, this is a direct measure of the retained value of the 

table post-suppression (and there is no alternative which is obviously better and 

as general). 

 

3.1 Case 1: differencing between a set and a subset 

In this case we assume a situation as in table 1 and 2: 

Table 1 Residents 

Age Urban Rural Total 

50-54 20 12 32 

55-59 23 13 36 

60-64 26 14 40 

65+ 28 14 42 

 97 53 150 
 

Table 2 Homeowners 

Age Urban Rural Total 

50-54 20 11 31 

55-59 23 11 34 

60-64 26 14 40 

65+ 27 11 38 

 96 47 143 
 

Tables 1 and 2: Example of differencing in subset 

There is an implicit table 2a here where many 1s and 2s occur: 

Table 2a Non-homeowners 

Age Urban Rural Total 

50-54 0 1 1 

55-59 0 2 2 

60-64 0 0 0 

65+ 1 3 4 

 1 6 7 

Table 2a: The implicit differenced table 

In this example, a threshold of 3 would lead to many 1s and 2s being generated 

by differencing. A threshold of 35 is necessary to prevent any 1s and 2s arising 

from differencing (if totals are included), but would lead to results less than the 

threshold being uncovered; in fact, for these particular tables, there is no 
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threshold that prevents uncovering of values below the threshold (whilst still 

allowing any data other than the larger total, 150, to be published). 

To consider this situation, we: 

• Create random category allocation for Age (X) 

• Create random urban/rural category allocation for residents (Y) with 

purban > 50% 

• Create random homeowner/renter category allocation (Z) with phomeowner 

> 50% 

• Tabulate X:Y and X:(Z=homeowner), correcting for the threshold (zero is 

deemed below threshold and redacted) 

• Tabulate X:(Z=renter) and count (a) number of 1s/2s in cells where the 

originals were not suppressed (b) number of cells in the differenced table 

which fall below the threshold 

• Store number of 1s/2s, number of uncovered cells, mean observations 

and median observations of X:Y and X:(Z=renter)  

• Iterate N times with new random values 

The proportion of ‘bad cells’ reported in the results is the proportion in the 

differenced Table 2a ie a score of 100% would mean that every cell in Table 2a can 

be recovered, and contains either a 1 or 2 or a value below the threshold, 

depending on the failure criterion. 

3.2 Case 2: Row totals revealing suppressed cells 

Consider Table 3, where a threshold of 5 has been applied, placed alongside Table 

1 for clarity: 

Table 1 Residents 

Age Urban Rural Total 

50-54 20 12 32 

55-59 23 13 36 

60-64 26 14 40 

65+ 28 14 42 

 97 53 150 
 

Table 3 Education 

Age No degree Degree Total 

50-54 26 6 32 

55-59 29 7 36 

60-64 36 <5 36 

65+ 39 <5 39 

 130 13 143 
 

Tables 1 & 3: Example of differencing through row totals  

We assume that tables are presented with values below the threshold 

suppressed, and totals adjusted to reflect suppressions. This is considered good 
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practice in analytical environments [11] but offers opportunities for differences to 

arise. Official statistics are more likely to use secondary (within-table) 

suppression to maintain marginal totals [12], which does provide protection 

against this scenario case as long as the categories are independent. 

Although Table 3 has the marginal totals adding up to the displayed values (and 

so the missing values cannot be reconstructed from this table), it is clear that a 

comparison of Tables 1 and 3 reveals the suppressed values. 

Table 3 is the worst-case scenario: If there were more than two categories in 

Table 3, then row totals would not necessarily be sufficient to expose suppressed 

values. 

In this case, a threshold of 3 would have not have created this problem as the 

low values would not have been removed. A threshold of 15 would also not have 

created a problem as the ‘rural’ column in Table 1 would also have been hidden. 

A higher threshold does not necessarily reduce the chance of problems. 

To consider this worst case (because we only have two column categories), we  

• Use X and Y, as above 

• Create random binary category allocation for Qualifications (Q) using 

pdegree% such that one category is relatively rare 

• Tabulate X:Y and X:Q, correcting for the threshold and dropping rows in 

X:Y with no valid values (zero is below threshold) 

• Compare row totals 

• Store number of exposed cells (in both tables), mean observations and 

median observations of X:Y and X:Q 

3.3 Case 3: Direct disclosure by negation 

Finally, consider Table 4: 

 Table 4 Ethnicity 

Age Urban % white Rural % white 

50-54 20 90% 12 92% 

55-59 23 87% 13 92% 

60-64 26 85% 14 79% 

65+ 28 89% 14 93% 

 97 88% 53 89% 

Table 4: Example of exposure through complements 

As counts of humans must be integers, the complementary Table 4a can easily 

be determined: 
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 Table 4a Non-white frequency 

Age Urban Rural 

50-54 2 1 

55-59 3 1 

60-64 4 3 

65+ 3 1 

 12 6 

Table 4a: The implicit low-frequency table 

In this case, it is likely that only a very high threshold for the base value would 

address this problem.  

In an ideal world, researchers would always produce both the numbers for both 

the target value and its complement. In practice, researchers often produce one 

value and the base population (for example when tabulating multiple statistics); 

and checks on the output may miss omitted complements.  

To consider this case, we  

• Use X and Y, as above 

• Create random binary category allocation for White (W) using pwhite% 

such that the negative is very rare 

• Tabulate X:W and X:(1-W), allowing for the threshold checks on the 

numbers themselves, but not on the percentages ie testing the numbers 

in the published table as if it were any other table with a frequency and 

an associated characteristic, and not one with an implicit complement. 

This mimics the behaviour of a time-pressed, careless or poorly-trained 

output checker. 

• Record number of implicit 1s and 2s  or uncovered cells (we don’t test 

for zero or 1005 cells  – these should be picked up by the output checker 

as class disclosure, and so we treat as structural for simplicity) 

• Don’t count the cells where the source number is supressed. 

For this, we could just have chosen rural or urban, so why both? The aim is to 

give a better sense of missed values: as a checker, high initial frequencies (w, 

urban) are less likely to cause concern, but if the initial frequencies are low (w, 

rural) this might signal potential problems. Running this way covers both 

options.  
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3.4 Generating simulated data 

Data were initially generated using the following parameters 

• Number of iterations: 1,000 

• Number of observations in the dataset: 500, 1,000, 5,000 and 10,000 

• Number of X categories: (a) 10 uniformly distributed and (b) 5 domi-

nated by one category 

• Values of p% (urban): 70%, 80%, 90%, 95% 

• Values of p% (homeowner): 70%, 80%, 90%, 95% 

• Values of p% (degree): 15%, 10%, 5% 

• Values of p% (white): 90%, 95%, 99% 

• Thresholds evaluated: each of 3-15, 20, 25, 30 (16 in total) 

Initially various combinations of values were entered. However, because (as 

will be shown later) the relationship between sample characteristics and risk 

potential is highly non-linear, the program was recoded to automatically generate 

and store multiple parameters values for graphing. 

The same exercise was then carried out on three genuine datasets, with real 

variables taking the place of the simulated variables ‘urban’, ‘homeowner’, 

‘degree’ and ‘white’: 

 Charity1 Teaching LFS2 LFS low-paid3 

Data source Published 

accounts 

Employee 

survey 

Employee 

survey 

Observations 686 19,032 4,859 

X (‘age’) ‘year’: 

2010 83 

2011 150 

2012 151 

2013 153 

2014 149 
 

‘age’: 

50-54 6,590 

55-59 6,366 

60-64 5,119 

65-69 957 
 

‘age’: 

50-54 2,091 

55-59 1,860 

60-64 850 

65-69 58 
 

Y (‘urban’) ‘big’: 49% `female’: 52% `female’: 58% 

Z (‘homeowner’) ‘survivor’: 65%   `england’: 82% `england’: 84% 

Q (‘degree’) ‘secure’: 6%   `degree’: 11% `degree’: 4% 

W (‘white’) ‘surplus’: 96% ‘white’: 97% ‘white’: 98% 
1Green et al [13]. ‘Survivor’:still trading 2015. ‘Secure’ and ‘surplus’ relate to financial 

viability 
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2Labour Force Survey Teaching Dataset, UK Data Service dataset SN4736. Gender, eth-

nicity and age randomly perturbed; employed and age 50+ only 
3LFS data as above, restricted to subset earning under £10/hour 
 

Table 5: Datasets used 

Genuine variables were relabelled as X, Y, Z, Q and W to allow the same code 

as the simulated data to be run. The same thresholds were evaluated in the true 

datasets as in the simulated data but without multiple iterations and without 

different values for the y, z, q, or w percentages. 

The code produced, for both simulated and genuine datasets: 

• The proportion of ‘bad’ results depending on the measure (that is, ei-

ther the number of 1s and 2s uncovered, or the number of cells below 

the threshold which were exposed  

• The proportion of ‘ok’ results (that is, the number of usable cells once 

thresholds had been applied 

Note that %“bad” + %“ok” + %”suppressed but not bad” = 100%. These are 

stored for every combination of thresholds and (for simulations) values of the 

simulated characteristics. 

The program is written in Stata and can be downloaded from 

http://www.fivesafes.org/SDC/10s_paper/, along with datasets and full output 

files. 

4 Results 

4.1 Simulated data 

The simulations produce a very large number of results: 2 types of failure (1-2, 

uncoverd cells), 2 types of data distributions (uniform/skewed), 16 thresholds, 5 

or 10 X categories, 3 binary categories, and four sample sizes. This section 

therefore summarises key features rather than going through in detail. Only the 

uniform distribution is reported on (10 age categories), and only results for 500 

and 5000 observations.  

In the tables below, ‘bad % (1/2)’ is the proportion of the original table cells that 

generate an uncovered cell of 1 or 2 observations; ‘bad % (uncovered)’ is the 

proportion of uncovered cells below the threshold; ‘usable %’ is the % of cells in 

http://www.fivesafes.org/SDC/10s_paper/
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the original tables which were not suppressed for being below the threshold. 

Results are depicted in 10% categories. The results for the full set of thresholds 

and the log files are available at the above website.  

4.1.1 Case 1 

Table 6 shows the proportion of cells in the implied Table 2a marked ‘bad’ as 

defined by uncovered 1/2s, and the proportion of times (out of 1,000 iterations of 

16 cases) that this proportion was observed. For example, with 500 observations 

and a threshold of 3, in 5% of the 16000 cases no cells with 1s or 2s were uncovered 

(exactly 0% bad); with 5000 observations and a threshold of 30, over 10% and up 

to 20% of the cells were uncovered in 4% of the 16,000 cases. A blank space means 

no cases occurred at that ‘bad’ proportion. A 0% in the table means that some (but 

less than 0.5%) combinations generated that proportion of errors. 100% represents 

exactly 100% 

  500 observations  5000 observations 

Bad % 

(1/2) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0% 5% 33% 45% 52% 65% 65% 66% 78% 

0%<x≤10% 21% 23% 19% 19% 15% 15% 15% 15% 

10%<x≤20% 23% 14% 13% 14% 8% 8% 8% 4% 

20%<x≤30% 21% 12% 12% 11% 8% 8% 8% 3% 

30%<x≤40% 14% 8% 7% 4% 3% 3% 3% 1% 

40%<x≤50% 10% 6% 3% 0% 0% 0% 0% 0% 

50%<x≤60% 5% 3% 1%      

60%<x≤70% 2% 1% 0%      

70%<x≤80% 0% 0%       

80%<x≤90%         

90%<x<100%         

Exactly 100%         

 

Table 6: Bad cells (1s/2s) in case 1 

As expected, a higher number of observations sampled from the same 

distribution reduces the proportion of ‘bad’  results (ie where the gap between 

two non-supressed cells is 1 or 2). A higher threshold also monotonically 
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decreases the ‘bad’ proportion. However, this is not the case if the criterion for 

‘bad’ is ‘uncovered cells below the threshold’; see Table 7. 

  500 observations  5000 observations 

Bad % 

(<threshold) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0% 5% 4%  1% 65% 31% 21% 20% 

0%<x≤10% 21% 9% 0% 6% 15% 7% 5% 6% 

10%<x≤20% 23% 6% 2% 10% 8% 6% 6% 5% 

20%<x≤30% 21% 9% 7% 17% 8% 9% 9% 6% 

30%<x≤40% 14% 10% 15% 28% 3% 14% 15% 6% 

40%<x≤50% 10% 29% 56% 38% 0% 32% 35% 29% 

50%<x≤60% 5% 11% 13%   0% 7% 8% 

60%<x≤70% 2% 9% 6%    3% 2% 

70%<x≤80% 0% 7% 1%    0% 1% 

80%<x≤90%  5% 0%    0% 3% 

90%<x<100%  1%      4% 

Exactly 100%  0%      12% 

 

Table 7: Bad cells (uncovered below threshold) in case 1 

While it remains true that more observations reduces the proportion of bad cells 

(there is always a higher proportion of ‘0% bad’ for 5000 obervations at each 

threshold), it is no longer the case that a higher threshold reduces the number of 

bad cells; if anything, a higher threshold is more likely to lead to cells below the 

threshold being uncovered. However, it is also clear that this is highly non-linear 

in the proportion of bad cells being uncovered. A higher threshold increases the 

number of suppressed cells, but increases the chances that a differenced cell falls 

below the limit. This is not immediately amenable to modelling. 

As would be expected, the usability of the data depends significantly on the 

number of observations and the threshold. Table 8 shows the proportion of non-

suppressed cells in the source tables (Table 1 and Table 2, excluding totals, for 

case 1). Thus, with 500 observations, in 49% of the 16,000 cases no cells were 

suppressed when the threshold was 3; but when the threshold was raised to 30, 

in no cases were more than 50% of the cells in Table 1 or Table 2 unsuppressed. 



10 is the safest number that there’s ever been 1017 
 

 

 

 

 

TRANSACTIONS ON DATA PRIVACY (2022) 

  500 observations  5000 observations 

Usable % 

(unsuppressed) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0%         

0%<x≤10%         

10%<x≤20%    1%     

20%<x≤30%    11%     

30%<x≤40%    24%     

40%<x≤50% 0% 43% 60% 63%    3% 

50%<x≤60% 3% 9% 17%     19% 

60%<x≤70% 12% 10% 12%     3% 

70%<x≤80% 10% 11% 10%    0% 0% 

80%<x≤90% 13% 11% 2%    2% 0% 

90%<x<100% 14% 12% 0%   2% 12% 8% 

Exactly 100% 49% 4%   100% 98% 86% 67% 

 

Table 8: Usable (non-suppressed) cells in case 1 

The sharp break at 50% is because the value of both the high-density and low 

density columns are being counted.  With a small number of observations, the 

low–density column is completely suppressed. With a high number of 

observations, it takes a very high threshold before even the low-density column 

is suppressed. Again, there is a non-linearity in the usable proportion. 

Beyond the obvious point that more observations or lower thresholds reduce 

the number of suppressions, it is not clear how to model the relationship between 

observations, threshold and usablity. 

4.1.2 Case 2 

For this case, there are 12,000 outcomes (1000 iterations by 4Y and 3Q 

proportions). Table 9 shows the number of bad cells by 1s and 2s. 
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  500 observations  5000 observations 

Bad % 

(1/2) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0% 22% 57% 77% 93% 100% 100% 100% 100% 

0%<x≤10% 16% 22% 14% 6%     

10%<x≤20% 12% 9% 5% 1%     

20%<x≤30% 11% 5% 3% 0%     

30%<x≤40% 12% 3% 1% 0%     

40%<x≤50% 13% 2% 0%      

50%<x≤60% 9% 1% 0%      

60%<x≤70% 4% 1% 0%      

70%<x≤80% 2% 0% 0%      

80%<x≤90% 0% 0%       

90%<x<100%         

Exactly 100%         

 

Table 9: Bad cells (1s/2s) in case 2 

Again, more observations and a higher threshold recudes the number of 

problematic cells; with 5000 observations, none of the combination of parameters 

leads to a 1 or 2 being uncovered by differencing. But, as with Case 1, changing 

the definition of ‘bad’ to mean ‘cells below the threshold being exposed’ gives a 

very different story; see Table 10. 
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  500 observations  5000 observations 

Bad % 

(uncovered) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0% 22% 11% 33% 42% 100% 100% 94% 50% 

0%<x≤10% 16% 15% 25% 32%  0% 6% 1% 

10%<x≤20% 12% 13% 12% 17%   0% 2% 

20%<x≤30% 11% 9% 6% 7%   0% 2% 

30%<x≤40% 12% 8% 5% 2%    2% 

40%<x≤50% 13% 8% 6% 0%    2% 

50%<x≤60% 9% 8% 7% 0%    3% 

60%<x≤70% 4% 7% 5% 0%    8% 

70%<x≤80% 2% 8% 1%     12% 

80%<x≤90% 0% 8% 0%     13% 

90%<x<100%         

Exactly 100%  5% 0%     5% 

 

Table 10: Bad cells (uncovered) in case 2 

 

When considering row differences the question of bad cells (where the row 

totals in Table 1 allow the missing values in Table 3, or vice versa, to be 

uncovered) is more complex. With 500 number of observations, then a threshold 

of 10 performs worse than either a threshold of 3 or 30. On the other hand, with 

5000 observations, a higher threshold always performs worse than a lower one. 

As the number of observations increases, a higher threshold increases the chance 

that one or other row (but not both) has just one cell suppressed, creating an 

exploitable difference.  

The results on usable cells are also complex; see Table 11. 
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  500 observations  5000 observations 

Usable % 

(unsuppressed) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0%         

0%<x≤10%         

10%<x≤20%         

20%<x≤30%         

30%<x≤40%    1%     

40%<x≤50%  11% 33% 71%    0% 

50%<x≤60% 0% 40% 47% 27%    6% 

60%<x≤70% 1% 22% 19% 0%    2% 

70%<x≤80% 9% 25% 1%     30% 

80%<x≤90% 34% 2%      11% 

90%<x<100% 34% 0%    0% 6% 0% 

Exactly 100% 21%    100% 100% 94% 50% 

 

Table 11: Usable (unsuppressed) cells in case 2 

Again, more observations and a lower threshold both lead to more cells being 

unsuppressed; but the non-linearity in the proportion of cells that are usable is 

more pronounced than in Case 1.  

4.1.3 Case 3 

As for Case 2, there are 12,000 outcomes (1000 iterations, 4Y and 3W proportions). 

Table 12 presents results for uncovered 1s/2s. 
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  500 observations  5000 observations 

Bad % 

(1/2) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0% 1% 3% 4% 5% 28% 28% 28% 36% 

0%<x≤10% 9% 18% 23% 32% 16% 16% 16% 27% 

10%<x≤20% 24% 27% 31% 34% 16% 16% 16% 11% 

20%<x≤30% 24% 23% 24% 22% 19% 19% 19% 10% 

30%<x≤40% 18% 14% 11% 6% 13% 13% 13% 9% 

40%<x≤50% 14% 9% 5% 0% 6% 6% 6% 5% 

50%<x≤60% 7% 5% 1%  2% 2% 2% 2% 

60%<x≤70% 2% 1% 0%  0% 0% 0% 0% 

70%<x≤80% 0% 0% 0%  0% 0% 0% 0% 

80%<x≤90%         

90%<x<100%         

Exactly 100%         

 

Table 12: Bad cells (1s/2s) in case 3 

When considering the potential for exposure of binary complements, there 

appears to be an issue, even with a threshold of 3, when the number of 

observations is small. More interestingly, increasing the number of observations 

brings results for the lower thresholds very much in line with the higher ones 

across all thresholds (the differences between threshold are less than 0.5% ie 60 

occurrences). In other words, at a reasonable number of observations, a higher 

threshold appear to bring limited benefit in terms of avoiding 1s and 2s. This is 

not something observed in Cases 1 and 2.  

When considering unsuppressed cells, the situation worsens; see Table 13. 
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  500 observations  5000 observations 

Bad % 

(uncovered) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0% 1% 0% 0% 1% 28% 4% 0% 1% 

0%<x≤10% 9% 6% 7% 9% 16% 5% 1% 5% 

10%<x≤20% 24% 16% 16% 16% 16% 4% 4% 2% 

20%<x≤30% 24% 10% 9% 10% 19% 7% 6% 0% 

30%<x≤40% 18% 6% 8% 18% 13% 13% 10% 1% 

40%<x≤50% 14% 31% 41% 45% 6% 35% 34% 23% 

50%<x≤60% 7% 9% 9%  2% 7% 16% 16% 

60%<x≤70% 2% 9% 6%  0% 7% 11% 8% 

70%<x≤80% 0% 7% 4%  0% 8% 9% 9% 

80%<x≤90%  5% 1%   7% 8% 11% 

90%<x<100%  1% 0%   2% 2% 7% 

Exactly 100%  0%    1% 1% 16% 

 

Table 13: Bad cells (uncovered) in case 3 

As in Cases 1 and 2, using uncovered cells as the measure of failure means that 

a higher threshold is associated with more errors; once more, there is no linear 

relationship between thresholds in terms of the proportion exposed. 

More observations does increase the number of usable cells, but there remains 

a large information loss associated with the higher threshold; see Table 14. 
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  500 observations  5000 observations 

Usable % 

(unsuppressed) 

 Threshold  Threshold 

3 10 15 30 3 10 15 30 

Exactly 0%         

0%<x≤10%         

10%<x≤20%         

20%<x≤30%    1%     

30%<x≤40%    13%     

40%<x≤50% 0% 43% 60% 86%    3% 

50%<x≤60% 2% 8% 15%     15% 

60%<x≤70% 10% 6% 7%     6% 

70%<x≤80% 10% 12% 13%     0% 

80%<x≤90% 12% 10% 6%    0%  

90%<x<100% 11% 10% 0%   0% 3% 0% 

Exactly 100% 55% 12%   100% 100% 97% 75% 

 

Table 14: Usable (unsuppressed) cells in case 3 

Compared to Cases 1 and 2, more data are made available, as would be expected 

when the problem is the implied complement. 

4.2 Genuine data  

In cases 1 and 2, no supression with genuine data led to cells with 1s/2s 

uncovered. We therefore mostly present cases below with just the ‘uncovered’ 

bad results. 

4.2.1 Case 1 

Table 15 shows results for uncovered failures: 
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Thres- 

hold 

LFS  Low pay  Charity  
0% 0% 13% 25% 0% 40% 50% 80% 

3 x x      x        

4 x   x    x        

5 x   x    x        

:         

6-15 x     x  x        

:         

20 x     x    x      

25 x   x        x    

30 x x            x  

 

Table 15: Bad cells (uncovered below threshold) for real data in case 1 

 

In the large dataset (19,000 observations), no cells can be recovered. In the 

charity datasets (700 observations) very few cells could be recovered until the 

threshold grows beyond 15; but from 20 onwards the recovery rate is very high 

for this small dataset and grows with the threshold. 

Of most interest is the medium-sized dataset (‘low pay’: 5,000 observations). 

The number of problematic cells increases with the threshold, but then appears 

to stabilise at a threshold of 6. However, the number of bad cells falls as the 

threshold climbs above 20, which is unexpected given the simulation results. 

 Table 16 presents the usability data for case 1. 

 

 LFS Low pay Charity 

Threshold 100% 81% 94% 100% 90% 95% 

3-20 x     x   x 

:       

25 x   x     x 

30 x x     x   

 

Table 16: Usable cells for real data in case 1 

 

Only thresholds above 20 lead to cell suppression. Note that cell suppresion is 

higher for the medium-sized dataset (low pay) than the small one (charity). This 

highlights that the characteristics of the data can be as important for SDC as the 

absolute number of observations. 
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4.2.2 Case 2 

For Case 2 results are more complex; see Table 17. 

Thres-

hold 

LFS Low pay Charity 

0% 25% 0% 25% 0% 20% 40% 60% 80% 100% 

3 x   x   x           

4 x     x x           

5 x     x x           

6 x     x x           

7 x     x   x         

8 x     x     x       

9 x     x       x     

10 x     x         x   

11 x     x         x   

12 x     x         x   

13 x     x           x 

14 x     x           x 

15 x     x           x 

20 x     x           x 

25   x   x           x 

30   x x           x   

 

Table 17: Proportion of uncovered cells for real data in case 2 

 

For the largest dataset, a higher threshold creates problems where there were 

none. The smaller LFS dataset does not create a differencing problem at the 

highest or lowest threshold, but does at all others. For the smallest dataset, there 

is a positive relationship between the threshold and the number of uncovered 

rows. The number of usable cells is the mirror image: 
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 LFS Low pay Charity 

Thres

hold 

94

% 

100

% 

88

% 

94

% 

100

% 

70

% 

75

% 

80

% 

85

% 

90

% 

95

% 

100

% 

3   x     x             x 

4   x   x               x 

5   x   x               x 

6   x   x               x 

7   x   x             x   

8   x   x           x     

9   x   x         x       

10   x   x       x         

11   x   x       x         

12   x   x       x         

13   x   x     x           

14   x   x     x           

15   x   x     x           

20   x   x     x           

25 x     x     x           

30 x   x     x             

 

Table 18: Proportion of usable cells for real data in case 2 

 

No cells are suppressed for the large dataset except at the highest thresholds. 

For the smaller dataset on low pay, 1 cell is suppressed at thresholds above 3. The 

small charity dataset sees cells being suppressed at thresholds above 6, with one-

quarter being suppressed at thresholds over 12. 

4.2.3 Case 3 

This case does produce some uncovered 1s and 2s: 

• No failures occur for the large dataset 

• 13% of the implicit cells generated by the medium dataset fail 

• 60% of the implicit cells generated by the medium dataset fail 

For uncovered cells there is more variation, with even the large dataset showing 

problems: 
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 LFS   Low pay    Charity  
Threshold 0% 13% 25% 13% 38% 50% 63% 75% 60% 90% 100% 

3 x     x         x     

4 x     x           x   

5 x     x           x   

6 x     x             x 

7 x     x             x 

8 x     x             x 

9 x     x             x 

10 x     x             x 

11 x       x           x 

12 x       x           x 

13 x         x         x 

14 x         x         x 

15   x       x         x 

20     x     x         x 

25     x       x       x 

30     x         x   x   

  

Table 19: Proportion of uncovered cells for real data in case 3 

 

Clearly there are concerns even for the large dataset – but these occur at large 

thresholds, where the likelihood of a value being below the threshold is higher. 

For the smaller datasets, the situation is much worse; in the case of the small 

charity dataset, all  of the implied complementary dataset is below the threshold 

when the threshold ranges from 6 to 25. This is very plausibly missed by an 

output checker, particularly as no suppression appears to be needed on primary 

data except for the highest threshold: 

 LFS Low pay charity 

Threshold 100% 88% 100% 90% 100% 

3-25  x    x    x 

30  x x    x  
 

Table 20: Proportion of usable cells for real data in case 3 
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4.3 Discussion 

The foregoing is an attempt to summarise a very large range of statistical findings. 

The only thing that can be said with certainty are two trivial points that 

• more observations and/or a higher threshold monotonically reduces the 

likelihood of cells with 1 or 2 observations being exposed through differ-

encing or an implied complementarity 

• more observations reduces but a higher threshold increases the number 

of suppressed cells monotically 

Beyond this, very little can be said definitely, and much of the findings presented 

above serve to muddy the water. 

First, if the purpose of a threshold is to prevent numbers below that threshold 

being exposed, the monotonic relationships break down. Higher thresholds can 

lead to more exposure. Even the more-observations-is-good story is no longer 

clear. In Table 7, for example, a threshold of 30 for 500 observations means that 

no errors are found in only 1% of the simulations, but that none of the simulations 

showed that more than 50% of cells were ineffective suppressions (i.e. uncovering 

values through differencing); in contrast, with the same threshold but 5000 

observations, 20% of simulations showed no problems but 12% showed that 

every cell in the implied table was problematic. Which of these is ‘better’? 

Second, the characteristics of the data are crucial to risk assessment. Table 15 

showed that the 5000 observations in the medium dataset generated more 

problematic cases (in terms of uncovered cells) than the small dataset with under 

700 observations. This may be down to the more even split of the ‘z’ variable in 

the small dataset; it is hard to tell. 

Third, different risk models give different outcomes. Cases 1, 2 and 3 presented 

quite different results. 

Fourth, the risk measure matters. Ensuring no 1s and 2s would seem to be the 

minimum requirement for an SDC rule. But is ‘no uncovered cell’ a good rule? If 

the threshold is 20, then ensuring no implied tables are created with less than 20 

units seems to be consistent. But if the purpose of the higher threshold is simply 

and explicitly to avoid 1s and 2s (as in [11]) then the more general risk measure 

is not helpful. 

Fifth, there is no sense of a natural break in the thresholds. None of the above 

results suggest that risk probabilities decline notably and consistently after a 

threshold of 5, or 10, or 20, for example. 
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Sixth, the proportion of usable cells, as reported above, has very limited value 

as a measure of retained utility. Guidelines such as [12] emphasise that SDC is 

applied to small cell values, which should have little or no statistical significance 

and so their loss is acceptable. This may be the case in data such as social surveys, 

which tend to cluster normally around the centre; but in some fields, such as 

business or health data, much of the interest is in the tails and the ‘small numbers’ 

in categories (such as ‘businesses with turnover exceeding €1bn’) being removed 

by SDC may be crucial for policy inference. A simple count of deleted cells cannot 

reflect this value. 

Finally, the real datasets showed generally fewer problems than the simulated 

ones; in particular, the uncovering of 1s and 2s. This is particularly relevant as the 

small/medium datasets used are comparable in size to the 500/5000 observation 

simulation reported in section 4.1. Perhaps genuine data is more forgiving than 

simulations which will, by their nature, generate rare cases. If so, this has 

implications for using simulations to derive statistical guidelines. 

In summary, there is no convincing evidence from this analysis to suggest 

whether an optimal threshold exists, or even whether this can be measured 

effectively. We have found no evidence that 10 is a better threshold (in terms of 

risk management) than any other, or a worse one. In some cases here, 3 performs 

best and 30 performs worst; in other situations the case is reversed. The only thing 

that can be said for definite is that retained value (or ‘utility’) is inversely and 

monotonically related to the threshold; again, this should not be a surprise. 

Hence the choice of a threshold comes down to the institution’s comfort level, 

at the interesection between five related questions: 

1. What threshold minimises risk? 

2. What threshold generates an acceptable risk? 

3. What level of utility loss is acceptable? 

4. How will a threshold of x be perceived? 

5. Should we have multiple thresholds, and why? 

This paper has demonstrated that the answer to the first three is ‘we still don’t 

know, and it seems unlikely that we will know’. That leaves questions 4 and 5 as 

perhaps the main determinant of an institution’s threshold. This was certainly the 

case when the UK Office for National Statistics’ secure research facility adopted 

10 as the minimum threshold in 2003, one of the earliest to do so. Prior to that 

point, ONS had required research outputs to have the same threshold of 3 as 

official statistics, but the research team felt this was too low and didn’t 
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demonstrate how output control was being taken seriously. 10 was chosen as one 

of the researchers was already using it as his personal threshold; a straw poll 

amongst other lab users suggested this would be acceptable, and a rule was born. 

However, that rule has migrated into a ‘fact’: that 10 is a safe number for outputs, 

whereas it should be abundantly clear from the above that this is not the case. 

5 Conclusion 

NSIs, and other organisations allowing statistical research on confidential output, 

apply a range of disclosure control measure. Of these, one of the most important 

is the ‘threshold rule’ requiring minimum numbers of observtios contributing to 

a stastic. Managers need to take a decision on what is an acceptable threshold, 

irrespective of the output clearance regime.  

This paper reports on an attempt to provide some evidence for the particular 

choice of a threshold. Ultimately this has been unsuccessful; the paper has 

demonstrated that the relationship between thresholds and risky cells is not 

linear and depends upon the type of differencing being guarded against, and that 

differencing measures may have irreconcilable targets. 

Some results, not presented here, suggest that as the dataset increases all 

problems disappear; this is both unsurprising and unhelpful, as the number of 

observations in a dataset is the maximum of those used in analysis, not a 

minimum.   

On the other hand, when applied to genuine datasets, these results provide 

some cautious optimism. The largest genuine dataset used in this analysis, with 

20,000 observations, is not particularly large by modern NSI standards, and yet it 

poses almost no differencing risk. Of course, increasing the number of categories 

would increase the risk potential but, as demonstrated here, the actual impact 

would depend on the threshold and the measure of ‘risk’ being used. 

One interesting issue is that Case 3 (disclosure by complementarity) seems more 

problematic than the other cases. This case is discussed in texts such as [3], and 

yet in practice it might be the one most likely to slip under the radar. Moreover, 

in this case the solution might not be statistical: better guidelines for output 

checkers and researchers (or enforcement of complete categories by automatic 

tools) might be more successful than a higher threshold. This re-iterates that SDC 

is not just a statistical problem [2] (ie a technical assessment of risk against some 
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criterion); SDC must be part of a coherent system that reflects institutional choices 

being made. 

This paper has focused on suppression as the main SDC response to low values, 

as this is an obvious response to a risk measure which highlight problems in 

specific cells. There are of course other options; for example, [11] recommends 

table re-design as the first remedy that researchers should consider. Nevertheless, 

primary (and secondary) suppression is very popular in the field. Perhaps more 

importantly, suppression is an easy remedy to implement for those who have 

little or no interest in SDC but who can work to simple rules (“if a cell is less than 

5, replace with N/A”). This paper has re-iterated some of the risks of relying on 

suppression. 

In terms of further research, there are two areas that might be productive. 

The simpler is to improve the simulation here, perhaps considering how 

thresholds might interact with variable distributions, how much the results for 

case 1 are affected by secondary suppression, or what happens when one table 

uses a different category breakdown of the same variable in a second (eg A-C and 

D-F versus A-B, C-D, and E-F). The process could also be applied to other SDC 

techniques such as rounding or noise addtion, where the threshold is replaced by 

the parameter of interest in these cases.  

The conceptually easier, but practically much harder, area of research is to 

exhaustively analyse genuine research publications for actual differencing 

problems. We are aware of (failed) attempts to do this, and we would welcome 

collaborations on this important topic. 

All of the code and results are available online at the project web page 

http://www.fivesafes.org/SDC/10s_paper/. The reader is invited to experiment. 
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Supplementary material: complete tables 

The full tables summarised above are too large for reproduction here but are 

attached as an Excel file, and are available at the project website 

http://www.fivesafes.org/SDC/10s_paper/.  
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