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A B S T R A C T   

The advent of digital technologies has brought substantial improvements in various domains. This article pro
vides a comprehensive review of research emphasizing AI-enabled IoT applications in poultry health and welfare 
management. This study focused on poultry welfare since modern poultry management is confronted with issues 
relating to standardized parameters for welfare assessment and robust monitoring systems, particularly for 
broilers’ health and disease outbreak prevention. Evidence has shown that modern digital technologies have high 
possibilities for intelligent automation of current and future poultry management operations to facilitate high- 
quality and low-cost poultry production. Therefore, this study presents a systematic review of the current 
state-of-the-art AI-enabled IoT systems and their recent advances in developing intelligent systems in this 
domain. Also, the study provides an overview of the critical applications of identified digital technologies in 
poultry welfare management. Lastly, the study discusses the challenges and opportunities of AI and IoT in poultry 
farming.   

1. Introduction 

The demand for poultry meat is progressively increasing because of 
its high protein, low energy, and low cholesterol (Lashari et al., 2018). 
However, poultry high production depends on the environmental con
dition, disease outbreaks, breeding process, and active management 
operations (Lashari et al., 2018). Therefore, efficient poultry health and 
welfare management is essential to prevent infectious diseases, boost 
production, and ensure healthy broilers. Nevertheless, traditional 
chicken poultry welfare management approaches are fraught with high 
labour costs and inefficient resources management, i.e., feed, water, and 
power consumption. In this context, the integration of Internet of Things 
(IoT) and Machine Learning (ML) has been considered promising tech
nologies for delivering smart poultry farming, continuous data moni
toring and prescriptive analytics in order to address the above identified 
challenges for efficient resource control and optimal decision-making 
(Fang et al., 2021; Ribeiro et al., 2019). Accordingly, Raj and Jayanthi 
(2018) posited that AI-enabled IoT systems could help poultry farm 
owners enhance production while substantially lowering costs. 

IoT comprises many physical sensing devices connected to a Wide 

Area Network (WAN) to collect, share, and convey information for 
analysis purposes, while ML is a computational process of unearthing 
new insights and facts through analytics and a learning process 
(Michalski et al., 2013). Evidence abounds in the literature on how IoT 
technologies have been used to assess and control variables such as 
temperature, humidity, vibration, and air pollutants in poultry houses 
(Lashari et al., 2018; Lin et al., 2016; W. Pereira et al., 2020). Moreso, 
poultry feeding and watering systems can incorporate IoT for optimal 
disease control and management to increase production, enhance safety, 
and improve profit (Lashari et al., 2018; Ribeiro et al., 2019). When fed 
into ML, IoT data have been used to detect and classify diseases that are 
known to have devastating impacts on poultry production and human 
health, especially the zoonotic poultry pathogens (Cuan et al., 2020). 

Due to the recent advances in AI-enabled IoT systems for poultry 
welfare management, this study presents a systematic survey of the 
current state-of-the-art technologies regarding poultry health and wel
fare management. A growing body of literature on digital technology 
applications in the agro-industry has been published in recent years, 
however, available peer-reviewed articles on AI-enabled IoT systems in 
poultry health and welfare management are very scarce. Besides, most of 
the earlier studies are focused on specific aspects of poultry welfare 
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management, including smart poultry management in the contexts of 
sensors, big data, and IoT (Astill et al., 2020), application of IoT in the 
agro-industry and environment (Talavera et al., 2017), poultry weight 
and volume estimation with computer vision (Nyalala et al., 2021), and 
computer vision in welfare management (Okinda et al., 2020). Others 
have also looked into sound analysis developments in animal health and 
welfare monitoring (Mcloughlin et al., 2019) and analysis of ML appli
cation in broilers growth and health prediction (Milosevic et al., 2019). 
Regardless of the above, a systematic review of earlier literature on AI- 
enabled IoT with ML remains a desirable but unresearched area with the 
body of literature. 

Based on the above, this study aimed to provide a proper synthesis 
for clear guidance on the state-of-the-art techniques and the potential 
future direction of digital technology-enabled welfare management in 
chicken production. Therefore, this work focussed on up-to-date 
research advances to provide valuable technical information to 
develop more relevant and reliable digital technologies for health and 
welfare management in chicken production. The authors provided in
formation, specifically in the context of data aspects (i.e., data measured 
and types, critical features for models), data processing and analysis 
methods, hardware, and software for poultry health and welfare man
agement. Thus, this study meets the expectations of poultry managers 
and other stakeholders concerning efficient welfare management 
through AI-enabled IoT systems by providing an extensive appraisal of 
up-to-date digital technology solutions for poultry health and welfare 
management in breeding farms from 2010 to 2022. Additionally, the 
study discussed trends, opportunities, and challenges in this sector. 

The rest of the paper is organized as follows: Section 2 presents the 
methodology for selecting articles used in the review. Section 3 discusses 
the various applications of AI/ML and techniques in poultry health and 
welfare management, processing techniques, and sensor technologies in 
poultry welfare. In section 4, key challenges in poultry welfare man
agement are discussed. Section 5 illustrates the proposed framework and 
implication. Finally, the conclusions achieved from the study are dis
cussed in section 6. 

2. Research methodology 

This study adopted a Systematic Literature Review (SLR) method
ology, as recommended in (Torres-Carrion et al., 2018). SLR method
ology uses a thorough and distinct approach for research synthesis, with 
the main objective of assessing and possibly minimising bias in the 
findings (Bearman & Dawson, 2013). In obtaining a comprehensive 
analysis of relevant literature, articles from four popular academic da
tabases IEEE Xplore, Science Direct, Google Scholar, and Taylor & 
Francis Online were examined. The authors selected these databases for 
the literature search based on the comprehensive coverage of their 
quality peer-reviewed articles and conference proceedings. 

Coming from the above, the research questions for this study are: (i) 
How have IoT and ML been used for chicken poultry health manage
ment? and (ii) How have chicken poultry health and welfare systems 
been previously developed based on IoT and ML? To adequately answer 
these research questions, a literature search was conducted using the 
following keywords: (“data mining” or “machine learning” or “deep 
learning” or “sensor networks” or “IoT technology”) and (“poultry 
welfare” or “poultry health” or “smart poultry”). Thereafter, a pair of 
keywords from the two classes were combined to search the selected 
databases. Specifically, 18 rounds of searches were conducted in each 
database, which resulted in initial 2328 documents. Subsequently, 
duplicate articles (1567) due to four of the literature databases’ over
lapping were removed, leaving 761 articles and conference proceedings 
for further processing. Finally, inclusion and exclusion criteria (depicted 
in Table 1), were applied to further reduce the collected articles to 147 

Nomenclature 

ABN Additive Bayesian Network 
NH3 Ammonia 
AUC Area Under the Curve 
ANN Artificial Neural Networks 
BANN Bayesian Artificial Neural Network 
BMLR Bayesian Multivariate Linear Regression 
BN Bayesian Network 
BiLSTM Bidirectional Long Short-Term Memory 
CO2 Carbon Dioxide 
CO Carbon Monoxide 
CNN Convolutional Neural Networks 
DT Decision Trees 
DNN Deep Neural Network 
DST Dempster-Shafer Theory 
DCT Discrete Cosine Transform 
ELM Extreme Learning Machines 
FFT Fast Fourier Transform 
FL Fuzzy Logic 
GRU Gated Recurrent Unit 
GSP Generalised Sequential Pattern 
GLM Generalized Linear Model 
GA Genetic Algorithm 

GBM Gradient Boosting Machines 
kNN K-Nearest Neighbours 
LD Linear Discriminant 
LR Linear Regression 
LSTM Long Short-Term Memory 
ME Maximum Entropy 
MTPE Mixed Tracking Performance Evaluation 
MS Mean Shift 
NB Naïve Bayes 
NF Neuro-Fuzzy 
PSO Particle Swarm Optimization 
PCC Pearson Correlation Coefficient 
QD Quadratic Discriminant 
RF Random Forests 
RCE Rapid Centroid Estimation 
RNN Recurrent Neural Network 
RE Relative Error 
RH Relative Humidity 
SPM Sequential Pattern Mining 
SD Standard Deviation 
SVM Support Vector Machines 
WS Weighing Systems 
OpenCV Open-Source Computer Vision Library  

Table 1 
Inclusion and exclusion criteria for selecting articles.  

Inclusion Scientific articles or conference proceedings  

Belong to Computer Science or Engineering  
Belong to Agricultural and Biological Sciences  
Belong to Veterinary Science and Veterinary Medicine  
Publications in English  
Publication year: 2010 – June 2022 

Exclusion Patents  
Publications not available for full review  
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after this procedure. 
Hereafter, the quality of documents was evaluated through an 

exhaustive review to ensure they were relevant to the study’s research 
questions. For example, concerning poultry health management, each 
article was checked to determine whether it satisfies the following: 

Explains the use of ML or deep learning in poultry health and 
welfare, 
Describes the use of IoT or sensors to enrich data collection in poultry 
health and welfare, and, 
Describes smart poultry management systems in the context of Pre
cision Livestock Farming (PLF). 

A Precision Livestock Farming (PLF) system employs data collection 
and monitoring, analysis, ML, control systems, and ICT. Consequently, a 
total of 93 articles for the period between 2010 and 2022 were left for 
further analysis after the selection and filtering procedures. These 93 
articles provided a representative sampling of IoT and ML applications 
in poultry health and welfare management. Table 2 shows the number of 
selected articles by journals and conference proceedings. The current 
study found the top four journals outlets related to IoT and AI in poultry 
health and welfare management as Computers and Electronics in 

Agriculture (26 papers), Biosystems Engineering (14 papers), Informa
tion Processing in Agriculture (3 Papers), Poultry Science (3), and 
Sensors (3 papers). Also, IEEE organized conferences have the largest 
number of papers (9) related to IoT and ML when compared to other 
conferences. 

3. Results and discussion 

3.1. Quantitative content analysis  

(1) Publication’s timeline- The 89 articles published from January 
2010 to June 2022 revealed the rapid interest in AI-enabled IoT 
technologies for poultry welfare management. As shown in Fig. 1, 
IoT or ML applications for chicken poultry health and welfare 
management could be divided into three phases according to 
their publication year. The first phase, 2010 to 2013, had a 
relatively small number of articles due to the complexity and 
limited coverage of applying the latest digital technologies in 
poultry health management. Thus, they have not received much 
academic attention. The second phase, 2014 to 2018, showed the 
number of related articles increasing slightly, indicating a growth 
in the research interest in digital technologies for chicken poultry 
health and safety management. Finally, the third phase from, 
2019 to 2022, revealed a sharp increase in IoT and AI, especially 
the deep learning research for poultry health and welfare man
agement. A slight drop in publications is noticeable in 2021 and 
2022, probably due to Covid-19 impacts on quality research 
outputs. However, it is anticipated that this number will continue 
to surge, considering the success of deep learning-based models 
over classical ML-based approaches in other application domains.  

(2) Geographical distribution- Fig. 2 summarizes the country of 
origin of the selected papers. Every continent is represented by at 
least one research work as follows: Africa (4, 3.22 %), America 
(24, 26.88 %), Asia (33, 35.48 %), Europe (31, 33.33 %), and 
Oceania (1, 1.07 %). China has the largest number of peer- 
reviewed papers, followed by the USA, Brazil, and Belgium. It 
is interesting to note that Chinese researchers have been actively 
involved in this research area because China is home to several 
artificial intelligence and sensor superpowers and are heavily 
investing in agriculture, including animal production.  

(3) Word distribution- In this study, 86 articles were text mined for 
common words relating to IoT and ML in poultry management 
and constructed a word cloud (a holistic picture) of IoT and ML’s 
main applications in this domain. Fig. 3 revealed common IoT 
and ML applications as environment monitoring (i.e., tempera
ture and humidity), behavior monitoring (i.e., eating, walking, 
pecking), disease detection and classification, and control. Most 
frequently used ML techniques include Support Vector Machines 
(SVM), deep learning, Bayesian networks, linear regression, 
neural networks, and decision trees. Everyday IoT technology for 
data acquisition includes cameras, microphones, and sensors. The 
visualization in Fig. 3 will enable stakeholders (designers and 
farm managers) to be well informed of relevant IoT and ML 
knowledge in poultry welfare management. 

3.2. Applications of IoT and Machine learning in poultry welfare 
monitoring 

This subsection presents the Systemic Literature Review (SLR) results 
(Tables 3, 4, and 5) concerning answers to research questions. Conse
quently, the leading IoT and ML applications in poultry health and 
welfare management were identified in the literature as (1) Behavior/ 
Environment monitoring, (2) Disease Analytics, and (3) Control/Inter
vention. Also, Fig. 4 summarizes a holistic view of digital technology for 
poultry health and welfare applications, AI/ML techniques, tools, data 
monitored, data types, processing types, diseases, and health status. 

Table 2 
Selected articles and conference proceedings.   

Publishers Journal Title Count 

Journals Elsevier (61) Computers and Electronics in 
Agriculture 

26 

Biosystems Engineering 14 
Information Processing in 
Agriculture 

3 

Poultry Science 3 
Applied Animal Behavior Science 2 
Expert Systems with Applications 2 
Applied Acoustics 1 
Engineering in Agriculture, 
Environment and Food 

1 

Food Research International 1 
Journal of Environmental 
Management 

1 

Computational Biology and Chemistry 1 
Journal of Environmental Chemical 
Engineering 

1 

Animal 1 
Procedia Computer Science 1 
Heliyon 1 
Preventive Veterinary Medicine 1 
Science of the Total Environment 1 

MDPI (6) Sensors 3  
Agriculture 1  
Animals 1  
Entropy 1 

Taylor & 
Francis (2) 

British Poultry Science 1 
International Journal of Production 
Research 

1 

Royal Society 
(2) 

Journal of the Royal Society Interface. 2 

Cambridge (2) Animal 1  
World’s Poultry Science Journal 1 

Springer (1) Neural Computing and Applications 1 
BMC (1) Journal of Animal Science and 

Biotechnology 
1 

IJABE (1) International Journal of Agriculture 
and Biological Engineering 

1 

World Scientific 
(1) 

International Journal of Pattern 
Recognition and Artificial Intelligence 

1 

Universiti 
Malaysia (1) 

Pertanika Journal of Science and 
Technology 

1 

PLoS One (1) PLoS One 1 
Conferences IEEE (9) IEEE conference proceedings 9  

Others (5) Springer conferences 2   
Other conferences 3   
Total 93  
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3.2.1. Behavior/Environmental monitoring 
In this category (Table 3), the selected papers numbering about 57 

(61.29 %) focused on systems that remotely monitor chicken behavioral 
characteristics, i.e., feeding, resting, running, and environmental pa
rameters (temperature, relative humidity). This intervention’s main 
idea is to add value to poultry farmers by facilitating automated 
acquisition of relevant data using IoT technologies (i.e., sensors, cam
eras, microphones, mobile phones) and transmitting such to a server or 
cloud for instant processing and visualization. These automated moni
toring systems facilitate the continuous measurements of broilers in a 
non-intrusive and non-invasive way. 

To support farmers in welfare issues especially in risk evaluation, 
these studies highlight broilers physiological responses, i.e., respiratory 
rate and cloacal temperature (Bloch et al., 2020; Branco et al., 2020; 
Carpentier et al., 2019; Hernández-Julio et al., 2020), gender determi
nation (Cuan et al., 2022a; Yao et al., 2020), posture and activity 
monitoring (Aydin, 2017; Banerjee et al., 2012; Cheng et al., 2019; de 
Alencar Nääs et al., 2020; Feiyang et al., 2016; Kashiha et al., 2014; Li 
et al., 2021; Nasiri et al., 2022; Neves et al., 2015; Sirovnik et al., 2021; 
Van Hertem et al., 2018; J. Wang et al., 2020; Zaninelli et al., 2018) for 
comprehensive behavioral expression assessments. 

Others sought to monitor real-time changes in body weights (Amraei 
et al., 2017a; Amraei et al., 2017b; Fontana et al., 2015; Mollah et al., 
2010; Mortensen et al., 2016), oviposition events (You et al., 2021), feed 
or water consumption and feed conversion ratio optimization of poultry 
birds (Aydin et al., 2015; Aydin & Berckmans, 2016; Huang et al., 2021; 
Kakhki et al., 2019; Kashiha et al., 2013; Li et al., 2020a; Li et al., 
2020b). Comin et al. (2019) identified and interpreted the associations 
between housing system, rearing facilities, farm management, and 
welfare indicators in laying hens; and speculated about the potential 
causative role of variables directly and indirectly associated with the 
welfare status of the flock. 

Similarly, studies such as those from Debauche et al. (2020), 
Fernández et al. (2018), Lashari et al. (2018), Lin et al. (2016), and Rico- 
Contreras et al. (2017) monitored and controlled changes (i.e., tem
perature, moisture and faeces content, humidity, ammonium, and pest 
species monitoring) in the poultry environment. Also, Kashiha et al. 
(2013) monitored the automated broiler house to detect problems and 
report malfunctioning feeders and drinkers. 

3.2.2. Disease predictive analytics 
Identifying diseases early enough to avoid disease spread is a big 

challenge in the poultry business. However, studies abound that intro
duced technologies to facilitate accurate, rapid detection and diagnosis 
of poultry diseases to decrease the time and effort needed to manage 
large livestock numbers. In this category (Table 4), the selected papers 
were 24, representing 25.81 % of the reviewed articles. These articles 
discussed strategies for efficient disease management in poultry. For 
instance, studies such as those from Banakar et al. (2016), Carpentier 
et al. (2019), Cuan et al. (2020), Du et al. (2018), Golden et al. (2019), 
Ismail et al. (2016), Okinda et al. (2019), Rizwan et al. (2016), Zhang 
and Chen (2020), and Zhuang et al. (2018) were interventions to 
decrease the need for manual observations and human decision making 
regarding disease detection. 

Poultry diseases and infections commonly examined are Newcastle 
Disease Virus (Aziz & Othman, 2017; Banakar et al., 2016; Carroll et al., 
2014; Cuan et al., 2022b; Mahdavian et al., 2021), avian influenza 
(Banakar et al., 2016; Cuan et al., 2020; Huang et al., 2019; Ismail et al., 
2016; Qiang & Kou, 2019; Xu et al., 2017), bursal diseases (Fang, 2019), 
Salmonella (Hwang et al., 2020), hock burn (Hepworth et al., 2012), and 
Listeria spp prevalence (Golden et al., 2019). Standard methods for 
identifying sick birds include analyzing eating patterns (Li et al., 2020b), 
poultry movement patterns and postures (Banerjee et al., 2012; Fang 
et al., 2021; Zhuang & Zhang, 2019), weight checking (Amraei et al., 

Fig. 1. Selected papers distribution by publication year.  

Fig. 2. Selected papers distribution by country.  
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2017b), and poultry sound analysis (Aydin et al., 2015; Carpentier et al., 
2019; Du et al., 2018; Rizwan et al., 2016). 

3.2.3. Control intervention in poultry health management 
Proper monitoring of environmental parameters, i.e., temperature, 

humidity, ventilation, and lighting in poultry houses, is essential to 
guarantee optimal rearing conditions. In addition, their simultaneous 
supervision and control will reduce energy consumption and increase 
productivity (Sitaram et al., 2018). Studies (12, 12.90 %) in this cate
gory (Table 5) highlight the use of sensors to monitor and control 
environmental conditions by activating appropriate devices, i.e., venti
lations, lightning, cooling, and heating systems (Choukidar & Dawande, 
2017; Demmers et al., 2010; Gunawan et al., 2019; Lahlouh et al., 2020; 
Li et al., 2020a; Lorencena et al., 2020; Mirzaee-Ghaleh et al., 2015; 
So-In et al., 2014). For instance, Zhang and Chen (2020) developed an 
automatic detection system for sick chickens based on the ResNet re
sidual network (accuracy of 93.70 %) to monitor broilers’ behavioral 
physiology and production performance. 

Also, Lorencena et al. (2020) proposed a framework to control and 
supervise temperature and humidity to aid optimal decision-making in 
poultry farming. In the same vein, Gunawan et al. (2019) developed a 
system to maintain the optimum environmental conditions, where 
ammonia and carbon dioxide levels were regulated using exhaust DC 
fans. Similarly, humidity and temperature were controlled by DC fans 
and heat lamps. Water quality management in poultry farms is essential 
for chicken growth and for controlling bacterial diseases. Thus, Chou
kidar and Dawande (2017) connected sensors to a Raspberry Pi to 
control the water level and other parameters, i.e., temperature, smoke, 
gas, and food dispensing in a poultry farm. Furthermore, So-In et al. 

(2014) developed a low computational complexity system of 80.00 % 
accuracy to automatically adjust the poultry environmental behavior 
using temperature, humidity, light intensity, and population density. 

In addition, feeding systems optimization is necessary for improved 
production efficiency and animal welfare to promote leg health in 
broiler chickens. Thus, control strategies to optimize feeding over the 
entire period of growth to reduce the feed intake and cost have been 
developed (Demmers et al., 2010, 2018; Kakhki et al., 2019; Klotz et al., 
2022). Finally, Lahlouh et al. (2020) developed a system with a 97.00 % 
accuracy to control hygro-thermal parameters (temperature and relative 
humidity) and contaminant gases to provide appropriate conditions 
suitable for efficient poultry production. 

3.3. AI/ML techniques for poultry health and welfare management 

Research in machine learning (ML) has been concerned with build
ing computer programs to construct new knowledge or improve already 
possessed knowledge by using input information (Michalski et al., 
2013). Thus, ML-based techniques generally consist of feature extractors 
that transform raw data (i.e., pixel values of images) into feature vectors 
and learning subsystems that regress or classify patterns in the extracted 
features. However, constructing feature extractors in conventional ML 
requires laborious adjustment and considerable technical expertise, 
which limits their applications (LeCun et al., 2015). In contrast, deep 
learning techniques, developed from conventional ML techniques, are 
representation-learning methods that can automatically discover fea
tures (or data representation) from raw data without extensive engi
neering knowledge on feature extraction (LeCun et al., 2015). Different 
deep learning architectures available are deep neural networks, 

Fig. 3. Word Cloud of key IoT and AI applications in poultry.  
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Table 3 
IoT and ML for poultry behavior and environment monitoring.  

Reference Metric IoT devices Algorithms Measures Purpose 

Amraei et al. (2017a) R-Squared 0.98 Cameras ANN Poultry activity images Broiler body weight 
Amraei et al. (2017b) R-Squared 0.98 Cameras SVM Poultry activity images Broiler body weight 
Aydin (2017) R-Squared 0.99 Cameras Classification Speed, step frequency, step length, 

body oscillation 
Predict lameness 

Aydin et al. (2015) Accuracy 86.00 Sensors, WS LR Pecking sound, appearance, feed 
uptake 

Monitor feed intake 

Aydin and 
Berckmans 2016 

R-Squared = 0.97 Microphones LR Pecking sounds, feed intake Feeding behavior 

Banerjee et al.(2020) Accuracy 82.60 Sensors DT, NB, ANN Accelerometer data Broiler activity recognition 
Bloch et al. (2020) Accuracy 0.27 ◦C Thermal sensors Lasso Age, temperature Heat stress 
Branco et al. (2020) – Sensors, Cameras GSP Eating, walking, litter pecking, 

dust bathing 
Heat stress 

Cao et al. (2021) Accuracy 93.80 Cameras CNN Eating, drinking, and jumping Estimate chicken density 
Cheng et al. (2019)  Cameras CNN Poultry activity images Estimate chicken density 
Comin et al. (2019) – Historical data ABN Lighting, air quality, housing 

variables, flock information 
Analyze housing and hens’ welfare 

Cuan et al. (2022a) Accuracy 91.25 % Digital voice 
recorder, Camera 

CNN, LSTM, GRU Sound Gender detrmination 

Dawkin et al. (2021) – Cameras BMLR Activities Monitor boiler welfare 
De Alencar et al. 

(2020) 
Accuracy 91.00 Cameras DT Walking speed, acceleration, 

genetic strain, sex 
Lameness prediction 

Debauche et al. 
(2020) 

– Sensors GRU Temperature, RH, CO, CO2, light 
intensity, water level 

Air quality prediction (NH3 rate) 

Diez-Oliva et al. 
(2019) 

Accuracy > 81.00 GPRS, sensors RF Humidity, temperature Estimate lame, mortality, and weight 

Du et al. (2018) Accuracy 74.70 Microphones  Flock’s number of vocalizations, 
location 

Monitor layers’ abnormal sound 

Fang et al. (2020) MTPE 0.73 Cameras DNN Movement speed Target tracking 
Fang et al. (2021) Accuracy94.00 (eating) 

,96.00  
(resting) 

Cameras DNN, NB Activities Pose estimation, behavior classification 

Feiyang et al. (2016) kappa 0.78 Sensors, WS K-means Eating, resting, moving Classify activities 
Fernández et al. 

(2018) 
R2 0.70 Cameras LR Feeding, drinking, resting Evaluate welfare risk issues 

Fontana et al. (2015) R2 0.98 Microphones LR Hens voice data Growth estimation 
Geffen et al. (2020) Accuracy 89.60 Cameras CNN Broiler image Detect and count laying hens 
González et al. 

(2017) 
PCC 0.90 Cameras LR Movement Monitor poultry activities 

Guo et al. (2020) R-Squared 0.99 Cameras ANN, K-means, 
FuzzyC 

Activities Chicken floor distribution analysis 

Hernández-Julio 
et al. (2020) 

R-Squared 0.99 Historical data FL, Fuzzy- 
Genetic 

Bulb temperature, stress duration 
(days) 

Estimate cloacal temperature 

Huang et al. (2021) Accuracy 96.00 Microphones RNN Poultry, wings flapping, trampling 
sounds 

Classify eating and normal 
vocalizations 

Johansen et al. 
(2019) 

RMSE 66.80 g Sensors/Historical DNN Heating, ventilation, temperature, 
RH, light intensity 

Weight, feed/water consumption 

Jung et al. (2021) Accuracy 75.80 Microphones CNN Voice data of laying hens Recognize laying hens sounds 
Kashiha et al. (2013) Accuracy 95.20 Cameras LR Feeding, drinking, movement Report faults in broiler houses 
Kashiha et al. (2014) Accuracy 95.90 Cameras – Hens movement, occupancy Monitor ammonia aversion 
Küçüktopcu and 

Cemek (2021) 
R-Squared 0.86 Sensors Neuro-fuzzy, 

ANN 
Temperature, RH, airspeed, litter 
moisture 

Estimate ammonia concentration 

Lashari et al. (2018) Unspecified Sensors – Temperature, RH, CO, CO2, NH3 Monitor poultry environment 
Li et al. (2020a) Accuracy 89.10 Cameras CNN Moving heads of hens drinking Detect drinking behavior 
Li et al. (2020b) Accuracy 93.00 Cameras LR Broiler behaviors Monitor feeding/drinking behaviors 
Li et al. (2021) Accuracy 99.50 Cameras CNN Chicken image Detect stretching birds 
Lin et al. (2016) R-Squared 7.00 Sensors – RH, temperature Measure ammonium 
Ma et al. (2020) RE 3.00 Cameras, WS ANN Daily weight gain, day-age, 

average velocity, weight 
Broiler body weight 

Mehdizadeh et al. 
(2015) 

R-Squared 0.99 Cameras LR Broiler image Detect broiler feeding behavior 

Mollah et al. (2010) R-Squared 0.99 Cameras LR Broiler image Predict broiler body weight 
Mortensen et al. 

(2016) 
RE 7.80 % Cameras LR, ANN, BANN Broiler image Predict broiler body weight 

Nasiri et al. (2022) Accuracy 97.50 % Cameras CNN-LSTM Broiler image Lameness recognition 
Neves et al. (2015) R-Squared 0.74 Cameras GLM Activities images Assess feeders’ effects on behavior 
Pereira et al. (2013) Accuracy 70.30 % Cameras DT Activities image Broiler behavior 
Pereira et al. (2020) R-Squared 0.90 Sensors Least Squares Temperature, RH, luminosity Monitor ecological parameters 
Pu et al. (2018) Accuracy 99.20 % Cameras CNN Activity images Recognize chicken behavior 
Reboiro-Jato et al. 

(2011) 
RE 1.02 Historical data DT, ANN Feed consumption, mortality 

indices, feeder types 
Feed utilization 

Ribeiro et al. (2019) Unspecified Sensors/Historical ANN Ventilation, environment control, 
spraying, heating 

Action plans for pen management 

Rico-Contreras et al. 
(2017) 

R-Squared 0.93 Historical data ANN, FL Density, temperature, days, feeder 
type, drinker type 

Predict litters moisture content 

(continued on next page) 
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recurrent neural networks, deep belief networks, convolutional neural 
networks, autoencoders, generative adversarial networks, and deep 
reinforcement learning. Critical factors for deep learning networks’ 
success include deeper architectures to capture invariant properties of 
data, regularisation techniques to support robust optimization for 

enhanced performance, massive datasets availability, and efficient 
computing hardware to solve complex problems (Oyedele et al., 2021). 
Convolutional neural network is one of the most representative deep 
learning algorithms in digital image processing (Zhuang & Zhang, 
2019). 

Table 3 (continued ) 

Reference Metric IoT devices Algorithms Measures Purpose 

Roberts et al. (2012) Unspecified Cameras BN Activity images Broiler welfare 
Sirovnik et al. 2021 Unspecified Cameras, Sound GLM Activity images Chickens movement manipulate onto 

elevated platforms for roosting 
Van Hertem et al. 

(2018) 
R-Squared 0.92 Cameras LR, PCA Age, walking speed and 

acceleration, genetic strain, sex 
Lameness recognition 

Wang et al. (2016) Precision 92.10 % Cameras SVM Activity images Track layers 
Wang et al. (2020) Accuracy 96.90 % Cameras CNN Activities- feed, stand, fight, 

spread, mate, drink 
Track layers, abnormal behavior 

Yao et al. (2020) Accuracy 96.00 % Cameras CNN Drinking water, eating, waving 
wings 

Gender classification 

Sibanda et al. (2020) Precision 92.10 % Sensors K-means Housing variables, flock 
information 

Resource usage 

Zaninelli et al. 
(2018) 

Sensitivity 95.70 % 
Specificity 95.40 % 

Sensors, Cameras  Hens images Track layers/detect nests occupancy  

Table 4 
IoT and ML for poultry disease analytics.  

Reference Metric IoT devices Algorithms Measures Purpose 

Aziz and Othman (2017) Accuracy 
93.80 

Cameras SVM Chickens’ excrement image Diagnose respiratory 
problems 

Banakar et al. (2016) Accuracy 
91.20 

Microphones SVM, DST Sound Diagnose respiratory 
problems 

Belkhiria et al. (2020) AUC > 0.70 Historical data RF, ME Location, viral subtypes, broiler species & 
density 

Diagnose respiratory 
problems 

Carpentier et al. (2019) Precision 
88.40 

Microphones LD Sneezing sounds Detect sneezing in chickens 

Carroll et al. (2014) Accuracy 
73.40 

Cameras, sensors DT Sound, activities, temperature, RH Detect rales 

Cuan et al. (2020) Accuracy 
97.40 

Microphones RNN, CNN Sound, swab samples Diagnose respiratory 
problems 

Cuan et al. (2022b) Accuracy 
98.50 

Cameras BiLSTM Sound, images Diagnose respiratory 
problems 

Fang (2019) – Sensors Logistic, ANN RNA microarray Diagnose respiratory 
problems 

Golden et al. (2019) AUC 0.91 Sensors RF, GBM Faeces/soil sample, temperature, RH, wind 
speed 

Listeria spp prevalence 

Hemalatha & Maheswaran 
(2014) 

Accuracy 
96.60 

Sensors, Cameras SVM, ELM Postures and activities Diagnose Fowlpox 

Hepworth et al. (2012) Accuracy 0.78 Historical data SVM; Logistic Stocking density, mortality rates, average 
weight 

Diagnose Hock burn 

Huang et al. (2019) Accuracy 
90.00 

Microphones SVM Chicken sound Diagnose respiratory 
problems 

Hwang et al. (2020) AUC 0.88 Cameras, sensors RF Faeces/soil sample, temperature, RH, wind 
speed 

Salmonella prevalence 

Ismail et al. (2016) Precision 0.99 Historical data K-means, RCE Type, subtype, segment, sequence length Diagnose respiratory 
problems 

Mahdavian et al. (2021) Accuracy 
83.00 

Acoustic box SVM Sound Diagnose respiratory 
problems 

Okinda et al. (2019) Accuracy 
98.80 

Cameras, sensors ANN, Logistic, SVM Mobility, posture shapes Diagnose respiratory 
problems 

Qiang and Kou (2019) AUC 0.99 Historical data SVM, BN, kNN Avian Influenza isolates Diagnose respiratory 
problems 

Raj and Jayanthi (2018) – Sensors, 
Cameras, 

kNN Temperature, RH, HN3; movements Diagnose respiratory 
problems 

Raj and Jayanthi (2019) Accuracy 
95.10 

Cameras, Sensors kNN, SVM, Logistic, 
DT 

Chicken image, sound Diagnose respiratory 
problems 

Rizwan et al. (2016) Accuracy 
97.60 

Microphones SVM, ELM Chicken sound Detect rales 

Xu et al. (2017) – Historical data Association rule; SPM Farm, city, bird category, number of birds Diagnose respiratory 
problems 

You et al. (2021) AUC 0.94 RFID/Historical DNN Time, real-time weight, target weight, feed 
intake 

Identify non-laying birds 

Zhuang and Zhang (2019) Precision 
99.70 

Cameras CNN Chicken images, feather texture, postures Diagnose respiratory 
problems 

Zhuang et al. (2018) Accuracy 
99.50 

Cameras SVM Postures Diagnose respiratory 
problems  
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Most ML models use historical data as input to predict new output 
values. ML is classified as either supervised or unsupervised (Milosevic 
et al., 2019), with many learning models (i.e., classification, regression, 
clustering) and learning algorithms (i.e., ANN, SVR, random forest, 
CNN, GLM). Supervised learning algorithms use labelled data in their 
development for accurate classifications or predictions. Unsupervised 
learning, on the other hand, uses no pre-assigned labels in unravelling 
unique patterns in datasets. ML techniques, i.e., deep learning (22 %), 
SVM (13 %), linear regression (9 %), neural networks (8 %), random 
forest (4 %), decision trees (4 %), logistic (4 %), k-means (4 %), and 
fuzzy logic (3 %) have, in reality, seen increasing usage in the poultry 
welfare management domain. A brief discussion on studies that have 
applied ML techniques for poultry health and management follows. 

Primarily, monitoring of poultry farm environmental parameters, i. 
e., temperature, humidity, levels of ammonia, and luminosity, are 
desirable to ensure efficient control of the indoor condition by control
lers. ML techniques employed to monitor environmental parameters 
(temperature, humidity, carbon dioxide, and ammonia) include linear 
regression (Pereira et al., 2020), fuzzy logic (Lahlouh et al., 2020; 
Mirzaee-Ghaleh et al., 2015), neuro-fuzzy and ANN (Küçüktopcu & 
Cemek, 2021) and deep learning (Debauche et al., 2020). 

Also, the heat stress of broilers in commercial broiler-houses nega
tively affects poultry farm productivity and profitability. ML techniques 

adopted in estimating the body temperature (heat stress) of broilers 
include Lasso regression (Bloch et al., 2020), Fuzzy-GA (Hernández- 
Julio et al., 2020), and generalized sequential pattern (Branco et al., 
2020). Furthermore, monitoring poultry welfare and behavioral activ
ities, i.e., eating, drinking, preening, and resting, are important as good 
welfare promotes healthy chicken growth and improves production. 
Consequently, ML techniques used in monitoring welfare and behavioral 
activities include linear regression (Aydin et al., 2015; Li et al., 2020b; 
Neves et al., 2015) and decision trees (Reboiro-Jato et al., 2011) for 
monitoring feed and water utilization. Also, Kakhki et al. (2019) 
employed neuro-fuzzy techniques to optimize feed consumption in 
poultry farms. 

In addition, Banerjee et al. (2012) compared the predictive perfor
mance of decision trees, ANN, Naïve Bayes, and radial basis function for 
poultry activity monitoring, Pereira et al. (2013) also used decision 
trees, Fang et al. (2020) utilized deep learning techniques, while Zhang 
et al. (2016) employed k-means clustering for poultry activity moni
toring. Linear regression technique (Dawkins et al., 2021; Fernández 
et al., 2018) and Bayesian regression (Roberts et al., 2012) were also 
used to monitor and evaluate the risk of welfare issues. In the density 
map estimation of crowded chicken, Cheng et al. (2019) used deep 
learning to estimate the density and counting of poultry in farms. ANN 
was used to generate action plans for broiler house management 
(Ribeiro et al., 2019) and k-means for evaluating resource usage 
(Sibanda et al., 2020). Also, Rico-Contreras et al. (2017) used ANN and 
fuzzy logic to predict litters’ moisture content, while So-In et al. (2014) 
employed k and fuzzy-C means to manage poultry population density. 

Furthermore, weight is an essential parameter for estimating poultry 
farms’ growth and feed conversion efficiency. Consequently, ML tech
niques, i.e., linear regression (Fontana et al., 2015; Kashiha et al., 2013; 
Mollah et al., 2010), support vector regression (Amraei et al., 2017b), 
and Bayesian artificial neural network (Mortensen et al., 2016) have 
been used for broilers’ growth estimation. Other ML techniques used are 
deep learning (Demmers et al., 2010; Huang et al., 2021; Johansen et al., 
2019), ANN (Amraei et al., 2017a; Ma et al., 2020), and quantile 
regression forests (Diez-Olivan et al., 2019). Likewise, lameness is one of 
the causes of poor welfare in poultry and early detection of lameness will 
allow farmers and veterinarians to take timely management actions in 
time. ML techniques for detecting lameness in broilers include decision 
trees (de Alencar Nääs et al., 2020) and linear regression (Van Hertem 
et al., 2018). 

The occurrence of poultry diseases affects poultry welfare and pro
duction, food safety, and zoonotic infections. Hence, ML techniques 
have been employed for the timely detection of these diseases. For 
instance, Raj and Jayanthi (2019) evaluated the predictive performance 
of KNN, SVM, logistic decision, linear and quadratic discriminant 
techniques in detecting avian influenza. Qiang and Kou (2019) also 
benchmarked support vector machines, Bayesian networks, and kNN to 
predict avian flu. Other studies using ML techniques to detect avian 
influenza are SVM (Aziz & Othman, 2017; Huang et al., 2019; Zhuang 
et al., 2018), random forest, and maximum entropy (Belkhiria et al., 
2020), deep learning (Cuan et al., 2020, 2022a) and association rules 
and sequential pattern mining (Xu et al., 2017). 

Also, in monitoring Newcastle disease, a severe infectious disease, 
Banakar et al. (2016) used SVM and Dempster-Shafer, while Okinda 
et al. (2019) benchmarked the performance of neural networks, SVM, 
and logistic regression. Furthermore, KNN (Raj & Jayanthi, 2018), 
Rapid Centroid Estimation and k-means clustering (Ismail et al., 2016), 
and deep learning techniques (Zhuang & Zhang, 2019) have been 
employed to detect Newcastle disease. Other ML techniques, i.e., deci
sion trees (Carroll et al., 2014) and deep learning (Rizwan et al., 2016), 
have been used to predict infectious bronchitis, a highly contagious, 
acute poultry infection characterized by nasal discharge, coughing, and 
rales in poultry farms. Other poultry diseases managed by ML techniques 
include infectious bursal, diagnosed using neural network and logistic 
regression techniques (Fang, 2019). In addition, in detecting poultry 

Table 5 
IoT and ML for poultry control and intervention.  

Reference IoT 
devices 

Algorithms Measures Purpose 

Choukidar 
and 
Dawande 
(2017) 

Sensors – Temperature, 
RH, climate 
quality, water 
level, gases 

Control 
environmental 
parameters/food 

Demmers 
et al. 
(2010) 

WS, 
sensors 

RNN Weights, 
temperature, 
RH, light 
intensity, 
feeding 

Optimize 
feeding system 

Demmers 
et al. 
(2018) 

WS 
sensors 

DRNN RH, light 
intensity, feed 
amount 

Control feed 
intake for 
growth 

Gunawan 
et al. 
(2019) 

Sensors – Ammonia, CO2, 
humidity, 
temperature 

Optimum 
control of DC fan 
and heat lamp 

Kakhki et al. 
(2019) 

– neuro-fuzzy, 
GA, PSO 

Digestible lysine 
levels, sulfur 
amino acids, 
threonine 

Optimize body 
weight/feed 
conversion ratio 

Klotz et al. 
(2022) 

Sensors LSTM, GA Temperature 
(min, mea, max, 
RH(min, mean, 
max), day 

Optimize body 
weight/feed 
conversion ratio 

Lahlouh 
et al. 
(2020) 

Sensors MIMO FL Temperature, 
RH and 
contaminant 
gases NH3, CO2 

Poultry house 
climate. 

Lorencena 
et al. 
(2020) 

Sensors – Temperature, 
RH 

Control thermal 
comfort 

Mirzaee- 
Ghaleh 
et al. 
(2015) 

Sensors FL Temperature, 
RH, 
contaminant 
gases 

Maintain indoor 
parameters 

So-In et al. 
(2014) 

Cameras, 
sensors 

K–Means, 
Fuzzy C, MS, 
logic 

Temperature, 
RH, light 
intensity 

Perform 
environmental 
control 
operation 

Youssef 
et al. 
(2015) 

Cameras, 
sensors 

– Ambient air, 
temperature 

Control activity 
level and 
position 
of broiler 

Zhang and 
Chen 
(2020) 

Cameras CNN Broiler images Automatic 
detection of sick 
chickens  
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diseases, random forest (Salmonella spp, Listera spp) and gradient 
boosting machines (Listera spp) have been used (Golden et al., 2019; 
Hwang et al., 2020). Also, Hemalatha and Maheswaran (2014) (Hema
latha & Maheswaran, 2014) diagnosed fowlpox with SVM and extreme 
learning machine (ELM), while (Hepworth et al., 2012) detected hock 
burn disease using SVM and logistic regression. 

3.3.1. Progress of deep learning techniques in poultry health and welfare 
management 

Deep learning (DL) is widely used in different fields. For example, it 
has proven to be an efficient method commonly used in various 
agriculture-related areas (Yao et al., 2020). The great advantage of using 
deep learning is the reduced need for feature engineering since deep 
neural networks are directly involved in the extraction of intrinsic at
tributes, i.e., color, shape, and texture information (LeCun et al., 2015). 

The use of deep learning in poultry health and welfare management 
is on the rise, especially, DL-based approaches, including Faster R-CNN, 
You Only Look Once (YOLO), and Single Shot multibox Detector (SSD) 
have been applied for object detection in poultry in recent years. For 
instance, Cao et al. (2021) proposed an automated chicken counting 
method with Dense CNN. Jung et al. (2021) developed CNN models to 
automate the classification of vocalizations of laying hens and cattle. In 
addition, Zhuang and Zang (2019) implemented a deep learning variant- 
improved Single Shot MultiBox Detector, to automatically diagnose 
broilers’ health status. The proposed algorithm achieved 99.70 % mean 

average precision. Similarly, Huang et al. (2021) used combined RNN, 
LSTM, and GTU to detect poultry eating behavior based on vocalization 
signals with an accuracy of 96.00 %, while Cheng et al. (2019) used fully 
convolutional networks for density estimation and poultry counting. 
Zhang and Chen (2020) also designed an automatic detection system for 
sick chickens using an improved residual Network (ResNet), which 
resulted in 93.70 % recognition accuracy. Also, You et al. (2021) 
developed a DNN model to predict oviposition events for individual 
broiler breeders for efficient bird management with the area under the 
receiver operating characteristic (ROC) curve at 0.94. 

Also, Yao et al. (2020) used deep neural networks (DNNs) to estimate 
the gender ratio of chickens, and the experimental results achieved an 
average accuracy of 96.90 %. Similarly, a performance comparison of 
CNN, LSTM, and GRU was performed to determine chicken gender, with 
CNN obtaining the highest accuracy of 91.25 % (Cuan et al., 2022a). 
Also, Geffen et al. (2020) used the Faster R-CNN method to detect and 
count laying hens in battery cages with 89.60 % accuracy of a validation 
dataset of 2000 images. These studies on deep learning confirm its 
reliability and efficiency in poultry welfare management. GANs appli
cation in poultry welfare is a gray area. However, GANs and autoen
coders can be combined for robust image classification to provide an 
unsupervised data augmentation method for poultry-related computer 
vision problems. In addition, GANs can synthesize additional realistic 
images that resemble those in the training set. 

From the papers reviewed, the applications of a few DL techniques in 

Fig. 4. Overview of IoT and ML in poultry health management.  
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poultry welfare management are basically for object detection (Geffen 
et al., 2020; Zhang & Chen, 2020), growth prediction (Demmers et al., 
2018), disease management (Zhuang & Zhang, 2019), acoustic analysis 
(Jung et al., 2021), tracking (Cao et al., 2021; Fang et al., 2021; Li et al., 
2021; Pu et al., 2018), and habitat monitoring (Debauche et al., 2020). 

Deep Reinforcement Learning (DRL) is an advanced and active 
research field in ML that combines deep and reinforcement learning to 
solve impossible problems (Lei et al., 2020). Moreover, it promises to 
solve more complex problems in robotics, resource management, and 
other fields requiring decision-making capabilities. But unfortunately, 
deep reinforcement learning is yet to be applied in poultry welfare and 
health management. Huang et al. (2021) also opined that fully func
tional robots developed and implemented in the poultry production 
system are limited. However, in poultry welfare management, DRL 
would be an essential ingredient for interactive perception, mainly for 
object segmentation, object recognition, or categorization tasks. In 
addition to perception capability, DRL will facilitate planning and 
executing low-productivity tasks, reasoning, and communication capa
bilities to support optimal decision-making by production managers. 
Fig. 5 describes the current state of DRL applications in poultry health 
and welfare management. 

3.4. Processing techniques 

This subsection presents an overview of the poultry data processing 
types regarding computer vision and vocalization techniques. Conse
quently, classification, regression, and clustering algorithms in poultry 
health and welfare management were briefly discussed. 

3.4.1. Computer vision 
Computer vision combines mathematics, computer science, and 

software programming to provide image-based automated process 
control (Okinda et al., 2020). Similarly, it comprises hardware and 

software (image processing and analysis algorithms), with the hardware 
consisting of computers, cameras, and lighting units (Abd Aziz et al., 
2021; Nyalala et al., 2021) to track and monitor the behavior and health 
status of chickens. The advantages of computer vision systems lie in their 
non-invasive, non-invasive, and low-cost animal monitoring (Li et al., 
2021). Fig. 6 depicts the components of computer vision for poultry 
health and welfare management. Cameras are one of the core compo
nents of computer vision systems, and they are classified into 2D and 3D 
cameras (Abd Aziz et al., 2021). Digital 2D cameras are common and 
cheap (Fernández et al., 2018; Van Hertem et al., 2018). They operate 
with a light-sensing chip (charge-coupled device) to detect the bright
ness of three filtered color channels (red, green, and blue) at each pixel. 
The 3D cameras, though more expensive and with fewer pixels per area, 
allow for broader application as they can capture additional informa
tion, i.e., depth (the vertical distance between target and camera), and 
are less prone to darkness and environmental influences (Okinda et al., 
2020). 

Camera types immensely used in poultry farms for objective quality 
measurements are visible light cameras, infrared/thermal, and depth 
(Kashiha et al., 2014; Mehdizadeh et al., 2015; Neves et al., 2015). 
Visible light cameras enable light detection in the pure visible light 
spectrum, typically from 400 to 750 nm, and their use in poultry welfare 
management abound. For instance, de Alencar Nääs et al. (2020), 
Mollah et al. (2010), and Neves et al. (2015) deployed Sony Cyber-shot, 
Sony DCR-TRV330, and Handycam Memory Flash PJ200 (Sony Corpo
ration, Tokyo, Japan) for lameness prediction, broiler’s weight estima
tion, and behavior monitoring. Similarly, Amraei et al. (2017b) used an 
SM-N9005 camera (Samsung Electronics, Suwon, South Korea) for 
chicken weight prediction, while Mehdizadeh et al. (2015) deployed 
Mikrotron Eosens MC1363 cameras (Mikrotron GmbH, Bavaria, Ger
many) to evaluate chickens’ beak and head motion during feeding. Also, 
studies such as those from Fang et al. (2021) and Zhuang et al. (2018) 
deployed Logitech C922 camera (Logitech International, Lausanne, 

DL in Poultry Health 
& Welfare

Management

Deep 
Generative 

Models 

Deep 
Reinforcement 

Learning Generative Adversarial 
Networks (GANs)

Variational 
Autoencoders (VAEs)

Most DL techniques 
employed in this 

domain 

Recurrent Neural Network (RNN), 
Simple RNN, Gated Recurrent Unit 
(GRU), LSTM (Debauche et al., 
2020; Demmers et al., 2010; 
Demmers et al., 2018; Johansen et 
al., 2019; Huang et al., 2021

Convolutional Neural Network (CNN), Faster R-CNN, 
DenseCNN (DenseNet), ResNet, SSD, YOLO (Cao et 
al., 2021; Cheng, Rong, & Cao, 2019; Cuan et al., 
2020; Geffen et al., 2020; Jung et al., 2019; Li et al., 
2020; Li et al.,2021; Yao et al., 2020; Pu et al., 2018; 
Zhang & Chen, 2020; Zhuang & Zhang, 2019)

Deep Feed-
forward Neural 
Network 
(DNN) (Fang 
et al., 2020;
Fang et al., 
2021; You et 
al., 2021)

Fig. 5. DL applications in poultry welfare management.  
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Switzerland) for pose estimation and sick broilers detection. In addition, 
a Guppy FO36C camera (Allied Vision Technologies, Stadtroda, Ger
many) was deployed to detect the lameness of broilers (Aydin et al., 
2017). Additionally, studies by Cao et al. (2021) and Okinda et al. 
(2019) used Hikvision cameras (Hangzhou Hikvision Digital Technol
ogy, Hangzhou, China) to automate the chicken counting process and 
detect sick chickens, respectively. 

The thermal or infrared cameras create images using infrared radi
ation and are sensitive to wavelengths between 1,000 and 14,000 nm. 
Examples of these cameras as deployed for broilers’ behavioral pattern 
recognition and monitoring include FLIR Lepton (FLIR Systems, Inc., 
Oregon, USA) for temperature measuring (Bloch et al., 2020) and ac
tivity monitoring (González et al., 2017). Similarly, Dahua IPC-K22A 
(Dahua Technology, Hangzhou, China) was used to assess pullets’ 
drinking behaviors (Li et al., 2020a). Also, Li et al. (2021) utilized NHD- 
818 cameras (Swann Communications, Santa Fe Springs, USA) to mea
sure broiler stretching behaviors. Likewise, a PRO-1080MSFB camera 
(Swann Communications, Santa Fe Springs, USA) was used to monitor 
chicken floor distribution (Guo et al., 2020), while Zaninelli et al. (2018) 
used Thermo GEAR-G120 cameras (NEC Avio Infrared Technologies, 
Tokyo, Japan) to monitor laying hens and detect multiple nest 
occupations. 

Depth cameras create a 3D image of the targeted scene or object and 
offer more discerning information to recover postures and recognize 
actions. Thus, they have been deployed to monitor poultry’s behavior 
and health status. For instance, studies such as those from Aydin et al. 
(2017), Mortenson et al. (2016), and Okinda et al. (2019) deployed 

Kinect cameras (Microsoft Corporation, Washington, USA) for broilers’ 
lameness detection, weight prediction, and detection of sick chickens, 
respectively. Also, Nasiri et al. (2022) used Intel RealSense D455 (Intel 
Corporation, Santa Clara, California, USA) for broilers pose estimation. 

The lighting units (i.e., LED and Halogen) illuminate the pen or 
poultry house to ensure that the illumination intensity is within an 
acceptable range (typically between 15 and 20 lx) (Wang et al., 2016), 
for improved image processing and analysis operations. From the soft
ware perspective, it is a set of programs or routines associated with 
computer system operations, and its development plays an essential role 
in computer vision (Abd Aziz et al., 2021). Software forms in computer 
vision include image pre-processing for image quality enhancement, 
image segmentation, and feature extraction, which extracts meaningful 
information from images. 

Image pre-processing methods employed in past studies include 
dilation and erosion (Amraei et al., 2017a; Kashiha et al., 2014; Mollah 
et al., 2010), scaling (Fang et al., 2020; Zhuang & Zhang, 2019), data 
augmentation (Zhang & Chen, 2020), Otsu’s method (Kashiha et al., 
2014; Okinda et al., 2019), gaussian filter (Mortensen et al., 2016; Raj & 
Jayanthi, 2019) binarization (Amraei et al., 2017a; Aydin, 2017; Guo 
et al., 2020; Neves et al., 2015; Okinda et al., 2019; Raj & Jayanthi, 
2019), and thresholding (Amraei et al., 2017a; Amraei et al., 2017b; 
Mehdizadeh et al., 2015; Mollah et al., 2010; Youssef et al., 2015). 

Image segmentation partitions images into multiple segments and 
labels the segments with known classes to facilitate accurate classifica
tion (Abd Aziz et al., 2021; Zhuang et al., 2018). Though this field has a 
long research history, deep learning networks have delivered models 

Fig. 6. Computer vision components in poultry welfare management.  
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with remarkable performance for segmentation and have thus become 
the new standard for image segmentation (Okinda et al., 2020). Tech
niques for image segmentation (i.e., extracting a chicken body from a 
background image) in poultry welfare management include the Water
shed algorithm (Cao et al., 2021; Mortensen et al., 2016) and the Ellipse 
model (Kashiha et al., 2014; Zhuang et al., 2018). Others are Mean-shift 
clustering (Fang et al., 2020) and K-Means clustering (Zhuang et al., 
2018). 

Feature extraction algorithms transform raw data into a suitable 
internal representation to enhance ML models’ predictive ability (LeCun 
et al., 2015). Thus, extracting features from images helps to correlate 
objects to a specific bio-response or bio-process under investigation 
(Okinda et al., 2020). Consequently, after the pre-processed and 
segmented operations, selected features of images are extracted for 
classification purposes. Common features used for conventional image 
analysis in poultry include age (1D), morphological features (i.e., length, 
breadth, area, perimeter), and 3D (volume and surface area) (Abd Aziz 
et al., 2021; Okinda et al., 2019, 2020). For instance, Mollah et al. 
(2010) used 1D and morphological features to examine the relationship 
between manual body weight and the number of surface-area pixels in 
the image. Features such as area are mostly used to estimate the broiler 
body size. The area was computed by summing pixels within a contour 
constituting the broiler image to analyse broiler behavior (Pereira et al., 
2013). Aydin (2017) also used 1D features in detecting lameness in 
broilers. Morphological features have also been used to measure feed 
intakes (Aydin et al., 2015; Mehdizadeh et al., 2015; Neves et al., 2015) 
and strentching (Li et al., 2021) of broilers. Amraei et al. (2017b) also 
used 2D (morphological) features for the broiler weight estimation. 
Debauche et al. (2020) also used morphological features for poultry 
monitoring. Mortensen et al. (2016) used age, morphological features, 
and 3D to determine optimal ways to control food, water supplies, and 
circadian rhythm of broilers for optimal growth patterns. 

Commonly used image analysis software for the studies reviewed 
includes MATLAB, (Mathworks, Inc. MA, USA) (Amraei et al., 2017a; 
Aydin, 2017; Bloch et al., 2020; Fernández et al., 2018; Guo et al., 2020; 
Hemalatha & Maheswaran, 2014; Kashiha et al., 2013, 2014; Li et al., 
2020b; Ma et al., 2020; Mehdizadeh et al., 2015; Mortensen et al., 2016; 
Neves et al., 2015; Okinda et al., 2019), R Programming Language (R 
Development Core Team, Vienna, Austria) (Hwang et al., 2020; Mollah 
et al., 2010; Qiang & Kou, 2019; Zaninelli et al., 2018), Python (Dawkins 
et al., 2021; Fang et al., 2021; González et al., 2017; Li et al., 2020a; You 
et al., 2021), Minitab (Minitab Inc, PA, USA) (Mehdizadeh et al., 2015; 
Neves et al., 2015), Weka (University of Waikato, New Zealand) (Branco 
et al., 2020; Carroll et al., 2014; Pereira et al., 2013), SPSS (IBM, 
Armonk, New York, USA) (Okinda et al., 2019), and Rapidminer Studio 
(Rapidminer Inc, Boston, MA, USA) (de Alencar Nääs et al., 2020; 
Fernández et al., 2018). In addition, however, libraries, i.e., OpenCV 
(Intel Corporation) (Debauche et al., 2020; González et al., 2017; Pu 
et al., 2018; Wang et al., 2016; Zhuang et al., 2018; Zhuang & Zhang, 
2019), TensorFlow (Google Brain Team) (Li et al., 2020a, 2021), 
Pytorch (Meta AI, New York, USA) (Cao et al., 2021), and Keras (You 
et al., 2021; Zhuang & Zhang, 2019) are recently gaining grounds. 

Examples of computer vision applications to poultry breeding farm 
processes (health and welfare management) include chicken behavior 
analysis (Cheng et al., 2019; C. Fang et al., 2020, 2021; Fernández et al., 
2018; González et al., 2017; Mehdizadeh et al., 2015; Neves et al., 2015; 
D. Pereira et al., 2013; So-In et al., 2014), welfare and resource man
agement (Fernández et al., 2018; Kashiha et al., 2013; Roberts et al., 
2012), and hen tracking (Fang et al., 2020; Kashiha et al., 2013; Wang 
et al., 2016; Zaninelli et al., 2018). Others are disease detection and 
diagnosis (Aydin, 2017; Aziz & Othman, 2017; Hemalatha & Mahes
waran, 2014; Okinda et al., 2019; Qiang & Kou, 2019; Raj & Jayanthi, 
2019; Van Hertem et al., 2018; Zhang & Chen, 2020; Zhuang et al., 
2018; Zhuang & Zhang, 2019), and weight or growth prediction (Amraei 
et al., 2017b; Diez-Olivan et al., 2019; Johansen et al., 2019; Kashiha 
et al., 2013; Ma et al., 2020; Mollah et al., 2010). 

Finally, the gender ratio of free-range chickens is considered a major 
welfare problem in commercial broiler farming. Thus, systems to sup
port free-range chicken producers have been developed for chicken 
counting (Cao et al., 2021) and identifying chicken gender for flock 
economic value (Yao et al., 2020). 

3.4.2. Vocalization analysis 
Analysis of broiler vocalizations can yield valuable insights into 

poultry welfare and how diseases manifest and progress over time. In 
addition, this technique can play an important role in detecting infection 
with pathogenic microorganisms, threat signals, information about 
feeding, activity monitoring, and population estimation. The key 
advantage of the technology is the continuous non-invasive audio 
measurements of the poultry environment at a relatively low cost (Jung 
et al., 2021). Thus, vocalization analysis applications in poultry welfare 
management abound. The following are some examples. 

The frequency of rales produced by infected chickens was used to 
detect respiratory infection and initiate remedial actions to inhibit 
further infection or spread before clinical signs manifestation (Carroll 
et al., 2014; Cuan et al., 2020; Rizwan et al., 2016). Also, Carpentier 
et al. (2019) presented an algorithm with a precision of 88.40 to monitor 
the chicken sneezing sounds from multiple broilers’ vocalizations in a 
noisy environment, while Banakar et al. (2016) proposed a system with 
a 91.20 % accuracy for detecting and diagnosing respiratory diseases. 
Du et al. (2018) developed a system to detect anomaly poultry status at 
night by monitoring the number of vocalizations and area distributions. 
The proposed approach (74.70 % accuracy) is a practical and feasible 
method for poultry behavior and welfare, especially in stress detection. 
Feeding behavior detection of broiler chickens is vital in distinguishing 
healthy from infected birds. Furthermore, pecking sounds have been 
used to monitor the feed intake of broilers by a real-time sound pro
cessing technology (Aydin et al., 2015; Aydin & Berckmans, 2016). Also, 
Fontana et al. (2015) proposed a method to automatically measure the 
growth rate of broiler chickens by sound analysis (R2 = 0.98). Cuan et al. 
(2022a) obtained a classification accuracy of 91.25 % for chicken gender 
determination, while Jung et al. (2021) developed a strategy (75.80 % 
accuracy) for chicken gender identification for economic value 
estimation. 

In summary, these studies have revealed potential applications of 
vocalization analysis due to its good performance and low computa
tional cost to optimize conditions of the poultry environment and detect 
behavioral problems, i.e., feather pecking, feed intakes, infections, and 
stress. Thus, sound technology has real potential for practical commer
cial implementation to improve health and poultry welfare. Features 
commonly used in previous studies (i.e., Aydin et al., 2015; Aydin & 
Berckmans, 2016; Banakar et al., 2016; Fontana et al., 2015) for 
detecting and classifying poultry vocalization data include pitch, fre
quency, and time–frequency. Similarly, studies such as those from Car
roll et al. (2014), Cuan et al. (2022b), Cuan et al. (2022a) and Jung et al. 
(2021) used the Mel frequency cepstrum coefficients (MFCCs) to repre
sent the acoustic sound of hens to recognize behavioral meanings from 
those sounds. 

3.4.3. Data processing 
This subsection briefly describes data pre-processing techniques for 

poultry audio and image data. 
Data processing involves collecting and manipulating data to pro

duce meaningful information, and pre-processing of high-dimensional 
features is a general and robust method for improving the learning al
gorithm performance (Hastie et al., 2009). Data in the context of this 
study refers to text and multimedia data, i.e., images, audios, and videos 
employed in poultry welfare management. Consequently, data pro
cessing comprises techniques to improve data further to eliminate noise 
or unwanted frequencies and increase measurement precision and 
analysis reliability (Cuan et al., 2022a; Pereira et al., 2013; Huang et al., 
2021). 
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For instance, in computer vision problems, the primary purpose of 
this process is to enhance the image quality for the segmentation step, 
especially in separating a digital image into distinct areas (Nyalala et al., 
2021). Standard pre-processing techniques include filtering, normali
zation, approximation, enhancement, and cancellation of points 
(Okinda et al., 2020). In addition, many of these pre-processing methods 
used in poultry welfare management include dilation and erosion 
(Amraei et al., 2017a; Kashiha et al., 2014; Mollah et al., 2010; So-In 
et al., 2014), thresholding (Kashiha et al., 2013; Mehdizadeh et al., 
2015; Neves et al., 2015; Okinda et al., 2019; Youssef et al., 2015), 
Otsu’s method (Kashiha et al., 2014; Okinda et al., 2019), gaussian filter 
(Mortensen et al., 2016; Raj & Jayanthi, 2019), and binarization (Guo 
et al., 2020; Li et al., 2020b; Neves et al., 2015; Okinda et al., 2019; 
Pereira et al., 2013). Others include image cropping to emphasize a 
particular subset of a larger image (Li et al., 2021) and image size 
reduction (Li et al., 2020a), as large image sizes can decrease detection 
speed when input into CNN detectors. Also is data augmentation (Zhang 
& Chen, 2020), to increase the amount of data by adding slightly 
modified copies of already existing data or newly created synthetic data 
from existing data. 

Also, in poultry vocalization analysis, studies such as those from 
Huang et al. (2021), Klotz et al. (2022), and Pereira et al. (2013) used 
data normalization, a technique to convert data from spatial domain to 
frequency domain with either fast Fourier transform or Discrete cosine 
transform techniques (Cuan et al., 2022b; Huang et al., 2021; Mahda
vian et al., 2021). Similarly, the uses of pre-emphasis and micro-analysis 
techniques are standard pre-processing techniques used on audio signals 
(Jung et al., 2021; Huang et al., 2019; Huang et al., 2021). 

3.4.4. Classification 
This subsection briefly describes the classification technique as one 

of the key processing techniques in poultry welfare management. 
The classification technique categorizes data into classes to identify 

primarily the category under which new data or objects belong (Okinda 
et al., 2020), and it is the most used technique for delineating classes of 
output (usually categorical) based on some set of input features (Ajayi 
et al., 2020). Also, the classification task is essential for computer vision 
and vocalization analysis (Amraei et al., 2017b; Aydin, 2017; Aydin 
et al., 2015; Aydin & Berckmans, 2016) as it helps to identify objects and 
tasks performed by those objects. For example, given an image or sound, 
classification techniques can help discriminate between healthy and sick 
broilers or determine whether a chicken is laying eggs, walking, or 
drinking. Examples of classification techniques include CNN, SVM, 
ANN, DNN, random forests, logistic, and decision trees. However, the 
high CNN classification accuracy makes it a promising approach, espe
cially for classifying animal sounds (Jung et al., 2021). As revealed in 
this study, typical classification applications in poultry welfare man
agement are activity recognition and disease detection. A few examples 
are presented. 

For activity recognition, Banerjee et al. (2012) compared decision 
trees, Naïve Bayes, and neural networks for broilers’ activity recognition 
and reported that neural networks had the best overall accuracy of 
82.10 %. Similarly, Pereira et al. (2013) employed the classification tree 
algorithm to identify hen white broiler breeder behavior and reported an 
overall success rate of 70.30 % on the validation set. Also, Rizwan et al. 
(2016) compared extreme learning machine and SVM classifiers to 
detect rales (a gurgling sound that is a symptom of respiratory diseases 
in poultry) and reported a classification accuracy of SVM (97.60 %) over 
the extreme learning machine technique. Pu et al. (2018) developed an 
automatic CNN-based method (accuracy of 99.17 %) to recognize the 
chicken behavior within a poultry architecture. Also, a CNN classifica
tion model, with a classification accuracy of 75.78 % on the validation 
dataset, was used to effectively recognize the sounds of laying hens 
(Jung et al., 2021). Geffen et al. (2020) used Faster R-CNN detection and 
tracking algorithms to detect hens in cages with an 89.60 % accuracy at 
cage level. Li et al. (2020a) used CNN to detect drinking behaviors of 

pullets in a lighting preference test system, and they reported a classi
fication accuracy of 89.10 %. Also, Fang et al. (2021) used a Naive 
Bayesian model to classify and identify the poses of broiler chickens. 
They reported the test precision of behavior recognition at 0.75 
(standing), 0.51(walking), 0.63 (running), 0.94 (eating), 0.96 (resting), 
and 0.93 (preening). Lastly, Li et al. (2021) used a faster R-CNN method 
to detect broiler stretching behaviors with an accuracy of 99.50 % on the 
testing dataset. Nasiri et al. (2022) developed a CNN-LSTM-based model 
for skeleton-based lameness recognition in broilers, and the model 
achieved a per-class classification accuracy of 97.5 %, while Cuan et al. 
(2022a) obtained a classification accuracy of 91.25 % for chicken gender 
determination. 

Similarly, timely disease detection is paramount in poultry produc
tion (Zhang & Chen, 2020). The following are a few examples of clas
sification models in poultry disease detection and diagnosis. Huang et al. 
(2019) developed an audio analysis-based detection method to detect 
avian influenza in chickens using SVM (a binary classification) and re
ported an accuracy rate between 84.00 % and 90.00 %. Also, Cuan et al. 
(2020) proposed a CNN model to detect chickens with avian influenza 
from chicken sound extracts and reported the highest accuracy of 95.84 
%. Also, Okinda et al. (2019) compared the performance of an SVM 
classifier with ANN and logit regression to establish a correlation of 
broiler feature variables with their health status. The authors reported 
that an SVM classifier outperformed all other models with an accuracy of 
97.80 %. Zhang et al. (2018) developed a system to analyze broilers’ 
postures and detect sick broilers with an SVM classifier. The authors 
reported an accuracy rate of 99.47 % on the test samples. Also, Zhuang 
and Zhang (2019) proposed a CNN-based recognition model with a 
99.70 % mean average precision (mAP) for detecting the health status of 
broilers to support efficient flock management. Similarly, Zhang and 
Chen (2020) developed an automatic detection system for sick chickens 
based on ResNet residual (a CNN architecture) classifier. They reported 
accuracy of 93.70 % on the test set. 

3.4.5. Regression 
Regression techniques predict an output variable according to 

known input variables (Milosevic et al., 2019). They are mainly used for 
modeling regression problems consisting of one or more dependent 
variables and a set of predictors (Küçüktopcu & Cemek, 2021; Milosevic 
et al., 2019). For example, in regression problems for chicken welfare 
systems, dependent variables commonly used are weight, litter mois
ture, and contaminant gases concentration (Küçüktopcu & Cemek, 2021; 
Mortensen et al., 2016). In contrast, predictor variables employed are 
the object’s surface area, 2D, 3D image features, sound frequency, 
broiler’s age, and environmental parameters, i.e., light intensity, tem
perature, and relative humidity (Küçüktopcu & Cemek, 2021; Mehdi
zadeh et al., 2015; Mortensen et al., 2016; Okinda et al., 2019). 

This methodology often used to describe relationships between in
dependent and dependent variables, is a formula usually represented as 
a line to make predictions, including interpolations and extrapolations 
(Hastie et al., 2009). Multivariable regression uses more than one in
dependent variable to predict an outcome (Küçüktopcu & Cemek, 2021). 
The two modes of tackling regression problems are linear and nonlinear 
regression methods. Linear regression models are simple and often 
provide an adequate and interpretable description of how the inputs 
affect the output (Hastie et al., 2009). The nonlinear models are complex 
and used for modeling the nonlinear pattern relationship between pre
dictor and response variables. Regression methods mostly applied in 
poultry monitoring include linear, logistic, lasso, SVM, ANN, RNN, DNN, 
and tree model regression (Okinda et al., 2020). 

Body weight is an essential indicator for determining poultry’s 
growth and health status as it is closely related to production perfor
mance (Johansen et al., 2019). Consequently, with respect to poultry, 
regression-based models have been used to analyze poultry growth 
curves (Amraei, Abdanan, et al., 2017; Demmers et al., 2010, 2018; 
Fontana et al., 2015; Johansen et al., 2019; Mollah et al., 2010; 
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Mortensen et al., 2016). For example, linear regression was applied to 
estimate chicken weight, with a relative error in weight estimation of 
chicken, expressed in terms of percent error of the residuals from surface 
area pixels between 0.04 and 16.47 (Mollah et al., 2010). Mortensen 
et al. (2016) applied Bayesian ANN regression for broiler weight esti
mation and reported a relative mean error of 7.8 % for the proposed 
model. Amraei et al. (2017a) used neural networks to estimate the live 
body weight of broilers and reported an R-Squared value of 0.98. Amraei 
et al. (2017b) used support vector regression (SVR) to estimate the 
weight of life broiler chickens with an R-Squared value of 0.98. Also, 
Fontana et al. (2015) proposed a method to automatically measure the 
growth rate of broiler chickens by sound analysis (R2 = 0.98). 

Ammonia is a primary air pollutant in poultry farms, adversely 
affecting the ecosystem, environment, birds, and human health 
(Küçüktopcu & Cemek, 2021). Therefore, estimating NH3 concentration 
is essential for proper litter management and protecting environmental, 
human, and animal health (Debauche et al., 2020; Küçüktopcu & 
Cemek, 2021). Hence, Küçüktopcu and Cemek (2021) performed a 
performance comparison of four models (i.e., multilayer perceptron, 
integrated adaptive neuro-fuzzy inference systems with grid partitioning 
and subtractive clustering (ANFIS-GP and ANFIS-SC), and multiple 
linear regression analysis) to estimate ammonia concentration in 
poultry. They reported that ANFIS-SC was more accurate, with an R- 
Squared value of 0.86 on the validation set. 

Also, Lin et al. (2016) developed an ammonia monitor for a poultry 
farm and reported a relative error (RE) of the monitor averaged 7 %. 
Debauch et al. (2020) also developed a system to monitor and predict 
the air quality in poultry using GRU and reported improvements in both 
the training and prediction speeds. Other applications of regression- 
based models are for analyzing litter moisture content (Rico-Contreras 
et al., 2017), evaluating chicken gender ratio (Yao et al., 2020), and 
counting birds in poultry farms (Cao et al., 2021; Cheng et al., 2019; 
Geffen et al., 2020). 

3.4.6. Clustering 
This subsection presents a brief highlights of clustering techniques 

and their application in poultry welfare management. 
The clustering technique divides data into a group of similar objects 

that are different from objects of other groups (Ismail et al., 2016). The 
clustering technique is often one of the first steps in data mining analysis 
and therefore supports the development of population segmentation 
models (Zhang et al., 2018). Examples of clustering techniques include 
K-means, Gaussian mixture, K-Medoids, and Fuzzy C-Means. However, 
K-means application is more common in poultry welfare management 
(Carroll et al. (2014; Feiyang et al., 2016; Küçüktopcu & Cemek, 2021). 
The K-means technique aggregates similar objects concerning their 
characteristics based on a distance measure, i.e., Euclidean distance 
(Hastie et al., 2009). 

Application of clustering techniques in poultry health and welfare 
management include monitoring chicken floor distribution (Guo et al., 
2020), behavior monitoring (Feiyang et al., 2016), diagnosing diseases 
(Ismail et al., 2016), and optimizing the segmentation process (Zhuang 
et al., 2018). 

For instance, Carroll et al. (2014) used the k-means algorithm to 
cluster the vectors of MFCCs from chicken audio data into 60 clusters, to 
yield a single cluster index for each time slice when detecting that 
detecting chicken making rales sound. Feiyang et al. (2016) used the K- 
means method to classify poultry into sick, normal, and active to boost a 
classifier while analyzing chicken behavior characteristics, i.e., speed, 
ability to snatch food, and resting time. Thus, ensuring that chicken 
diseases are timely detected and the accurate growth states of chickens 
are immediately known. Clustering is a useful technique for discovering 
data distribution and patterns in the underlying data. Guo et al. (2021) 
developed a model to discover chicken distribution and compared a 
method integrating the GB (Green/Blue) color space and two- 
dimensional Otsu processing with K-means and Fuzzy C-Means 

techniques concerning the processing time and target extraction. The 
Fuzzy C-Means method was reported to extract individual broiler from 
original images with a reasonable visualization efficiency (e.g., clear
ness and completeness of chicken areas). Ismail et al. (2016) evaluated 
the rapid centroid estimation (RCE), a lightweight swarm clustering 
algorithm with k-means to cluster the Newcastle disease dataset, and 
reported that RCE shows better external clustering quality measures 
than K-means. 

Similarly, while estimating the ammonia concentration in poultry 
farms, Küçüktopcu and Cemek (2021) used a subtractive clustering 
technique to determine optimal input parameters for the regression 
model. Zhuang et al. (2018) also proposed a real-time poultry segmen
tation algorithm based on K-means clustering and the ellipse model for 
automated diagnoses of broilers’ health status. 

3.5. Sensor technologies in poultry welfare 

Recently, tremendous advances have been achieved in sensing 
technologies in terms of diversity, accuracy, and affordability. Sensors, if 
appropriately deployed, can provide a timely diagnosis of diseases in 
animals, eventually decreasing economic losses. Furthermore, the pri
mary environmental conditions to control in the poultry buildings are 
the hygro-thermal parameters (temperature and relative humidity) and 
contaminant gases, i.e., ammonium and carbon dioxide (Lahlouh et al., 
2020). Therefore, such devices are particularly useful for poultry health 
management (Carpentier et al., 2019). In this regard, a tool for data 
visualization, as shown in Fig. 7, was created to summarize the relevant 
and tested sensor-based applications and sensor types used in the studies 
reviewed. The innermost circle represents the unifying name for the 
devices, whereas the outer circle represents the sensor types, and the 
outermost circle represents specific sensors. 

Sensor types include environmental, acoustic, Kinect, thermal, 
camera, weight, and lighting. 

Environmental sensors are primarily used to monitor environmental 
conditions, i.e., temperature, humidity, and air quality, to provide the 
appropriate conditions suitable for the significant efficiency of animal 
production. Importantly, inadequate temperature, relative humidity, 
and the length of exposure have substantial impacts on broiler welfare, 
mortality, and performance (Debauche et al., 2020; Diez-Olivan et al., 
2019). Furthermore, exposure to elevated levels of noxious gases like 

Fig. 7. Sensor types used in poultry welfare management. DHT11, DHT22, 
SHT75, and HX71-VI sensors can all be used to monitor temperature 
and humidity. 
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carbon dioxide and ammonia can reduce weight, feed conversion, 
overall viability, and loss of profit in the poultry industry (Küçüktopcu & 
Cemek, 2021). Thus, efforts to monitor and control environmental 
conditions will directly impact bird welfare and permit the development 
of systems for precise control of the production environment. Several 
wireless-based sensors and use IoT tools to monitor environmental pa
rameters have been proposed as a promising tool in PLF (Debauche 
et al., 2020; Gunawan et al., 2019; Lahlouh et al., 2020; Lashari et al., 
2018; Lin et al., 2016; Lorencena et al., 2020; Mirzaee-Ghaleh et al., 
2015; Pereira et al., 2020; So-In et al., 2014). 

Examples of environmental sensors employed in the reviewed studies 
include DHT22 (Pereira et al., 2020; Raj & Jayanthi, 2018; So-In et al., 
2014), LM35 (Choukidar & Dawande, 2017; Lahlouh et al., 2020; 
Mirzaee-Ghaleh et al., 2015; Youssef et al., 2015), AD590 (Mirzaee- 
Ghaleh et al., 2015) for measuring temperature. Similarly, sensors used 
to measure relative humidity include HIH4030 (Lahlouh et al., 2020; 
Mirzaee-Ghaleh et al., 2015), DHT22 (Raj & Jayanthi, 2018; So-In et al., 
2014) SY-HS-220 (Choukidar & Dawande, 2017). Although, the 
following sensors DHT11, DHT22, SHT75, and HX71-VI, can all be used 
to monitor both the temperature and humidity. Also, sensors for 
measuring contaminant gases, i.e., CO, CO2 NH3 concentrations, include 
MQ7 (Debauche et al., 2020), MG811 (Lahlouh et al., 2020; Mirzaee- 
Ghaleh et al., 2015), and MQ137 sensors (Debauche et al., 2020; 
Mirzaee-Ghaleh et al., 2015; Pereira et al., 2020). In addition, Youssef 
et al. (2015) used the EE576 sensor to measure air ventilation. 

Acoustic sensors are used to measure the characteristics of sounds 
emitted by hens. Analysis of acoustic data can serve as a reliable stress 
indicator (Du et al., 2018), measure food intake (Aydin et al., 2015), and 
disease detection (Cuan et al., 2020; Huang et al., 2019). Avian influ
enza poses a potential health threat to both chickens and humans. 
Banakar et al. (2016) developed an avian influenza monitoring system to 
simulate the spread of highly pathogenic avian influenza viruses in 
chickens. Results showed the sensor’s capability to detect the virus 
accurately. In addition, other respiratory diseases can be timely detected 
using appropriate sound technologies (Carpentier et al., 2019). Raj and 
Jayanthi (2019) used an acoustic sensor, SEN-14262, for the real-time 
identification of infected hens. 

Infrared or thermal sensors (i.e., FLIR Lepton (FLIR Systems, Inc., 
Oregon, USA, Thermo GEAR-G120, Kinect cameras (Microsoft Corpo
ration)) are non-invasive welfare devices to assess the body’s superficial 
temperature distribution from the infrared radiation emitted by objects. 
For example, systems incorporating FLIR Lepton cameras have been 
proposed to measure broiler temperature (Bloch et al., 2020; Hernán
dez-Julio et al., 2020). In addition, the movement of layers across 
perches and other housing equipment is a risk factor for bone breakage, 
a typical condition of poor welfare. Thus, Kinect sensors were used to 
monitor and study different aspects of the movement of broilers and 
layers (Aydin, 2017; Feiyang et al., 2016; Pu et al., 2018). Also, Banerjee 
et al. (2012) used the MTS510 accelerometer (Crossbow Technology, 
Inc., San Jose, California), placed in laying hens to monitor their 
movement. Other sensors, i.e., FSR402 weight sensors (Interlink Elec
tronics, Camarillo, California), were used to assess the average broiler 
weight (Lahlouh et al., 2020), and Light Dependent Resistor (LDR) was 
used to monitor luminosity (Lahlouh et al., 2020). 

In summary, sensors can be implanted on chickens to measure body 
temperature (Bloch et al., 2020; Hernández-Julio et al., 2020); observe 
behavior and movement (Banerjee et al., 2012; Feiyang et al., 2016), 
and detect stress (Branco et al., 2020). Also, they are used for sound 
analysis (Carroll et al., 2014; Cuan et al., 2020; Du et al., 2018; Fontana 
et al., 2015; Huang et al., 2019) and disease prevention (Cuan et al., 
2020; Huang et al., 2019). In addition, they can detect the presence of 
viruses and pathogens (Golden et al., 2019), predict moistures in litters 
(Rico-Contreras et al., 2017), and regulate environmental parameters 
(Mirzaee-Ghaleh et al., 2015; Pereira et al., 2020). 

4. Key challenges in poultry welfare management 

Although there are several studies relating to poultry welfare man
agement, researchers have also improved the method of measuring the 
pen house atmospheric conditions, health, behavior, weight, and growth 
of chickens. However, there are still several issues to be addressed. The 
section describes the issues and challenges in poultry management, 
including the quality of raw data, the precision of image segmentation, 
and the reliability of prediction or classification.  

(i) New datasets to support further challenging tasks: - although 
researchers have collected several datasets recently for everyday 
welfare management tasks, there is a need for new large-scale 
datasets for more challenging tasks. These new tasks include 
responding to sudden disease outbreaks, handling new insects 
and vermin, efficient nutrient utilization, and optimizing feed for 
improved production. The increasing availability of large data 
sources and data sets, obtained through sensors will encourage 
more initiatives, projects and new ventures in the poultry health 
and welfare management.  

(ii) Raw data quality: - Challenges in ensuring raw data quality are 
related to physical actions affecting changes in postures, orien
tations, and the diversity of birds’ body dimension measurement. 
Besides, images could be poor due to dust bathing of hyperactive 
broilers when stretching out wings. Also, image dimension varies 
due to factors affecting chicken locations (i.e., below cameras, 
feather level, lighting, image threshold values, and the distance of 
chickens from cameras). Some researchers omitted the head and 
tail positions during the feature extraction phase to overcome this 
challenge (Mortensen et al., 2016). However, this strategy will 
lead to underestimating the broiler’s body weight and behavior 
compared to the actual. 

(iii) Deep learning and adversarial perturbations: -in another direc
tion, deep models are fragile to adversarial perturbation on inputs 
(Papernot et al., 2016). Those changes in data distribution can 
unpredictably trigger weak features. Thus, leading to a slight 
decline in performance and ultimately causing deep learning 
models to make wrong predictions with high confidence. For 
instance, imperceptible pixel differences in images can trick deep 
learning models. Such adversarial attacks are an important 
obstacle to the successful deployment of deep learning, especially 
in applications involving a proactive response to sudden poultry 
disease outbreaks. Though some early solutions have been pro
posed (i.e., distillation, feature aggregation, applying denoising 
autoencoders on data, using multi-scale networks,) a significant 
challenge is to develop effective defence mechanisms against 
these attacks.  

(iv) Interpretable of deep learning models: - While DL models have 
achieved promising performance in various challenging prob
lems, their limitation regarding interpretability (“ black-box” 
problem), which aims to explain their output, is a challenge. For 
example, why a model outperforms another model on one dataset 
but underperforms on other datasets? What exactly have DL 
models learned? What is a minimal architecture for achieving a 
definite accuracy on a given dataset? Although attention and self- 
attention mechanisms, widely used in many fields because of 
their ability to distinguish features, can provide some insight 
toward answering these questions, a detailed study of these 
models’ underlying behavior and dynamics is still lacking. 
Nevertheless, a thorough understanding of their theoretical as
pects can help develop enhanced models for various poultry 
health and welfare management analysis scenarios.  

(v) The conventional fuzzy-logic controllers deployed in studies such 
as those from Lahlouh et al. (2020) and Mirzaee-Ghaleh et al. 
(2015) are heavily reliant on the user’s knowledge of the system 
and complicated rules. Besides, conventional controllers (i.e., 
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proportional integral derivative (PID), fuzzy logic, predictive 
controller optimized by genetic algorithm, particle swarm opti
mization) deployed in studies such as those from Hernández-Julio 
et al. (2020), Kakhki et al. (2019), Küçüktopcu and Cemek 
(2021), Lahlouh et al. (2020) and Mirzaee-Ghaleh et al. (2015) 
suffer from the inability to learn in real-time. However, to over
come this shortcoming, recent technologies such as reinforce
ment learning (RL), a hotspot in artificial intelligence, and ML 
techniques can be deployed to design intelligent systems to 
optimize a policy for complex tasks.  

(vi) Robust and accurate processing techniques: - The next problem is 
image processing techniques, i.e., segmentation and feature 
extraction used in convectional ML techniques. These techniques 
are confronted with problems (i.e., noise, contrast issues) that 
affect classification models’ accuracy. In addition, the strong 
dependence on domain knowledge for designing features makes 
these methods difficult to generalize to new tasks. Finally, these 
models cannot take advantage of large amounts of training data 
because the features are pre-defined. However, for DL, the tasks 
of segmentation, feature extraction, and feature selection are 
eliminated using CNNs. Similarly, variational autoencoders, 
based on their ability to learn model parameters through the 
encoder-decoder path automatically, are commonly used to 
create compact data representations for efficient decision- 
making. As a result, DL techniques have achieved much success 
in animal monitoring systems. 

5. Proposed poultry welfare framework 

Having reviewed existing interventions by other researchers in 
poultry welfare management, a scalable, resilient, extensible, and 

secured framework is presented to support the precision livestock 
farming concept for smart poultry health and welfare in addressing some 
of the challenges in the existing systems. The critical components of the 
framework (Fig. 8) include the deep learning (DL) module, Digital Twin 
module, cloud edge computing (cloud-fog-based) module, communica
tion, security, and user-interface module.  

(i) DL module comprises robust deep learning techniques, i.e., CNN 
(for classification operations), RNN (for regression operations), 
GAN/AE (for data analysis and feature learning), and RDL (to 
control poultry KPI parameters through actuators). All DL mod
ules reside in the cloud to take advantage of storage and 
computation speed. CNN has proven to perform well on image 
and audio classification tasks on large datasets. The GAN and AE 
techniques combined will automatically learn signatures and 
dependencies in the poultry data (images and audios) and create 
compact data representations for efficient decision-making in an 
unsupervised manner. RDL is a transfer reinforcement learning 
agent trained to accomplish multiple tasks, generalize its 
knowledge and transfer it to new tasks. This agent regulates the 
controller by helping to take actions to control environmental 
parameters and the poultry house. 

(ii) The device module consists of all devices for performing detec
tion, monitoring, and controlling. They are controllers, actuators 
(i.e., heaters, fans, lightings, humidifiers, dehumidifiers), and 
sensors (i.e., humidity, temperature, cameras, microphones) for 
monitoring humidity, temperature, movement, gait, preening 
and sand bathing behaviors, water level, food level, and air 
quality.  

(iii) The communication module transmits data and signals in the 
network. The communication mode between components (Cloud, 

Fig. 8. Smart poultry health and welfare management framework.  
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blockchain, edge, sensors, and users) is wireless and mobile, as 
shown in Fig. 8.  

(iv) Cloud-Edge computing-The successful deployment of a smart 
poultry welfare solution depends on this technology. The cloud- 
fog-based module stores DL models, databases, and datasets 
due to better data management. The execution of DL models is 
carried out in fog computing nodes for increased network per
formance due to reduced latency.  

(v) Security module: - The recurrent news about security breaches, 
private data leaks, and inappropriate use of data has recently 
made the security of the IoT platforms necessary. Thus, the 
blockchain techniques will be deployed to secure the poultry 
welfare network platform due to the multitude of devices, sen
sors, and services involved in data collection and transmission.  

(vi) Digital-twins module will support real-time data processing and 
simulations of complex dynamic processes in poultry production 
with environmental and behavioral-based parameters (i.e., 
preening, chicken sound, temperature, humidity, ammonia) by 
advanced deep learning techniques. This module will facilitate 
better business decisions, improve poultry health and welfare- 
being, and maximize the return from agricultural resources. 

(vii) The user interface module allows users to interact with the sys
tem. Through this module, users can receive alarms, visualize 
data in real-time, perform prospective analysis, and validate ac
tions carried out by the RBL agent in controlling actuators. 

5.1. Implications for practitioners and academics 

The need for transparent, efficient, and sustainable poultry produc
tion systems is driving the digital transformation in poultry welfare both 
for ethical and economic reasons. The stakeholders, therefore, need to 
reassess their present position concerning the emerging technologies 
disrupting the agro-industry. Furthermore, with the increasing demand 
for poultry meat and eggs, and the incessant poultry disease outbreak, 
which has continued to be a threat and economic burden to the poultry 
industry, there is a need for a massive deployment of digital technologies 
to improve poultry disease management and productivity. The review 
reveals enormous benefits of IoT and ML to poultry welfare. Further
more, it suggests how contemporary AI and IoT techniques can be har
nessed to confront current challenges in poultry welfare to increase 
efficiency. 

Based on the discussions in this study, the following areas need 
further investigation from researchers. First, more studies on how AI and 
IoT algorithms can facilitate the optimal use and utilization of resources 
in poultry welfare are required. Similarly, studies on identifying the 
relationships between the various barriers to implementing AI-based IoT 
systems for commercial poultry farming are required. The identification 
of the driving and dependence barriers will help in expediting the AI- 
based IoT implementation. 

6. Conclusion 

In this article, a comprehensive and systematic review of the appli
cations of AI and IoT in poultry health and welfare management, espe
cially for poultry production, has been provided. Also presented were 
the latest applications of AI-enabled IoT using various representative 
studies highlighting processing techniques, data, hardware, and soft
ware parts used in poultry welfare systems. In addition, this study 
illustrated the significant divisions of IoT/AI interventions in poultry 
and presented a reliable, robust, and extendable framework for poultry 
welfare, specifically in realizing robust poultry disease outbreak pre
vention. This study contributes to knowledge by helping stakeholders 
understand and better harness advanced digital technologies and criti
cally analyse the limitations of poultry farms in recognizing the possible 
applications and patterns of technological advances in the domain. Also, 

information regarding technologies for poultry welfare management 
and optimization of its production process will help facilitate reaching a 
high quality, short process time, and low-cost production in poultry. 
Thus, the review will stimulate new lines of reasoning that will improve 
productivity and profitability in the poultry farming industry. 
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