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Abstract 29 

This paper comprises an updated version of the 2014 review which reported 1846 30 

volatile organic compounds (VOCs) identified from healthy humans. In total over 900 31 

additional VOCs have been reported since the 2014 review and the VOCs from Semen 32 

have been added. The numbers of VOCs found in breath and the other bodily fluids are: 33 

blood 379, breath 1488, faeces 443, milk  290 , saliva 549, semen 196, skin  623  and  34 

urine 444. Compounds were assigned CAS registry numbers and named according to a 35 

common convention where possible. The compounds have been included in a single table 36 

with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also 37 

been grouped into tables according to their chemical class or functionality to permit easy 38 

comparison.  39 

Careful use of the database is needed especially as a number of the identified VOCs only 40 

have level 2 - putative assignment and only a small fraction of the reported VOCs have 41 

been validated by standards.  Some clear differences are observed, for instance, a lack of 42 

esters in urine with a high number in faeces and breath. However, the lack of compounds 43 

from matrices such a semen and milk compared to the breath for example could be due 44 

to the techniques used or reflect the intensity of effort e.g. there are few publications on 45 

VOCs from milk and semen compared to a large number for breath. The large number of 46 

volatiles reported from skin is partly due to the methodologies used, e.g. by collecting 47 

skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and 48 

then heating to a high temperature to desorb VOCs.  49 

All compounds have been included as reported (unless there was a clear discrepancy 50 

between name and chemical structure), but there may be some mistaken assignations 51 

arising from the original publications, particularly for isomers. It is the authors' intention 52 

that this work will not only be a useful database of VOCs listed in the literature but will 53 

stimulate further study of VOCs from healthy individuals. For example although this work 54 

lists VOCs reported in the literature more work is required to confirm the identification 55 

of these VOCs adhering to the principles outlined in the metabolomics standards 56 

initiative. Establishing a list of volatiles emanating from healthy individuals and increased 57 

understanding of VOC metabolic pathways is an important step for differentiating 58 

between diseases using VOCs. 59 
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1. Introduction 64 

Until 2014 there had been no central compendium of volatile organic compounds (VOCs) 65 

reported from the human body, this was addressed with a review by de Lacy Costello et 66 

al [1]. This review thoroughly updates that compendium and encompasses VOCs from 67 

breath, saliva, blood, milk, skin secretions (sweat and follicle fluids), urine, faeces and is 68 

extended by the addition of VOCs from semen. In total 906 additional compounds are 69 

reported and this opens the question how many more VOCs are yet to be identified? This 70 

is very different from other in vivo biomolecules e.g. amino acids where it is likely there 71 

are no more amino acids to be found. Improving on the 2014 review we include the 72 

references that identify each VOC within the table. Therefore, it can now be observed if a 73 

particular compound is reported multiple times, which gives more credence to its 74 

presence. There is also greater range of sub-tables, based upon the chemical class of the 75 

identified VOCs 76 

Only 14 VOCs were found to be reported from all matrices with a further 28 VOCs being 77 

common to 7 of the 8 matrices, this is perhaps fewer than anticipated given the large 78 

number of total VOCs identified.  79 

The total number of compounds reported has risen since the 2014 review for several 80 

reasons. There has been a tendency for larger sample numbers and consequently larger 81 

numbers of controls highlighting differences between healthy individuals. There have 82 

also been further advances in high throughput devices, automation and pre-83 

concentration methods. This coupled with more sensitive instruments and larger mass 84 

spectral databases has further increased the number of “new” VOCs being identified. 85 

To prevent this review from becoming too large and unmanageable general comments 86 

will be made about the sources of some compounds, without going into significant detail. 87 

The purpose of this review remains to bring together all the reported VOCs from the 88 

healthy human body and provide the interested reader with references to the original 89 

studies. 90 

 91 

2. Compound naming and identification 92 

 93 

There is a huge variation in naming conventions used within the source publications. 94 

We have kept the compound names as they appear in the original references, so 95 

ethanoate and acetate etc. are both used. Frequently, this will be the name as it appears 96 



in the NIST spectral library, but this is not always the case and both common and 97 

systematic names appear in the tables. Where different nomenclature has been used 98 

between references, the alternatives have been listed. Sometimes structural and 99 

positional isomers are not specified in a particular paper, but they are still included as a 100 

separate entry, with a comment to this effect. Stereoisomers have generally been 101 

grouped together under a single entry, particularly as it is unclear how the specified 102 

stereoisomers were identified.  103 

Chemical nomenclature can be challenging to the non-chemist, hence the utility of using 104 

CAS numbers, which are intended to aid identification where different naming 105 

conventions are used in the original publications. CAS numbers are not infallible though 106 

e.g. the mixed (+/-) camphor has a different CAS number from (-) camphor, when they 107 

refer to almost identical compounds. 108 

To further aid comparisons subtables have been created based on chemical class. Where 109 

a compound contains two different functional groups, it will appear in both of the 110 

relevant subtables. 111 

Most of the VOCs reported here were identified using gas chromatography mass 112 

spectrometry (GC-MS), with library matching to aid tentative identification of the VOCs. 113 

In some earlier studies gas chromatography flame ionisation detection (GC-FID) was 114 

undertaken with standards, for measuring breath volatiles of ethanol, methanol [2], 115 

isoprene [3], and acetone. 116 

The identification of compounds by GC-MS is often a difficult task. The VOCs reported 117 

within this manuscript have often been assigned an identity by spectral library match 118 

only, which can sometimes be misleading, particularly for isomers, especially 119 

hydrocarbon isomers. More recent work though often incorporates the use of retention 120 

indices to increase confidence in the library identification. However, the use of standards 121 

to confirm identification remains the gold standard for validating the identity of VOC 122 

metabolites.  123 

Improved equipment, for instance two-dimensional gas chromatography combined with 124 

high resolution time of flight mass spectrometry (GCxGC-TOF-MS) is able to detect an 125 

impressive number of compounds compared to a standard quadrupole GC-MS. It brings 126 

in to question the likelihood of co-elution and the possibility of misidentification. Some 127 

compounds may not be in the NIST library or other libraries and this can be another 128 

reason for misidentification. Other compounds might be from artefacts, such as 129 



contamination, degradation/oxidation, which can result from collection, storage, sample 130 

treatment, or measurement. 131 

 132 

3. A comparison of the VOC compounds found in breath, saliva, blood, milk, 133 

skin secretions, urine, faeces and semen 134 

Table 1 describes 2746 VOCs which have been identified from the healthy human body. 135 

This compares to 1840 VOCs identified in a previous 2014 review (de Lacy Costello et al. 136 

2014). The numbers of VOCs found in each bodily fluid and breath are: blood 379 137 

(additional 225 compounds vs 2014), breath 1488 (additional 616 compounds vs 2014), 138 

faeces 443 (additional 61 compounds vs 2014), milk  290 (additional 34 compounds vs 139 

2014) , saliva 549 (additional 190 compounds vs 2014), semen 196 (not previously 140 

included in 2014), skin  623 (additional 91 compounds Vs 2014)  and  urine 444 141 

(additional 165 compounds vs 2014). Therefore, there have been increased numbers of 142 

VOCS reported for all the sources of VOCs included in the original 2014 review, with 143 

marked increases in breath, blood, saliva and urine. We should re-emphasise that these 144 

increases probably just reflect the recent research effort in these areas.  Likewise, the 145 

small number of compounds in semen is likely because, their source is just one 146 

publication. The data in Table 1 has been sub-categorised into 12 classes, which were 147 

then further sub-divided to help the observation of inter relationships between 148 

compounds. 149 

There must be transfer of VOCs throughout the body, from the original source(s) to the 150 

final bodily fluid destination. As to whether sufficient chemical transfer occurs for 151 

detection, or whether the VOC survives the journey, through the human body is the 152 

question. Almost certainly the gut microbiome is the source for many chemicals, and 153 

sometimes there is a change of chemistry on route from the gut to e.g. the bladder. 154 

Benzoic acid for instance (which naturally occurs in most berries) found in the gut, is 155 

derivatised in the liver and excreted as the less volatile hippuric acid 156 

(benzoylaminoethanoic acid), the liver can oxidise many compounds e.g. hydrocarbons. 157 

Furthermore, esters can be biosynthesised by fatty acid ethyl ester synthases in the liver 158 

and pancreas, [4] and there are esterases in the lung etc. 159 

Analysis of the 2014 review table showed there were only 12 compounds found in all the 160 

matrices. Three of these benzene, toluene and styrene [5] are common pollutants in the 161 

environment and are in cigarette smoke [6]. It should be mentioned that 25-40% of 162 



absorbed toluene is exhaled and the remaining  amount is metabolised and excreted, by 163 

oxidation to benzyl alcohol, which is then metabolised to benzaldehyde [7]. With the 164 

increase in numbers of compounds, for this  review (and the addition of semen), there 165 

are still only 14 chemicals in common: ethyl ethanoate, ethanol, 1-butanol, acetone, 2-166 

butanone, 2-pentanone, 2-heptanone, benzaldehyde, ethanal, hexanal, 3-methylbutanal, 167 

ethanoic acid, hexanoic acid and limonene. Ethyl ethanoate and ethanal are the two 168 

compounds that were not reported in the previous review. Limonene is likely to originate 169 

from the environment, it is a commonly used product in household materials, and is in 170 

food stuffs, e.g. potatoes. Benzaldehyde can originate from oxidation of toluene in the 171 

human body, toluene, is a common atmospheric pollutant. Ethanol may come from 172 

drinking alcohol; however, the gut is also capable of ethanol production, and given the 173 

significant amount of ethanoic acid in the gut, this can explain the origins of ethyl 174 

ethanoate. Hexanoic acid is likely to have its origins in the gut, although it’s not clear why 175 

this particular short-chain fatty acid (SCFA) is so prevalent. 2-Ketones are certainly found 176 

in the gut [8] e.g. 2-butanone was shown to be in all the faecal samples in one study [9]. 177 

Short chain aldehydes such as hexanal can arise from peroxidation of unsaturated fatty 178 

acids [10](potentially in many parts of the body including adipose tissue), and also from 179 

oxidation of the respective alcohol. 180 

 181 

4. Listing of all compounds, with CAS numbers, formulae and origins (Table 1) 182 

Table 1 is an exhaustive table containing every VOC found in the healthy human body to 183 

date, across all the different bodily samples (breath, blood, faeces, urine, milk, skin, saliva 184 

and semen). Compounds are listed in alphabetical order, and appear with their CAS 185 

number assigned by the original authors, where appropriate, and chemical formula. The 186 

table rows indicate which particular sample(s) each compound has been found in, and 187 

the paper(s) which identified each volatile in each fluid are also noted using reference 188 

numbers. 189 

While Table 1 lists all the compounds, Tables 2-12 describe VOCs according to their 190 

chemical classes, and they are further split into sub-tables where appropriate. Within the 191 

tables, the compounds are described in increasing carbon number. A brief discussion is 192 

given for the compounds included in these tables.  193 

 194 

4.1. Nitrogen containing VOCs found in the human body (Table 2a-2c) 195 



There are significantly more nitrogen compounds here than in the 2014 review, these 196 

compounds have been split into three sub tables: nitrogen-containing (non-heterocyclics, 197 

Table 2a), nitrogen-heterocycles (Table 2b) and nitrogen and sulfur containing 198 

compounds Table 2c). These 3 sub tables were then further divided into subgroups as 199 

follows: 200 

Nitrogen-containing (non-heterocyclics): sundry nitrogen compounds (ammonia, nitric 201 

oxide, hydroxylamine, nitric acid), aliphatic monoamine (non-cyclic nitrogen), aliphatic 202 

di-, tri, or tetra-amines (non-cyclic nitrogen), anilines, amino acids, amines with 203 

carboxylic or sulfonic acids, amines plus other functional groups, hydrazines, azides, azo, 204 

nitriles, isonitriles, imines, isocyanates, amides, amide with other functional group, 205 

carbamates & carboxamide, ureas, carbamimidate, hydroxylamines, nitroso, oximes and 206 

amine oxides. 207 

Nitrogen-heterocycles: azirine/ aziridine [C2N ring] azete / azetidine [C3N ring],  208 

pyrrolidines, pyrroline/dihydropyrroles [C4N ring, pyrrole [C4N ring], pyrazoles and 209 

imadazoles and other diazoles [C3N2 ring], pyrazoles and imadazoles and other diazoles 210 

[C3N2 ring], triazoles [C2N3 rings], tetraazoles [C1N4 rings ], piperidines [C5N ring], 211 

pyridines [C5N ring], piperazines [C4N2 ring], diazines (pyrazines and pyrimidenes) [C4N2 212 

rings aromatic], indoles, quinolene and hydroquinolines, other multicyclic CN 213 

heterocyclics, cyclic amide / lactam, oxazoles, (& oxaline, oxazolidine, isoxazole, 214 

isoxazline, isoxazolidine) [C3NO], other CNO heterocyclics. 215 

Nitrogen and sulfur containing compounds: At least 8 compound groupings containing 216 

both sulfur and nitrogen in the functional group were split into thiocyanate and 217 

isothiocyanate, thiazole [C3NS ring], benzothiazoles, thiazolidines [C3NS ring], thioamide, 218 

thiocarbamate & thiourea and others. 219 

Nitrogen-containing (non-heterocyclic) compounds like ammonia, the simplest amine is 220 

well known to be linked to breath particularly with high protein intake. Nitric oxide has 221 

been found in breath and blood. Human paranasal sinuses and diet can affect production 222 

[11]. Hydroxylamine can be synthesised by oxidation of ammonia enzymatically e.g. by 223 

ammonia monooxygenase [12]. Interestingly nitric acid has now been reported in breath, 224 

it might be considered curious that this strong mineral acid, along with hydrochloric and 225 

sulphuric acids can be made by the human body. It is likely that the nitric acid could arise 226 

from inhalation of nitrogen dioxide atmospheric pollution, or the oxidation of nitric oxide 227 

which can lead to nitric acid synthesis. 228 



The largest molecular weight (MW) nitrogen VOC compound detected so far is N, N-229 

dimethyl-1-octadecanamine/ N, N-dimethyl-1-octadecylamine (20 carbons). 230 

Many amino acids, particularly in breath have now been reported, e.g. glycine, proline, 231 

ornithine, arginine, leucine and valine. 232 

Seven hydrazine based compounds have been reported. Hydrazine is a known rocket fuel, 233 

however there are rare pointers in the literature for hydrazine synthase enzymes, 234 

suggesting conversion from ammonia to hydrazine by bacteria can happen [13]. There 235 

are 39 nitrile (cyanide) compounds, the origin of these for instance, alkyl nitrile 236 

compounds could arise from diet by ingesting cyanogenic glycosides albeit in small 237 

quantities [14]. It has been stated that certain bacteria can make hydrogen cyanide, again 238 

confirming that bacteria may be a biosynthetic route.  239 

There are a range of primary, secondary and tertiary amines, presumably at some stage 240 

they have been synthesised by alkylation of ammonia, it is  beyond the scope of this 241 

review to attempt to assess the origins of so many diverse compounds. 242 

There are rarely 3 and 4 membered ring cyclic nitrogen compounds, in contrast to the 21 243 

pyrrole (5-membered) and 18 pyrazines (6-membered di-nitrogen compounds and 244 

pyridine), many of which are alkylated. Volatile pyrazines and pyridines can contribute 245 

to food flavours [15] and diet is therefore a potential source. 246 

There are 37 nitrogen sulfur compounds, mainly found in breath. Many are thiocyanates 247 

being the hydrolysis products of glucosinolates, secondary metabolites characteristic for  248 

the family Brassicaceae e.g. broccoli. For instance,  allyl isothiocyanate is responsible for 249 

a significant smell of cooked cauliflower. Moreover,  methyl thiocyanate, butyl 250 

isothiocyanate, 2-methylbutyl isothiocyanate and other sulphides have been found 251 

in Brassica vegetables [16,17].   252 

 253 

4.2. Sulfur containing VOCs found in the human body (Table 3) 254 

There were 113 sulfur compounds reported (Table 3), further divided  into 13 sub 255 

sections: elemental sulfur, thiols, sulphides, sulfoxides, sulfonic acid esters, sulfate esters, 256 

thioesters, thietane[C3S], thiophene, thiolane [C4S], thiane [C5S], dithiane [C4S2], oxathole 257 

[C3OS] and oxadithiane [C3OS2].  258 

For thiocyanates, thiocarbamates, thioureas, sulfonamides and amino thio acids see 259 

Nitrogen Table 2c, also for sulfur containing heterocyclics possessing nitrogen atoms. 260 



Many of these compounds probably arise from food and metabolic changes occurring in 261 

the body, such as de novo synthesis of glutathione and antioxidative processes in the liver. 262 

 263 

4.3. Alcohol containing VOCs found in the human body (Table 4) 264 

The alcohol compounds were divided into 12 sub-groups: straight chain alcohols, 265 

branched alcohols, unsaturated alcohols, cycloalkyl alkanols, phenyl alkanols, 266 

cyclohexanols, other cycloalkanols, multi-cyclic alkanols, diols, triols, pentols and 267 

phenols. 268 

The straight chain primary alcohols were present as a homologous series (present with 269 

some gaps). From methanol to 1-eicosanol (20 carbons), there were only 2 gaps, 1-270 

heptadecanol and 1-nonadecanol, comparing all the bodily fluids and breath. It is likely 271 

that many of the gaps would be filled by undertaking future studies,  for instance 1-272 

heptanol and 1-octanol has not yet been found in breath, but they have been identified in 273 

other bodily fluids such as faeces.  274 

Certainly, alcohols can be made in the gut e.g. via the reduction of the respective acid [9], 275 

or by carbohydrate fermentation or fermentation of nitrogenous compounds [18]. 276 

Moreover, the liver is capable of alcohol synthesis. 277 

Alcohols, from methanol to octanol were derived by oxidation of unsaturated fatty acids, 278 

CH3(CH2)nOH from n=0-7 except for propanol (n=2) omitted in the homologous series 279 

[10]. This is a likely source of saturated alcohols in all bodily fluids and breath.  280 

 281 

4.4. Acid containing VOCs found in the human body (Table 5) 282 

The acids (175 compounds) were divided into  8 sub-groups: aliphatic acids-saturated 283 

straight chain, aliphatic acids-branched /cyclic, aliphatic acids-unsaturated, aromatic 284 

acids, aliphatic dioc/trioic, acids which also contain an alcohol group, hydroxybenzoic 285 

acids, acids containing an aldehyde or ketone group and, acids contacting another 286 

unspecified group. Amino acids are given in the nitrogen compound table. Phenols, 287 

although very weak acids, have not been included in this group and are tabulated with 288 

alcohols.  289 

Of the straight chain carboxylic acids, all the acids from methanoic acid to docosanoic acid 290 

have now been detected in one or more of the fluids and breath from the human body. 291 

The complete homologous series of acids from ethanoic to docosanoic acid have been 292 

found in saliva, apart from decanoic and undecanoic acid and from methanoic to 293 



docosanoic acid in skin secretions, apart from pentanoic acid. The highest MW acid, 294 

docosanoic acid possesses 22 carbons. In all the studies, there is a threshold of around 295 

16-22 carbon length for the VOCs reported. As to whether there are real biochemical 296 

reasons or it is a limitation of the analytical method, is an open question 297 

As a general comment, SCFAs from methanoic to hexanoic acids have been reported as 298 

the most abundant and significant end products of fermentation in the gut. The ratio of 299 

compounds found may be dependent on individuals, which have different 300 

gastrointestinal transit times (GITT). For instance, a long GITT can have a significant 301 

effect on bacteria metabolism, more protein is broken down into amino acids which are 302 

in turn broken down into small fatty acids.  Branched SCFAs arise from breakdown of 303 

branched amino acids, as opposed to straight chain SCFAs which can arise from 304 

carbohydrate metabolism (as well as other routes) [19]. A study has also shown that 305 

blood in faeces will also affect the ratio of short chain fatty acids due to the breakdown of 306 

haemoglobin [20]. Also, carbohydrate availability can affect acid type production in the 307 

gut and therefore VOCs in the faeces. Carbon limited fermentation produces more formic 308 

acid [21]. Acetic acid the main SCFA produced in the gut is readily absorbed through the 309 

colon wall and is transferred to the liver, where it is used to e.g. synthesise cholesterol 310 

[22]. It does not appear to have been detected in blood, although it must be present. Other 311 

SCFAs are rapidly absorbed into the blood stream, it is considered that only 5-10 % are 312 

excreted [22]. It must be noted that butanoic acid and to a lesser extent other SCFAs are 313 

used as an important energy source by the gut wall and the amount of these acids 314 

reaching the blood stream maybe low. 315 

Acids can also be biosynthesised in the human body from aldehydes. Aldehyde oxidase 316 

(AO) is very concentrated in the liver, where it oxidizes multiple aldehydes [23]. AO 317 

activity has been indicated as occurring in the epithelial and alveolar cells of the lungs. 318 

There have also been indications of AO activity occurring in the kidneys and 319 

gastrointestinal tract (both small and large intestine). It should be pointed out that 320 

catalysts are not essential, air oxidation can oxidise aliphatic aldehydes into carboxylic 321 

acids [24]. A recent report, showed significant, almost 9-fold difference in nonanoic acid 322 

abundance  between a lung cancer group and control group [25]. Its origins may be due 323 

to oxidative stress due to oxidation of unsaturated aldehydes [10].  324 

Of the 32 branched acids found in total, more were found in skin secretions [18]. A 325 

commonly found acid in faeces, urine, breath, and skin secretions was 2-ethylhexanoic 326 



acid, a common contaminant derived from plasticisers e.g. plastic tubing, containers for 327 

bodily fluids etc. 328 

More unsaturated fatty acids were found in skin than other bodily fluids and breath. The 329 

largest chain size was for docosahexaenoic acid (20 carbons), found in breath. Oxidation 330 

of unsaturated fatty acids can produce smaller chain unsaturated fatty acids, a list of 331 

predicted mono alkene acids expected to be enhanced by oxidative stress is reported in 332 

a recent review. The origin of compounds such as 9-decenoic and 10-undecenoic acids 333 

(which have been reported from skin) can be satisfactorily explained by such a route [10]. 334 

The number of very long chain fatty acids (C-20 plus) found will undoubtedly increase in 335 

the future with increased sensitivity of analytical methods. They are present in the human 336 

body and have been linked to Refsum’s disease and maybe adrenoleukodystrophy. 337 

Nervonic acid (C-24) is found in brain tissues, and higher amounts have been correlated 338 

to schizophrenia. A note of caution however, as identifying long chain fatty acids 339 

accurately can be problematic due their susceptibility to breakdown (particularly in the 340 

heat of a GC inlet port). Thus, derivatization or alternate analytical methods might be 341 

required for absolute compound identification.  342 

 343 

4.5. Ether containing VOCs found in the human body (Table 6a and 6b) 344 

The ethers were split into two sub-tables: non-cyclic ethers (Table 6a) and cyclic ethers 345 

(6b).  346 

The non-cyclic ethers were further divided into five sub-classes  as follows: (for ethers 347 

that contain additional non-hydrocarbon or hydroxyl functional groups see the specific 348 

table for that functional group), mono- (34) di- (11), tri- (2) and tetra-ethers (1), non-349 

cyclic hydroxy ethers (27) and peroxides (2).  350 

The cyclic ethers were divided into oxiranes (16), furans (21), benzofurans (3), 351 

hydrofurans (13), hydrobenzofurans (1), furanones (see listing under lactones in ester 352 

table), furans with other functional groups (22), dioxolanes [C3O2] (8), dioxolane with 353 

other functional groups (1), pyrans, hydropyrans (4), benzopyrans with other functional 354 

groups (for pyranones, see the ester table) (10), dioxanes (1), oxepines and oxepanes (4), 355 

cyclooxaoctane/enes (11), crown ethers (1) and  multicyclic cyclic ethers (13). 356 

Some ethers are used in cosmetics (212), and some food additives (16). Peroxidation of 357 

certain polyunsaturated fatty acids, enhanced with oxidative stress, can lead to furan 358 

generation [10]. However the confirmation of the ether origins requires more studies. 359 



 360 

4.6. Aldehyde containing VOCs found in the human body (Table 7)  361 

The total number of volatile aldehydes found in all bodily fluids and breath was 159, 362 

(Table 7), an increase of 56 compounds since 2014 [1]. Aldehydes were further divided 363 

into: aliphatic (16), branched aliphatics (13), 2-unsaturated (23), other unsaturated 364 

linear compounds (17), unsaturated branched (16), aliphatic cyclic (7), benzaldehyde, 365 

phenylalkyl aldehydes (23), aliphatic dialdehydes (2), hydroxyl aldehydes (22), ketone 366 

aldehydes (2), ether aldehydes (7), carboxylic acid aldehydes (9) and aldehydes with 367 

other various functional groups (7).  368 

A complete homologous series of aliphatic aldehydes was observed, particularly for 369 

faeces, from methanal to octadecanal, with the omission of heptadecanal. Perhaps future 370 

work will report heptadecanal, or there is no biochemical route to this compound. A 371 

recent review of products of oxidative stress (oxidation of unsaturated fatty acids) 372 

summarises the origins of straight chain aldehydes from ethanal to decanal, CH3(CH2 373 

)nCHO from n=0-8, although there are other potential origins [10].  374 

Of the branched aliphatic aldehydes, five 2-methyl aldehydes were reported, from 2-375 

methylpropanal to 2-methylpentanal, then a gap until 2-methylundecanal and then 2-376 

methylhexadecanal.   377 

A complete homologous series of 2-unsaturated aldehydes was found between 2-378 

propenal and 2-hexadecenal, from one or more of the bodily fluids. This is in contrast to 379 

the 2014 review, where the series only reached 2-decenal [1]. As is the case for some of 380 

the other chemical classes, more recent papers have filled in some of the previous gaps 381 

identified in the homologous series. For example, recently, 2-dodecenal has been 382 

reported in breath condensate [26].  383 

The reported aldehydes have a cut off in molecular size around 16-18 carbons: 384 

octadecanal (18 carbons), 2-methylhexadecanal (17carbons), 2-hexadecenal (16 385 

carbons), 4-hydroxy-2,6- hexadecadienal (16 carbons) and 4-hydroxy-2-hexadecenal (16 386 

carbons). There are two main reasons for a lack of detection of aldehydes with higher 387 

carbon numbers namely a lack of biochemical routes, or the low vapour pressure of these 388 

compounds. 389 

Lipid oxidation of monounsaturated and polyunsaturated fatty acids are known to 390 

produce 2-alkenals, as well as dienals, such as 2,4-heptadienal, which has been found e.g. 391 



in milk [27]. It has been reported that 23 different aldehydes in milk can be produced by 392 

oxidative degradation of oleic, linoleic and linolenic acids [27]. 393 

With regard to branched chain saturated aldehydes, a 2020 study of Ratcliffe, et al [10] 394 

predicted six compounds originating from the oxidation of unsaturated fatty acids: 3-395 

methylbutanal, 3-methylpentanal, 4-methylhexanal, 4-methylpentanal, 5-396 

methylheptanal and 5-methylhexanal, but none were reported in the 2014 review [1]. 397 

However, 3-methylbutanal and 3-methylpentanal, have now been reported in the current 398 

manuscript. It does suggest that other hypothesised compounds will be found in future 399 

studies [10] and does highlight the importance of identifying plausible metabolic routes.  400 

for VOCs. It should be observed that 5-methylheptanal is not in the NIST library, so its 401 

identification is currently unlikely. This does highlight a potential issue with the 402 

identification of compounds which heavily relies on putative identification via current 403 

mass spectral library entries. Modern mass spectral libraries contain many thousands of 404 

compounds and are constantly updated but still contain only a fraction of the possible 405 

organic molecules which could be potential metabolites.   406 

For mono-unsaturated hydroxyl aldehydes, a homologous series of nine 4 hydroxy-2-407 

enals have been detected, whereas conversely in 2014 none had been reported. The 408 

lowest MW compound is 4-hydroxy-2-hexenal, then the 4-hydroxy-2-heptenal is 409 

“missing”, with the last compound being 4-hydroxy-2-hexadecenal. This again provides a 410 

potential target for future analytical studies as do all the “gaps” in the homologous series 411 

within these tables. Alternatively it might highlight the need for better mechanistic 412 

metabolic studies to understand why certain VOCs may be missing.  4-hydroxynonenal in 413 

particular has been extensively reported in association with oxidative stress and lipid 414 

oxidative breakdown, especially from n-6 PUFAs, mainly arachidonic and linoleic acids 415 

[26,28]. To further add to the series, 4-hydroxy-2-pentenal has been found in smoker’s 416 

breath using secondary electrospray ionisation- mass spectrometry (SESI-MS) [29].  417 

The origins of a series of volatile hydroxyl, alkene aldehydes have been listed [10]. 418 

A whole series of nine 4 hydroxy-2,6-dienals has now been shown starting from 4-419 

hydroxy-2,6-octadienal to 4-hydroxy-2,6- hexadecadienal.  420 

With regard to aldehyde oxo-acids, a series of 6-oxohexanoic acid, 7-oxo-heptanoic acid, 421 

8-oxooctanoic acid, 9-oxononanoic acid, 10-oxocaproic acid / 10-oxodecanoic acid, 11-422 

oxoundecanoic acid and 12-oxododecanoic acid have been reported herein, four of which 423 

have been linked to smoking [29]. 424 



As a general comment, aldehydes are capable of oxidation to acids, by oxygen, even 425 

without the mediation of a catalyst and these aldehydes could contribute to an increase 426 

of concentration of carboxylic acids, and a concomitant decrease in aldehyde 427 

concentration. 428 

 429 

4.7. Hydrocarbon containing VOCs found in the human body (Table 8a- 8e) 430 

The hydrocarbons were split into five major classes: cyclic hydrocarbons (Table 8a), 431 

aromatic compounds (Table 8b), branched chain alkanes (Table 8c), alkenes (Table 8d), 432 

and n-alkanes (Table 8e).  433 

The alkenes were split into mono alkenes and non- cyclic, branched alkenes, dienes, tri-434 

enes, tetra-enes, penta-enes and hexa-enes and alkynes.  435 

The cyclic hydrocarbons were split into cyclopropanes, cyclobutane and cyclobutenes, 436 

cyclopentane, cyclopentenes, cyclopentadienes, cyclohexanes and cyclohexenes, 437 

cyclohexadienes, cyclo- heptane/ heptane/ heptadiene/ heptatriene, cyclo-octane/ 438 

octadienes/ octateraenes, cyclic C10, C11, C12, C14, C16, hydronaphthalenes, 439 

hydroazulenes, other bicyclo, and other tricycle compounds. 440 

The aromatic compounds were split into several sections: benzyl, phenyl, biphenyl, 441 

indane/indene, 1,2,3,4-tetrahydronaphthalenes/ dihydronaphthalenes, 1,2,3,4-442 

tetrahydronaphthalenes, naphthalenes, azulenes, anthracene, and  acenaphthalenes. 443 

There is an impressive complete homologous series from methane to tetratriacontane 444 

(34 carbons) when taking into account all the bodily fluids and breath. Breath contains 445 

the majority of these compounds with the exception of docosane, tricosane, pentacosane, 446 

hexacosane and nonacosane.  447 

Alkanes, from methane to octane (at least) can be considered to arise from oxidation of 448 

unsaturated fatty acids [10]. It is interesting that many researchers consider that the 449 

source of methane in breath is from the gut as 1 in 3 subjects possess gut methanogens 450 

[30]. However, lipid oxidation is clearly another potential source. The authors are 451 

unaware of any studies undertaken to assess methane lipid origins, in breath, although 452 

methane, ethane, propane, butane and pentane have been well described as autoxidation 453 

products e.g. from linoleic acid [31]. Straight chain aliphatic hydrocarbons have been 454 

considered as non-invasive markers of free-radical induced lipid peroxidation in liver 455 

damage, especially breath ethane and pentane, which appear to be better correlated with 456 

alcohol induced hepatic injury than to other aetiologies [25].  457 



There were more hydrocarbons reported than any other class of VOCs, 853 in total. The 458 

origins have not been extensively considered. As a general consideration, GC-MS spectra 459 

of diesel and to a lesser extent petrol, shows the huge numbers of potential compounds 460 

present. It is possible that we are observing the human volatilome being significantly 461 

affected by the industrial world we live in (the exposome).  462 

The human body in combination with its bacterial hosts are likely to be capable of 463 

biotransformations of hydrocarbons to a lesser or greater extent thus producing more 464 

VOCs to potentially confuse VOC biomarker discovery. There are also naturally occurring 465 

hydrocarbons in food which add to the impressive list here. 466 

Alkenes, from ethene, and propene to decene in a homologous series and their 2-isomers, 467 

2-pentene, 2-hexene, and 2-octene would be expected to occur by oxidation of 468 

unsaturated fatty acids [10]. As examples in the literature, ethene has been shown in the 469 

volatilome of humans and can be formulated from oxidation of omega-3 acids e.g. 470 

linolenic acid, by disproportion of ethyl radicals [32] and 1-pentene has been reported to 471 

be  generated by decomposition of omega-6 unsaturated fatty acid hydroperoxides e.g. 472 

from linoleic and arachidonic acid [33].  473 

 474 

4.8. Ester-containing VOCs found in the human body (Table 9) 475 

In total 305 esters have been reported. The esters were arranged into sub groups: 476 

methanoates, ethanoates, propanoates, butanoates and pentanoates, 2-477 

methylbutanoates, 3-methylbutanoates, hexanoates, heptanoates, hexanoates, nonoates, 478 

decanoates, undecanoates, dodecanoates, tridecanoates, tetradecanoates, 479 

pentadecanoates, hexadecanoate/heptadecanoate/octadecanoate / docosanoates and 480 

tetracosanoates, ene-oates, other-oates, cyclic HC oates and benzoates, salicylates (inc. 481 

substituted benzoic acid esters), hydroxy acid esters (except hydroxybenzoic), other 482 

mono esters, lactones, delta, pyranones (benzopyranone and dioxanedione), others / 483 

uncertain cyclic esters, diesters and  triesters (phthalates listed separately) and finally  484 

phthalates, carbonates and anhydrides. 485 

Acetate (ethanoate) esters were by far the most abundant esters. This is probably 486 

reflected by the fact that acetic acid is the most common gut acid.  Acetates found in 487 

breath were the major contributor to the overall total. There were many esters reported 488 

in breath which were not present in other bodily fluids. Therefore, it is not easy to say 489 

that breath ester VOCs arose from other bodily fluids.  490 



Esters are represented from the whole homologous series from methanoate to 491 

octadecanoate, when all the bodily fluids and breath are considered. Then there is a big 492 

gap in the series to tetracosanoic acid, methyl ester. The largest ester reported, is behenyl 493 

behenate (44 carbons), which is likely to originate from its uses in cosmetics. 494 

Bacteria present in faeces have been shown to be capable of ester synthesis [34], and it is 495 

very likely that the reaction of alcohols with the respective acid produces many esters in 496 

the gut which can then enter the blood stream and circulate throughout the body. 497 

Unfortunately for this theory, very few esters have been found in blood, but this is most 498 

likely due to the paucity of studies undertaken on VOCs in blood. There are also a variety 499 

of esters found in breath which are not found in the gut, this again could be because these 500 

esters have not yet been detected in faeces due to analytical imitations or a relative lack 501 

of studies. However, it could be that lung based esterases aid ester synthesis and explain 502 

in part why more esters have been identified in breath. 503 

The phthalates (phthalate esters) are exclusively endogenous and probably arose from 504 

plasticiser exposure, and subsequent metabolism. There is a whole range of long chain 505 

fatty acid esters and aromatic esters found in skin, which are mainly missing from other 506 

bodily fluids and breath. This could be due to the analytical methodologies used. 507 

If one considers that all the acids and alcohols reported here can undergo esterification 508 

it is possible to rationalise the origins of many of the esters described here. One of many 509 

interesting observations, is the lack of esters in urine, apart from lactones. Esters have 510 

low solubility in water which could explain the lack of esters in urine.  511 

 512 

4.9. Ketone containing VOCs found in the human body (Table 10a, 10b) 513 

The ketone table (Table 10a) was divided into a range of sub groups: aliphatic, straight 514 

chain ketones, straight chain alkene ketones, aliphatic diones, branched aliphatic ketones, 515 

alkyl phenyl ketones, alkyl cyclohexyl ketones, other aliphatic and aromatic ketones, 516 

hydroxy ketones, phenol ketones, acid ketones, and ketones with other functional groups. 517 

Table 10b presents cycloketones. 518 

A homologous series of 2-ketones from acetone (propan-2-one) to 2-nonadecyl ketone 519 

(19 carbons) was reported herein. In contrast, the 2014 review described a homologous 520 

series which went from acetone to nona-2-one [1].  521 

Acetone was found to be one of the most reported volatiles from the human body and is 522 

well known to be produced by fatty acid breakdown whereas 2-butanone derives from 523 



carbohydrate metabolism. Methyl ketones are produced by many species of bacteria and 524 

can also be produced by fungi.  525 

The carbonyl group in ketones was found in different positions, in 2, 3, 4, 6 and 8. This is 526 

quite selective when compared with the options available. Substitution in the 2 position 527 

was by far the most common class of ketone. 528 

 529 

4.10. Halogenated containing VOCs found in the human body (Table 11) 530 

All the halogenated compounds were separated into 6 sub-sections: fluorinated 531 

compounds (16), chlorinated compounds (35), alkenyl & benzyl chloro-compounds (19), 532 

bromo-compounds (8), iodinated compounds (6), mixed halogen and halogen plus other 533 

hetero compounds (17), chlorinated biphenyls and chlorinated and brominated phenol 534 

compounds (43). 535 

Most of the fluorinated compounds were discovered in breath. Sevoflurane was listed: 536 

this is a sweet-smelling, non-flammable, highly-fluorinated methyl isopropyl ether is 537 

used as an inhalational anaesthetic, and its occurrence in breath of  healthy humans is 538 

presumably because of the clinical environment where the breath was collected. 1,1,2-539 

trichloro-1,2,2-trifluoroethane / Freon 113 is used as an electrical cleaning agent and is 540 

likely to have come from the environment.  541 

With regard to chlorinated compounds, some are solvents. Vinyl chloride originates from 542 

PVC and some can arise from chlorinating water. 543 

Dibromomethane occurs naturally in small amounts in the ocean where it is formed, most 544 

likely by algae and kelp. This and similar brominated compounds can enter the food chain 545 

and hence reach humans via the diet. It may also still be used for the fumigation of stored 546 

grains, fruits, and vegetables [35]. 547 

Volatile iodine compounds, such as methyl iodide, ethyl iodide, chloroiodomethane, 548 

diiodomethane (CH2I2) and bromoiodomethane are widely detected over oceans, where 549 

the biogenic activity of phytoplankton and macroalgae are likely to be an important 550 

source of these VOCs. Presumably, these types of compounds can also enter the human 551 

food chain [36].  552 

Many chlorinated fluorinated compounds (CFCs) have been used, especially in the past 553 

as refrigerants, propellants in aerosols and solvents. As these are being phased out in 554 

consumer products, they and their degradation products must be originating from the 555 



environment. Dibromochloromethane and bromodichloromethane also have 556 

environmental origins [37].  557 

A large number of chlorinated biphenyls and chlorinated and brominated phenol 558 

compounds were found such as 4-hydroxy-2,2',3,4',5'-pentachlorobiphenyl which was 559 

found in blood and no other bodily fluid.  560 

 561 

4.11. VOCs found in the human body not categorised previously (Table 12 ) 562 

Table 12 shows compounds not categorised in Tables 2 to 11, encompassing carbon 563 

dioxide, carbon monoxide, hydrogen, hydrogen peroxide dimethylselenide and 564 

tetramethyl-germane all reported in breath. 565 

 566 

5. DISCUSSION 567 

Discussion of the VOCs reported in breath, saliva, blood, milk, skin secretions (sweat and 568 

follicle fluids), urine, faeces and semen. 569 

 570 

5.1. Volatile organic compounds in breath 571 

Exhaled breath contains many different volatile compounds.  It has been stated 572 

previously that a total of more than 1000 VOCs can be observed, even though they are not 573 

present in each person studied [38].  Our literature search revealed 1488 named volatile 574 

compounds as being related to exhaled breath. More than half of the screened papers 575 

used gas chromatography mass spectrometry (GC-MS) to quantify VOCs in breath, 576 

confirming this instrument as the gold standard technique for the analysis of this 577 

biological matrix. In most of the papers, GC-MS is typically used in combination with 578 

thermal desorption (TD) sorbent tubes to collect and analyse breath.  579 

The most used direct sampling techniques are proton transfer reaction mass 580 

spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) used in 581 

25 % of the screened papers. The absence of chromatographic separation in direct 582 

sampling techniques however can only tentatively identify the VOC molecular structure, 583 

and generally those assignments are confirmed with GC-MS [39] or in the case of breath 584 

condensate, with UPLC-MS [40–43].  585 

However, in the last five years, a new direct sampling technology, named secondary 586 

electrospray ionization (SESI) has been increasingly applied in breath research and is 587 

opening new avenues in the field. Since it is based on electrospray ionization of the VOCs, 588 



it is able to ionise previously difficult to detect compounds, by covering higher molecular 589 

weight, less volatile and more polar species which are not easily analysed with GC 590 

approaches [29,41,42,44–47]. While it lacks chromatographic separation and often forms 591 

ion adducts (e.g. M+Na+) due to the electrospray ionization, the use of high resolution 592 

mass spectrometers with multi-stage (MSn) capabilities partially counterbalances the 593 

aforementioned limitations [48]. 594 

Many of the volatile compounds related to exhaled breath are not endogenously 595 

produced, and some compounds appeared only in a few individuals. The list reported in 596 

our table of VOCs is considered as a list for discussion, and we do not consider it 597 

comprehensive.  598 

Water, oxygen, nitrogen, argon and other rare gases are not listed in this table. For many 599 

of these compounds it is unknown if they are produced endogenously. Among the 600 

compounds which are listed as appearing in exhaled breath (Table 1), many are related 601 

to smoking e.g. 29 dienes, 27 alkenes and 3 alkynes are mentioned as smoking-related 602 

[1]. If you smoke it has been stated that your breath contains 2,5-dimethylfuran. A team 603 

of Catalan researchers have proved that the presence of this chemical compound 604 

indicates that a person has smoked in the last three days and they state that this 605 

substance does not appear in the breath of non-smokers, unless they have been in direct 606 

contact with tobacco smoke for a long time [49].  607 

More recent work of exhaled breath from healthy volunteers, divided into three groups 608 

(non-smokers, ex-smokers and smokers) showed that nonanal concentration was 609 

dependent on smoking, but was independent of the amount of tobacco consumed, age 610 

and gender [50]. A targeted analyses studying  healthy smokers showed that acetonitrile 611 

is readily detected by SIFT-MS in the breath and urinary headspace of smokers at levels 612 

dependent on the cigarette consumption, but is practically absent from the breath and 613 

urine headspace of non-smokers, see some further references re breath and smoking 614 

[51–57], which also describe various furans. This is not to say that these compounds arise 615 

only in smokers, but that they show higher concentrations in them.  616 

Quite a number of volatile compounds may be related to food consumption, medication 617 

(or effects of) or professional exposure [58–61]. Some of the compounds in breath are 618 

produced by bacteria in the mouth [62] and by bacteria in the gut, such as hydrogen [63] 619 

and methane [64] and undoubtedly many more. It could very well be the case that 620 



volatiles from oral anaerobes in the mouth confound breath biomarker discovery and this 621 

has been studied [9].  622 

The most prominent volatile compounds in breath are isoprene [65–68] and acetone [68–623 

70]. Isoprene, identified and quantified in more than half of the papers analysed for this 624 

review, is a by-product of the mevalonate pathway, but also produced (or at least stored) 625 

in the periphery of the human body [71,72]. Acetone can be formed from acetoacetate by 626 

acetoacetate-decarboxylase. Isoprene is ‘the’ paradigmatic example for a compound 627 

whose concentration in exhaled breath changes enormously during exertion of an effort 628 

[71,73–75]. If, for example, a volunteer starts to pedal on a stationary bicycle with 75W, 629 

the isoprene concentration increases by a factor 3–4 in end tidal breath. Originally, it was 630 

thought that this increase is just due to an increase of cardiac output [76]. But the 631 

pioneering work of King et al [71–73,75] demonstrated that the increase in cardiac 632 

output alone would not be able to lead to the observed pronounced increase in isoprene. 633 

For the isoprene concentration in exhaled breath to increase, it is not even necessary to 634 

exert an effort. A few leg contractions or arm contractions suffice to increase the isoprene 635 

concentration in exhaled breath [71–75]. Apart from isoprene, also other compounds 636 

increase during exertion. Among these compounds are methyl acetate, dimethylsulfide 637 

and 2-pentanone [74]. This is in contrast to the prediction of Farhi’s equation [77], which 638 

would predict a decrease in concentration during effort. An example of a compound 639 

which follows Farhi’s equation is butane [74].  640 

The big advantage of exhaled breath, in comparison to blood, is the fact that it can be 641 

sampled as often as is desirable. Breath can even be sampled and analysed in real time, 642 

down to breath-to-breath resolution. Breath analysis during sleep illustrates this most 643 

convincingly [78]. In measurements during sleep, isoprene and acetone display very 644 

different concentration characteristics. Both show (often) increasing concentrations 645 

during the night. The isoprene concentration displays a very pronounced peak structure, 646 

which is due to movements of the body or changes in sleep stage. Acetone does not show 647 

such a peak structure but just a smooth increase.  648 

In contrast to GC-MS and SESI-MS, a more limited number of volatile compounds in 649 

exhaled breath have been investigated with PTR-MS [79-83] and SIFT-MS [84-86].  These 650 

techniques are inherently quantitative, without the need of external calibration which 651 

greatly expands their real-time measurement capabilities. More recently they have been 652 

coupled with thermal desorption units, to enable sample collection and later analysis for 653 



large-scale studies [87]. In the future, real-time measurements should be performed for 654 

all VOCs, giving rise to the possibility of modelling their production and metabolism 655 

within the human body. Also their connection to food consumption, smoking habits or 656 

medication would be very interesting. A particular interest is in therapeutic monitoring 657 

of drugs and their metabolites. As an example, consider valproate which is administered 658 

to avoid seizures in epileptic patients or in persons suffering from propionic acidemia 659 

[58] and is metabolized to 3-heptanone which can be observed in exhaled breath [58]. 660 

Since the concentration of 3-heptanone in normal healthy volunteers is <1 ppb, virtually 661 

all the 3-heptanone in exhaled breath can be attributed to metabolized valproate. Such 662 

metabolic changes inducing the release of specific VOCs may allow therapeutic 663 

monitoring of different drugs in the future.  664 

Many of VOCs in breath may have exogeneous sources [88–92], be produced through 665 

medication [58,93] or be released by bacteria in the airways [94,95], the oral cavity 666 

[93,96–101] or in the gut [30,63].  The concentrations of volatile compounds in exhaled 667 

breath may depend on the sampling method [102–105] and on the specific Henry’s 668 

constant between blood and breath [106–108] which depends on haematocrit (blood cell 669 

volume) and other parameters.  670 

 671 

5.2. Volatile organic compounds found in saliva 672 

The profile of VOCs in saliva can give information about the oral health and oral 673 

microbiome. Saliva has many advantages over breath in terms of sampling, shipping and 674 

storage of samples. Moreover, saliva is considered as an equivalent of blood which does 675 

not require invasive collection, because there is an equilibrium of the dissolved 676 

metabolites between the blood capillaries and the membranes of the salivary glands 677 

[109]. On the other hand, the problem with saliva is the possibility of contamination 678 

during sampling and the problem with optimal sampling time, with some people being 679 

less capable of saliva production. 680 

The most comprehensive profile of VOCs is saliva was provided by al Kateb et al. in 2013 681 

[110] and this has not changed since the previously published review [1]. After 2014, the 682 

biggest contribution to the saliva volatilome was made by Monedeiro et al. [111] who 683 

reported the presence of 162 VOCs in healthy subjects using headspace solid phase 684 

microextraction (HS-SPME)-GC-MS methodology. The total number of VOCs reported in 685 

saliva in this review is 549, which represents an increase of 96 compounds since 2014. 686 



These additional VOCs were sourced from papers studying differences between diseased 687 

subjects and controls (which were hopefully healthy [111–118]). All of these compounds 688 

had previously been identified in other body fluids [1]. Most of the studies used SPME 689 

fibres with different modifications as a sampling technique. As SPME is based on 690 

absorption, the number of compounds detected is limited by the sorption properties of 691 

the coating material. Improvements to the SPME method, using materials with larger 692 

surface of absorption like coupons, blades and thin-films can significantly improve the 693 

absorption capabilities, resulting in the detection of less abundant compounds, 694 

impossible to detect with conventional SPME fibres.  695 

The application of other, non-absorptive techniques, such as solvent extraction [119] may 696 

allow for the extraction of a wider range of metabolites, and the detection of a higher 697 

number of salivary metabolites in the future. 698 

According to the recent database (Table1), the dominant chemical class in saliva is 699 

alcohols, comprising approx. 16 % of all VOCs, followed by ketones (14 %) and cyclic 700 

hydrocarbons (12 %). Taking into account all the types of hydrocarbons, they make up 701 

34 % of all VOCs in saliva. The difference between the percentage composition of saliva 702 

reported previously [1] is mainly due to the work of Monedeiro et al. [111] who reported 703 

that alcohols and ketones are the dominant groups in saliva.  704 

Aside from the studies aimed at profiling bodily fluids, some articles reported attempts 705 

to apply saliva characterization for diagnostic purposes. The VOCs in subjects with oral 706 

diseases of a possible bacterial origin, such as submandibular abscesses and halitosis 707 

were compared to the saliva profiles of healthy individuals [111]. The authors reported 708 

the presence of 23 and 41 VOCs specific for halitosis and submandibular abscess, 709 

respectively. Halitosis resulted in a larger number of sulfur compounds, while 710 

submandibular abscesses, which is an inflammatory disease, was characterized by a 711 

greater abundance of inflammation-associated alcohols, aldehydes, and hydrocarbons. 712 

The comparison of saliva VOCs between healthy children and children with celiac disease 713 

showed that the abundance of some VOCs, such as ethyl acetate, nonanal, and 2-hexanone 714 

is different in children with celiac disease treated with a gluten-free diet, compared to 715 

healthy children [113].  716 

Moreover, saliva analysis has raised interest in the forensic science area. The SPME-GC-717 

MS analysis of different bodily fluids showed that despite the similarities within a fluid, 718 

there is a large number of quantitative differences in each specimen, characteristic for 719 



the individual person, with a low occurrence of matching errors [112]. It was found that 720 

saliva and hand odour were the most efficient for differentiation of subjects, providing 721 

sufficient stability and variability for differentiation.  722 

SPME in thin-film geometry (TF-SPME) was used for the retrospective analysis of the 723 

intake of 49 prohibited substances and steroids by measuring their metabolites in saliva 724 

[114]. As the authors underlined, saliva is a good specimen for doping control as it 725 

contains mostly non-conjugated, biologically active forms of drugs. GC-MS analysis 726 

allowed for the detection of 26 VOCs in saliva, without derivatisation. 727 

 728 

5.3. Volatile organic compounds in blood 729 

Blood directly reflects the internal environment of the body, including nutritional, 730 

metabolic, and immune status [120]. Thus, the analysis of plasma-derived VOCs in blood 731 

has been an active area of research. However, obtaining blood samples is not trivial 732 

requiring trained phlebotomists. It is not well tolerated by patients in comparison to 733 

producing a breath or urine sample, and blood samples usually require pre-treatment 734 

which is costly and time consuming.  735 

379 VOCs have been identified from blood, which is relatively few compared to the 736 

number found in breath [106]. However, this is a large increase compared to the previous 737 

review in 2014 where only 154 VOCS were reported. There certainly is not a lack of 738 

studies reporting the analysis of volatile compounds in blood. However, these studies 739 

tend to be focused on the monitoring of exposure to environmental pollutants [121], the 740 

quantification of blood alcohol [122] and other inhalants derived from solvents [123], 741 

and storage and aging of blood for forensic applications [124–127].  742 

However, there have been relatively few studies which compared the volatile profiles 743 

above blood in healthy volunteers versus a diseased group. Zlatkis et al [128] studied the 744 

sera of seemingly healthy individuals versus virus infected patients using capillary GC. 745 

Although example chromatograms were presented showing a large number of peaks for 746 

both groups, the identification of compounds was limited. It was found that virally 747 

infected patients had a wider range of VOCs associated with their samples [129]. Recently 748 

there have been two studies which measured the blood volatiles of patients with liver 749 

[130] and lung cancer [131] versus healthy individuals. Horvath et al [132] described the 750 

results of a study where trained dogs could discriminate between blood samples from 751 

ovarian cancer patients and blood samples taken from patients with other gynaecological 752 



cancers or from healthy control subjects. A paper by Wang et al [133] used SPME-GC-MS 753 

to differentiate blood samples of 20 healthy volunteers from colorectal cancer patients. 754 

Only the few compounds which were significantly higher in the healthy group were 755 

reported.  756 

A few papers exist looking solely at the VOC profiles of healthy volunteer blood without 757 

a disease group for comparison [106,118,134]. Mochalski et al [106] and Ross et al [134] 758 

compared the volatiles appearing in blood to those found in breath, and Kusano et al used 759 

hand odour, oral fluid, breath, blood, and urine to differentiate between individuals.  760 

Much of the work relating to environmental exposure to pollutants centres around the 761 

National Health and Nutrition Examination Surveys (NHANES) which have been 762 

undertaken in the US [135]. These studies have aimed to quantify a range of common 763 

environmental pollutants in the blood of over 1000 volunteers. There have been a 764 

number of publications relating to the methods used and the results of these studies 765 

[136–139]. The studies tended to use purge and trap analysis combined with GC-MS 766 

[137] but more recently they have adopted SPME based methods coupled to GC-MS [136]. 767 

The data from NHANES is used to set expected limits for a range of VOCs in blood (usually 768 

in the ppb/ppt range) for non-occupationally exposed individuals [135]. Most recently 769 

this data has been used comparatively in measuring the blood VOC levels of people living 770 

on the gulf coastline of the US who have been exposed to VOCs derived from the 771 

Deepwater Horizon oil spill [140]. There are commercial tests available which give a 772 

measure of the volatile solvent profile in blood versus the NHANES data [135].  773 

The high level of alcohol consumption in the US and Europe means that blood alcohol 774 

analysis is one of the most common clinical analyses performed. Headspace GC is 775 

commonly used to determine blood alcohol levels. This method is convenient as it can be 776 

automated and biological products that can cause interference are not directly injected 777 

into the GC. A dedicated range of columns have been developed specifically for blood 778 

alcohol analysis and the analysis can be completed in 2 min [141]. Blood gas analysis 779 

usually involves the measurement of methanol, ethanol, isopropyl alcohol, 1-propanol, 780 

acetaldehyde, and acetone. The analysis usually includes the use of an internal standard 781 

for example t-butyl alcohol (internal standard for the European blood alcohol analysis). 782 

However, many forensic laboratories are also interested in the measurement and 783 

quantification of an extended number of VOCs which may be derived from inhaling and 784 

ingesting dangerous and controlled substances [123]. Volatiles such as diethyl ether, 785 



butane, ethyl acetate, hexane, toluene, xylene, and some halogenated hydrocarbons are 786 

common VOCs with the potential for abuse via sniffing [142]. It may be particularly 787 

important to measure these compounds in blood samples taken at autopsy, if the death 788 

is suspicious [143]. These additional VOCs also have the potential to interfere with the 789 

blood alcohol analysis, so their separation and measurement is important [141].  790 

The measurement of ammonia in blood is also an established clinical test [144]. Many of 791 

the procedures for ammonia determination involve two general steps: the release of 792 

ammonia gas or capture of ammonium ions from the sample and the quantitation of the 793 

liberated gas or captured ions [145]. Detection is typically via colourimetric/fluorimetric 794 

methods [146], gas sensitive electrode [147] or enzymatic methods [148,149]. Elevated 795 

levels of ammonia in blood is considered a strong indicator of an abnormality in nitrogen 796 

homeostasis, the most common reason is related to liver dysfunction. Hyperammonemia 797 

arises from excessive production by colonic bacteria and the small intestine. At high 798 

levels ammonia is a potent toxin of the central nervous system and has been linked to 799 

hepatic encephalopathy (HE). However, breath ammonia determination is not currently 800 

accepted as a reliable marker of HE, although a large amount of data supports the role of 801 

hyperammonaemia in the direct and indirect alterations of brain function underlying HE. 802 

A relatively recent paper [150] describes the measurement of capillary blood (an 803 

equivalent to arterial blood) following an oral glutamine challenge. This method was 804 

more successful at identifying minimal HE than the use of capillary blood measurements 805 

alone. 806 

Since our previous 2014 review [1], there have been a handful of forensic science papers 807 

on how storage and aging of blood impacts its VOC profile [124–127], as this has 808 

implications for sniffer dog training. Dubois et al. used variable energy electron impact 809 

ionization TD-GC-GC-TOF-MS and found it was able to monitor subtle changes in blood 810 

VOCs within the first week of aging. Whilst these publications have yielded a great of deal 811 

of data, and found new compounds previously unidentified in blood, only the data from 812 

fresh blood which hasn’t aged or decomposed could be included in this review.  813 

 814 

5.4. Volatile organic compounds in milk 815 

This review has identified 290 compounds in human milk. This represents only a small 816 

increase vs the 2014 review where 256 compounds had been identified. There are many 817 

papers on the nutritional composition of human milk (as an example see the review by 818 



Jenness  [151] and also on the presence of environmental chemicals (as an example see 819 

the review by LaKind [152]), but there is relatively little specifically relating to the 820 

volatile components. Most GC-MS analytical studies appear to be directed at identifying 821 

the presence of a specific pollutant, medicinal substance, or group of environmental 822 

compounds, to support research on chemical exposure to the nursing infant or using milk 823 

as a geographical pollutant indicator. A literature search revealed numerous papers on 824 

organochlorine pesticides, brominated diphenyl ethers, dioxins, polychlorinated 825 

biphenyls, parabens, triclosan, polycyclic musk fragrances, flavonoids, and many others. 826 

However, not all these compounds can be considered as volatiles at body temperatures. 827 

Others studies looked for compounds transferring to breast milk from mothers taking 828 

specific dietary supplements, such as the search for odorous components from fish oil 829 

[153] or 1,8-cineole metabolites after taking 1,8-cineole capsules [154]. Studies looking 830 

for specific compounds after exposure to environmental contamination, medication, or 831 

dietary supplementation have not been included in the tables. The most extensive list of 832 

likely volatiles was given by Pellazari et al [155] who identified 156 ‘purgeable’ 833 

compounds from maternal milk, in a study to evaluate the utility of using milk in pollutant 834 

studies. A wide range of classes of compounds was identified by GC-MS from passing 835 

helium gas through warm milk and trapping vapours on a Tenax cartridge. Similar classes 836 

of compounds were reported by Shimoda et al [156] using a diethyl ether distillation-837 

extraction. Other studies have looked for specific organic compounds in the headspace 838 

above milk using SPME with GC-MS (four VOCs [157], monocyclic aromatic amines [158], 839 

phthalate esters [159], benzene and alkylbenzenes [5,160]. A broader study, also using 840 

the SPME method, attempted to quantify 36 different VOCs [161] and identified 10 841 

compounds whose median concentration across 12 samples was above the ‘lowest 842 

recordable level’. Buettner et al has analysed the volatiles from milk and in one study 843 

identified 45 odour-active constituents, using olfactory GC in combination with GC-MS 844 

[162].  845 

A study from 2009 [163] made a comparison between mother milk and formulas, 846 

underling in these, the presence of different volatiles related to the heat treatment of milk, 847 

such as methional, 2-furfural, and sulphides. On the other hand, the GC-MS analyses 848 

revealed a higher variation in the volatiles from milk compositions for the mother’s milk, 849 

exposing the infant to more diverse flavour, including a higher variety of terpenes 850 

probably originating from the maternal diet. Another study regarding the quality of 851 



breast milk has been published in 2010 [164], using high-resolution gas 852 

chromatography–olfactometry (HRGC-O) to investigate the reasons behind the formation 853 

of the typical fish-like and metallic off odour during the storage of human milk, not to be 854 

found in the cow milk under the same conditions. In this case, the studies underlined the 855 

presence of oxidation products from long-chain (poly)unsaturated fatty acids such as (Z)-856 

1,5-octadien-3-one, trans-4,5-epoxy-(E)-2-decenal, 1-octen-3-one and (Z)-3-hexenal. 857 

Fatty acid degradation products have also been found to be responsible for changes in 858 

milk flavour [165,166] using two-dimensional high-resolution gas chromatography-mass 859 

spectrometry (TD-HRGC-MS) and GC-MS analyses. These studies investigated the 860 

modifications occurring in the metabolite profile when breast milk is subjected to 861 

different treatments. Analogously, Garrido et al [167], showed how high-pressure 862 

thermal (HPT) treatments can modify the volatile profile, increasing the abundance of 863 

different chemical groups (aldehydes, ketones, furan, pyrans, alcohols), and decreasing, 864 

on the other hand, the content of aliphatic hydrocarbons present in the non-treated 865 

human milk samples. Also in these cases, the changes in the VOC profile can be attributed 866 

to the negative odours sometimes attributed to human milk. As much as the storage and 867 

ambient conditions, also the mother’s diet, both in the phases of pregnancy and nursing, 868 

was found to have a direct connection with the breast milk volatiles profile [168]. On the 869 

same issue, Ramsons (a plant with garlic like odour) consumption was found to affect 870 

milk aroma, as pointed out by Scheffler et al [169], who identified volatile ramson-871 

derived metabolites in human milk, applying gas chromatography-mass 872 

spectrometry/olfactometry (GC-MS/O). An analogous study was also conducted 873 

regarding garlic consumption [170].  874 

Hartmann et al [171] employed GC-MS to investigate the presence of 5-α-androst-16-en-875 

3-one in human breast milk, underling the issues and the procedures needed when it is 876 

necessary to underline a specific compound in the milk matrix. Another research group 877 

also focused on a specific compound [154,172], 1,8-cineole, again investigated by GC-MS. 878 

These studies also point out how the analysis of the volatiles in human milk are promising 879 

for health monitoring since metabolite profiles in milk might be substantially different 880 

from those in the commonly analysed body fluids of blood and urine, due to the high lipid 881 

content.  882 

      883 

5.5. Volatile organic compounds from skin secretions 884 



The number of different compounds identified from human skin secretions is very large. 885 

Our literature search revealed 623 named VOCs analysed from skin secretions (an 886 

increase compared to the 532 found in the previous version in 2014 [1]. Odour can be 887 

particular to an individual and distinguishable both by people and by canines [173]. Also 888 

skin is not homogeneous and the distribution of the different types of glands and 889 

microbiota across the body can be expected to lead to different VOC profiles. Even the 890 

odours of a single individual varies; with diet, emotional state, menstrual cycle, age, and 891 

many others factors [174,175]. Studies of the secretions from the skin are particularly 892 

susceptible to interference from personal care products. Although experimental 893 

procedures attempt to minimize the presence of exogeneous compounds by asking 894 

subjects to refrain from use of such products apart from a designated soap for a time 895 

period before testing, some identified compounds are highly likely to come from 896 

exogeneous sources [176,177]. Bernier et al [178] reported hundreds of compounds 897 

spanning a wide range of classes, in a study attempting to identify candidate mosquito 898 

attracting compounds. Samples were collected from the hands using glass beads and 899 

analysed by GC-MS. Many of the compounds were relatively high MW species and it could 900 

be argued that some would be expected to have limited volatility at body temperature. 901 

The papers of Zeng et al [179,180] list a number of C-6 to C-11 acids and in particular E-902 

3-methylhex-2-enoic acid, as responsible for characteristic axillary (armpit) odours along 903 

with a large n-dodecanoic acid peak, lactones and alcohols found in solvent extraction of 904 

worn absorbant pads. Other studies also look specifically for odiferous axillary 905 

compounds. Kuhn and Natsch found a genetic contribution to odorant carboxylic acids 906 

[177] and Hasegawa et al [181] found a difference between ‘spicy’ and ‘sour’ axillary 907 

odour and identified sulfanyl alcohols. Another study analysed compounds on the 908 

forearm [176] by using ethanol and hexane extraction. However, relatively few 909 

compounds are common to these or other papers.  910 

The difficulty of identifying a set of VOCs characteristic of human sweat is exemplified in 911 

the paper of Penn et al [182] looking at ‘fingerprints’ in human odour. They used 912 

polydimethylsiloxane coated stirrer bars to collect axillary samples from 194 individuals 913 

over 10 weeks; 4941 separate GC-MS peaks were found of which only 373 were 914 

consistent over time within an individual (118 were chemically identified). They report 915 

very few of the peaks as common to all samples. Only 38 compounds were found to be 916 

present in at least half the samples. There are a few studies that attempt to collect the 917 



compounds that are volatile at body temperatures rather than by volatilization of 918 

collected skin secretions. Gallagher et al [176] lists a set of volatile compounds from the 919 

forearm, when collected using SPME fibres held above the arm compared with solvent 920 

extraction. Haze et al [183] identified straight chain hydrocarbons, alcohols, acids and 921 

aldehydes from headspace analysis of cloth worn on the back and found a link with 2-922 

nonenal and ageing. Zhang et al [184] identified 35 compounds predominantly alcohols, 923 

alkanes and aldehydes using SPME fibres to collect volatiles from the hand and forearm 924 

and found differences between the hot humid spring and cold dry winter.  925 

SPME-GC-MS has also been used to study axillary odour [185] para-axillary and areola 926 

volatile compounds for possible mother–infant recognition chemicals [186,187] report 927 

aldehydes (e.g. 3-methyl-2-butenal, benzaldehyde, octanal, nonanal, decanal) and 928 

ketones (e.g. 6-methyl-5-en-2-one). In these papers, there are very few named 929 

compounds that are common between studies. As an example, nonanal occurs in twelve 930 

of the publications under examination,  decanal (11 times), octanal and 6-methyl-5-931 

epten-2-one (10 times each) and finally octanoic acid and acetic acid (7 times each). This 932 

was also observed by Prada et al [188], using SPME-GC-MS. Dormont et al [189] pointed 933 

out the great importance of sampling when the sample collection occurs outdoors. The 934 

authors compared four methods for sampling skin odours: solvent extraction, headspace 935 

SPME, and two new techniques not previously used for the study of mammal volatiles, 936 

contact SPME and dynamic headspace with a chromatoprobe design (miniaturized 937 

trapping tubes that are directly inserted into the GC injector for thermal desorption). The 938 

same study underlined the prevalensce of aldehydes in the volatile profile, in particular 939 

nonanal and decanal. The same research group in 2013 [190] pointed out the complexity, 940 

in terms of the number of compounds, featuring in the chemical profile of  skin volatiles. 941 

This work underlined, that the compounds found in human skin vary widely depending 942 

on the part of the body where the samples are collected and the sampling methods 943 

employed. For example, the axillae region is characterised by apocrine, eccrine and 944 

sebaceous glands, which in addition to the microbiota bring about a specific volatile 945 

profile. This profile features mostly alkane and C6-C11 carboxylic acids. Different VOCs 946 

were found in the hand, primarily aldehydes and ketones (nonanal, decanal, undecanal, 947 

6-methyl-5-hepten-2-on and geranylacetone).  This was also confirmed by Mochalski in 948 

2018 [191], where the use of ion mobility spectrometer coupled with gas 949 

chromatography (GC-IMS) was found to present considerable potential for the detection 950 



of VOCs. At the same time it presented some drawbacks, like the fact that some interesting 951 

classes of VOCs such as alkanes cannot be measured using that IMS instrument. The 952 

ionisation source determines the range of compounds that may be detected, e.g. a beta 953 

emitter such as nickel 63 does not detect alkanes, while a photo ionisation source in 954 

conjunction with an IMS detects alkanes sensitively.  955 

An IMS coupled with a short multi-capillary column (MCC) was instead employed by 956 

Ruzsanyi et al [187] for near real-time monitoring of human skin emissions, who pointed 957 

out that octanal, nonanal and decanal may originate from the skin. Curran et al [192] 958 

presented 24 different compounds employing SPME-GC-MS to measure human scent, and 959 

utilize it to identify and distinguish between individuals. 960 

Another interesting avenue for VOCs from the skin is finding a correlation between them 961 

and the compounds found in blood. From the study of the literature, families of VOCs have 962 

been found to be present in both blood and skin.  Namely: aromatic compounds (16 963 

compounds in common), aldehydes (15), acyclic alkanes, alcohols (14), ketones (13), 964 

nitrogen-containing compounds (8), esters (7), acyclic alkenes, acids (6) non-aromatic 965 

cyclic hydrocarbon, sulfur-containing compounds and ethers (3 each) and halogenated 966 

compounds.  967 

 968 

5.6. Volatile organic compounds from urine  969 

The recent review revealed 444 VOCs associated with urine [196–198] compared to 279 970 

reported in the previous version.  The largest number of compounds identified in urine 971 

belong to the ketone group. Ketones in urine are likely to at least partially arise from 972 

bacterial action in the gut, maybe by decarboxylation from the corresponding oxo-acids, 973 

since ketones were found at much lower concentrations in the urine of ‘germ free’ rats 974 

[193]. Levels of the key ketone bodies, propanone (acetone) and acetoacetate have been 975 

found to vary between 1.16–14 mol L−1 and 1.3–15 mmol L−1 respectively in urine [199]. 976 

The ketone bodies (acetoacetate, hydroxybutyrate and propanone) are produced in the 977 

liver during periods of rapid fat oxidation, when the rate of fat breakdown exceeds the 978 

capacity of the Krebs cycle to process the resulting acetyl CoA [200,201].  979 

Several significant studies of VOCs in urine have been undertaken e.g. [193] ,[194]. Nine 980 

compounds were present in all studies: propanone, 2-butanone, 2-pentanone, 2-981 

heptanone, 3-hexanone, 4-heptanone, 2, 5-dimethylfuran, 2-ethyl-5-methylfuran and 982 

toluene, so can be present with a very high degree of certainty. A study [195] of 4-983 



heptanone in urine strongly suggest its presence originates at least in part from in vivo 984 

oxidation of the plasticizer component, 2-ethylhexanoic acid. 985 

 Propanone, 2-butanone, 2-pentanone and 2-heptanone were also found ubiquitously in 986 

the headspace of faecal samples from healthy individuals [9]. Propanone can be produced 987 

by the non-enzymatic decarboxylation of acetoacetate and may sometimes be smelt on 988 

the urine and breath in acute diabetes. 989 

In summary, the VOCs in urine cover a range of chemical classes: e.g. acids, alcohols, 990 

ketones, aldehydes, amines, N-heterocycles, O-heterocycles, sulfur compounds and 991 

hydrocarbons (Table 1). When comparing the VOCS from urine and faeces a notable 992 

difference is the number of esters.  The relative levels have not altered since 2014 with 993 

additional esters idemntified in faeces (10) and urine (7).  However,  there were no new 994 

straight chain hydrocarbons identified in urine thus a notable difference remains, making 995 

alkanes the smallest group for urine volatiles. Although previously identified, Cozzolino 996 

et al [202] again detected hexane in their study of healthy children using SPME-GC-MS. 997 

Cozzolino et al [196] pre-treated samples under both acidic and alkaline conditions, 998 

followed by analysis with SPME GC-MS, identifying a total of 162 urine compounds, 42 of 999 

which were previously undetected. The combination of salting, pH change and solvent 1000 

extraction by Cozzolino et al has shown many hundreds of compounds can be readily 1001 

detected by a typical benchtop quadruple GC-MS.. 1002 

A large number of terpenes are described and are considered to be derived from food 1003 

[193]. Little data exists on quantitative measurements of VOCs in urine. Concentrations 1004 

of phenol (typically 10 mg day−1 excreted in urine) and p-cresol (typically 52 mg day−1 1005 

excreted in urine) have been reported to increase in urine with increasing protein intake. 1006 

Their formation is considered to be due to gut microbiota acting on tyrosine; anaerobic 1007 

bacteria in the left colon producing phenol and aerobic bacteria in the ileum/cecum 1008 

producing p-cresol. The relationship is complicated by fibre intake. High fibre intake with 1009 

high protein resulted in a smaller increase in concentration due to decreased transit time 1010 

[203]. This study was motivated by phenols being implicated in bladder and colon cancer, 1011 

which no longer is considered to be the case.  1012 

Normal alcohol emission ranges reported are 0-46 mg/24 h for ethanol, 0–300 μg/24 h 1013 

for n-propanol and 0–18 μg/24 h for n-butanol; these levels approximately mirror blood 1014 

serum levels [183]. Trimethylamine and 4- heptanone, were quantified as 0.5 -20 μg ml−1 1015 

and 40–800 ng ml−1 respectively in urine [204].  1016 



It has been suggested that methylamine and other short chain aliphatic amines may play 1017 

a significant role in central nervous system disturbances observed during hepatic and 1018 

renal disease [205]. To this end a quantitative method was developed for methylamine 1019 

determination in the gas phase from urine. The average output was 11 mg day−1 with a 1020 

range of 1.7– 62 mg day−1, with diet having a small effect. The source was considered to 1021 

be mainly endogenous. Gut bacteria are likely to be implicated in the production of 1022 

methylamine (probably from creatinine) as rats with no gut bacteria produced less than 1023 

half the output [205]. The average daily output for dimethylamine was about 17 mg with 1024 

values for the majority of the population lying within the 0.68–35.72 mg range [206]. 1025 

Healthy young adults excrete about 1 mg of trimethylamine and 40 mg of trimethylamine 1026 

N-oxide daily, although these levels are markedly influenced by diet, particularly when it 1027 

contains marine fish. When marine fish is a dietary component, several hundred mg of 1028 

trimethylamine N-oxide may be excreted [207].   1029 

New, alternative, and combined approaches have been employed to enhance how urine 1030 

volatiles are detected. The volatiles in urine have recently been evaluated by combined 1031 

odour and GC-MS chemical analysis. For the first time a comprehensive description of the 1032 

smell of the individual components has been described [208]. This work also involved 1033 

enzymatic (glucuronidase) pre-treatment followed by solvent extraction. Recently, Zou 1034 

et al [197] developed a novel ultrasonic nebulization extraction proton transfer reaction 1035 

mass spectrometry (UNE-PTR-MS) technique to rapidly detect selected compounds 1036 

within a urine sample. Encouragingly, only 0.66 mL of urine is required for a full scan, 1037 

which delivers a response in 34 s. The authors state this method overcomes lengthy pre-1038 

concentration processes, extended sampling procedures, and prevents alteration to the 1039 

urine whilst in storage. Although no new urine compounds were detected, the technique 1040 

showed promising results for common urine VOCs: methanol, acetaldehyde, and acetone, 1041 

yielding relative recoveries of between 88.39 % and 94.54 %. However, the results stem 1042 

from just one urine sample, therefore, further analysis would be needed to determine 1043 

whether this new method is sufficient in detecting larger numbers and more specific 1044 

VOCs in urine, perhaps identifying new compounds that may aid in disease diagnosis as 1045 

suggested by the authors.  1046 

Benign prostatic hypertrophy (BPH), the medical term for an enlarged prostate, is so 1047 

common in older men, it could be considered normal. About half of all men between ages 1048 



51 and 60 have BPH and up to 90% of men over age 80 have it. This could affect urine 1049 

volatiles but has not been investigated in any detail. 1050 

 1051 

5.7. Volatile organic compounds from faeces 1052 

The first report of gas analysis from faeces was in 1861 when Rüge reported that human 1053 

rectal gas contained hydrogen, carbon dioxide, and methane, in addition to other 1054 

unidentified gases [209]. Flatus is considered to be a mixture of hydrogen (0–50 %), 1055 

nitrogen (5–90 %), oxygen (0–10 %), carbon dioxide (10–30 %), and methane (0–10 %). 1056 

Methane production occurs in about 50 % of the healthy population, some members 1057 

producing higher levels than others; methane production is correlated with 1058 

methanogenic bacteria. Similarly, sulfate-reducing bacteria are responsible for the 1059 

generation of pungent sulfides [210]. In the original compendium 381 compounds were 1060 

reported in faeces, since then a further 62 compounds not stated in the original 1061 

compendium have been found. Of these, 24 compounds had been reported from other 1062 

fluids and have now been identified in faecal samples (Table 1). This now means that in 1063 

total 443 compounds have been assigned an identity  from faecal samples. These 1064 

additional 62 compounds came from just 5 papers; this is indicative that while 1065 

compounds have been added to the compendium it is very likely that there are more to 1066 

be found. The 443 compound value still falls far short of the number of compounds found 1067 

in breath, which is likely to be  a function of a smaller number of studies carrying out 1068 

qualitative analysis on faecal samples when compared to breath.  1069 

Significant concentrations of a range of volatile fatty acids [211], indoles [212] and 1070 

phenols [213] have been observed in faeces. Fermentation of carbohydrates in the gut 1071 

produces ethanoic, propionic, butanoic, pentanoic, and hexanoic acids, particularly 1072 

by Bacteroides [214]. In vitro studies [215] have provided evidence that proteinacious 1073 

foods also produce SCFAs via the action of bacteria such as Clostridia spp.; BCFAs, such as 1074 

2-methylbutanoic acid and methylpropionic acids, are principally produced by gut 1075 

microbial action on proteins via the respective branched amino acid.  1076 

Gould et al [216], conducted a study in which 13C labelled compounds were used as 1077 

internal standards in faecal samples to quantify 15 compounds. This study is unique as it 1078 

is the only work, we have identified in which many compounds were quantified based on 1079 

what is in the faeces and not just the headspace. This work also turned the faeces alkaline 1080 

by the addition of sodium hydroxide to quantify trimethylamine, which is the first-time 1081 



this has been reported from faeces [216]. This paper contributed 12 new compounds to 1082 

the previous compendium [1], including 4-isopropyl benzaldehyde (cuminaldehyde), and 1083 

2,4-dithiapentane which are associated with cumin and truffle fungus, respectively. Long 1084 

chain fatty acids (LCFAs) were quantified in work by Song et al [217]. Nine of these 1085 

compounds were previously reported as being found in skin and/or saliva (Table 11). 1086 

Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are compounds that 1087 

were not found in the original compendium. EPA and DHA are omega 3 fatty acids found 1088 

in cold water fish, these compounds are also used as dietary supplements as they are the 1089 

fatty acids that form cellular walls in the brain and eyes [218]. A recent mechanistic study 1090 

in how unsaturated long chain fatty acids are oxidized in the body to form many smaller 1091 

metabolites is described [10]. 1092 

Volatiles such as methanethiol and ammonia are considered to be derivable from 1093 

methionine by the action of bacteria such as Clostridium sporogenes [219]. Hydrogen 1094 

sulfide and methanethiol can be damaging to the large intestinal epithelium and are also 1095 

generated from sulfur-containing substances in the diet [220]. Similarly, fermentation of 1096 

tyrosine and tryptophan in faeces has been shown to produce the VOCs phenol and 1097 

indole, respectively [219]. Phenol and p-cresol are considered to be produced by aerobic 1098 

intestinal microbiota acting on tyrosine and the latter by anaerobic organisms [211]. 1099 

Of the 58 compounds new to faecal samples 13 of those were previously found in saliva. 1100 

There is newly emerging evidence that the oral microbiome might have an impact on the 1101 

gut microbiome [221]. Olsen and Yamazaki present work in which patients with chronic 1102 

periodontitis the bacteria Prophyromonas gingivalis creates dysbiosis which in turn cause 1103 

dysregulation of the gut microbiota [221].  1104 

Two earlier  studies stated that a total of 297 and 135 different VOCs have been identified 1105 

respectively by Garner et al [9] and De Preter et al [222] in the headspace of faeces from  1106 

healthy individuals on an ad libitum diet. These two studies showed that typically, for 1107 

each donor the number of VOCs ranged from 78 to 125 (median = 101). Interestingly, 44 1108 

compounds were stated to be common to 80 % of the cohort samples [9]. 1109 

Dixon et al [223] hypothesized that the varied functionality of the metabolites in the 1110 

headspace of faeces, dictated the use of several diverse SPME fibre coatings for more 1111 

comprehensive metabolomic coverage. They evaluated eight different commercially 1112 

available SPME fibres in combination with GC-FID and GC-MS. This approach appears 1113 

very promising; 267 peaks were found with GC-FID though the authors have yet to 1114 



identify all the compounds. SPME can suffer from competitive absorption, the length of 1115 

equilibration time of the sample, and length of time the SPME fibre is exposed can all 1116 

effect what compounds are absorbed onto the fibre. This means that not all the 1117 

compounds from a matrix, particularly one as complex as faeces, are absorbed.  1118 

Alcohols were thought uncommon in adult faeces [224]. However, the studies reported 1119 

in this review reported 52 different alcohols to be present. Ethanol is very commonly 1120 

observed. It is likely that gut bacteria can reduce acids to alcohols. Esters were found to 1121 

represent the largest group of compounds identified. An interesting readily observed 1122 

feature of the esters in stool is the similarity of the higher MW compounds, they either 1123 

possess a long-chain acid and short-chain alcohol or a short-chain acid and long-chain 1124 

alcohol. This suggests that the number of esters identified is not a true picture of what is 1125 

present in the faeces but a limit on the method i.e. the volatility of the esters. It is very 1126 

likely that a more sensitive method or better pre-concentration will significantly increase 1127 

the compounds observed. 1128 

A diverse range of aromatic compounds (Table 1) including mono-, di-, tri- and tetra-1129 

substituted benzenoids, mono- and di-substituted furans, and nitrogen containing 1130 

derivatives of pyridine, pyrrole, and indole have been reported. Most of these have only 1131 

been recently reported in faeces, although it has been established that phenolic and 1132 

indole compounds arise from the metabolism of aromatic amino acids by gut bacteria 1133 

[215]. There are many publications which have observed that alkyl furans are produced 1134 

by fungi. In contrast there is a paucity of publications relating to furan biosynthesis by 1135 

bacteria. Fungi are well known to be commensal organisms in the gut, which could 1136 

explain the origins of furans, possibly from the metabolism of fructose. Furans are now 1137 

considered to be also synthesisable from the oxidation of polyunsaturated fatty acids in 1138 

vivo [10]. Some benzenoid compounds such as dimethylbenzenes, ethylbenzene, and 1139 

toluene (constituents of petrol) probably arise from air pollution. 1140 

A range of aldehydes have been reported [9] in the faeces  of individuals. A complete 1141 

homologous series has been reported from ethanal to octadecanal. Ethanal is of particular 1142 

interest due to its abundance and is considered to promote mutagenesis [225–227] and 1143 

be associated with bowel cancer. The toxic effects of higher aldehydes have received 1144 

much less attention. The origins of some aldehydes may be dietary. For instance, 2-1145 

methylpropanal, 3-methylpropanal, hexanal, nonanal, decanal, and benzaldehyde are 1146 

found in potato tubers and hexanal in carrots. However, it is doubtful that these 1147 



compounds would remain unchanged through the digestive system and biosynthesis by 1148 

microorganisms in the gut and oxidation of unsaturated fatty acids appears more likely.  1149 

Acetone and butan-2-one were reported in 100 % of faecal samples from a longitudinal 1150 

cohort study [9], which probably arise from fatty acid and carbohydrate metabolism 1151 

[228]. Methylketones can be produced by many species of bacteria and can also be 1152 

produced by fungi from the respective alkanoic acid and undoubtedly other ketonic 1153 

compounds can also be synthesized by bacteria. The universal presence of 2,3-1154 

butanedione is interesting in faeces [9] since it may have health implications by impacting 1155 

on the growth of some bacteria and yeasts [229]. This group of compounds, and indeed 1156 

other groups, are not normally the end products of metabolism by microorganisms 1157 

therefore their concentrations would be expected to be continually changing in the gut. 1158 

Methane is a product of bacterial reduction of carbon dioxide, or from acetic acid, and 1159 

potentially from oxidation of some unsaturated fatty acids in vivo.  1160 

Numerous hydrocarbons have now been discovered in faeces although the longer chain 1161 

species have been found in small numbers [9]. Isoprene has been extracted from faeces 1162 

[230]. Isoprene in the gut may be the result of cholesterol biosynthesis [231] and it is 1163 

considered to be the most common hydrocarbon in the human body and therefore would 1164 

be expected to be found in faeces.  1165 

Many alkenes/terpenoid compounds found are well documented as naturally occurring 1166 

plant products [232]. Limonene has been reported as the most abundant of the terpenoid 1167 

compounds and occurs in high concentration in citrus fruits. Most of the terpenes 1168 

identified [9] are found in vegetable food stuffs and do not originate from animal 1169 

products. For instance the following volatiles are present in carrots: pinene, limonene, 1170 

terpinene (1-methyl-4-(1-methylethyl)-1,4-cyclohexadiene), p-cymene, terpinolene 1171 

caryophyllene, and humulene [233]. Copaene is found in potato extracts [234]. 1172 

Many ether compounds have been reported in the headspace of faeces. Commonly, 2-1173 

ethoxyethanol occurs in manufactured products like soaps and cosmetics [235] and 1,3-1174 

dimethoxybenzene is a registered food additive in Europe [9]. Similarly, it is very unlikely 1175 

that chlorinated compounds found are of biological origin. Consumption of contaminated 1176 

food or water is the likely source of these compounds. Chloroform may arise as a faeces 1177 

VOC component from several sources, it is an air contaminant and has been detected in 1178 

foodstuffs [236]. Chlorination for disinfection of drinking water is another source 1179 

resulting in the production of chloroform and halogenated methanes [237]. 1180 



Many nitrogen compounds have been reported (Tables 2a-2c) and are likely to arise from 1181 

the diet; for instance, methylpyrazine, pyridine, and pyrrole are constituents of coffee. 1182 

However, pyrrole readily polymerizes with acid and, therefore, its presence is unlikely to 1183 

be dietary, as it would be unlikely to survive transit through the stomach. Ammonia 1184 

results from microorganism activity. In addition, increasing the amount of protein in the 1185 

diet from 63 g to 136 g/day was found to increase the amount of faecal ammonia from 15 1186 

to 30 mmol l−1. Interestingly, increasing the amount of fibre to the high protein diet was 1187 

reported to not alter the ammonia concentration [203]. In a study of nitrogen containing 1188 

compounds in the faeces of 30 healthy individuals indole was the only compound found 1189 

ubiquitously [9], followed by 3-methylindole, in 73 % of individuals, these compounds 1190 

are well known to be produced by microbial degradation of l-tryptophan in the gut. Many 1191 

compounds are present in a minority of volunteers. Allyl isothiocyanate was found to be 1192 

present in 23 % of cases; this compound is of particular interest due to its suspected anti-1193 

cancer properties. Its occurrence would be expected to be determined by a number of 1194 

factors such as diet (cruciferous vegetables e.g. broccoli, cauliflower, and cabbage), the 1195 

cooking of these vegetables, and the ability of the host's bacteria to break down sinigrin, 1196 

the main glucosinolate of Brussel sprouts. 1197 

A diverse range of sulfur compounds has been reported. For instance, methanethiol and 1198 

dimethylsulfide have been commonly observed; the former is, at least in part, considered 1199 

to be produced from methionine by Clostridia in the gut [219]. Methanethiol has a toxicity 1200 

approaching cyanide and the factors controlling its concentration and biosynthesis might 1201 

warrant further investigation. Methanethiol and dimethylsulfide may also be produced 1202 

by methylation of hydrogen sulfide as a detoxification mechanism by mucosal thiol S-1203 

methyltransferase [238]. Dimethyldisulfide and dimethyltrisulfide have both been 1204 

commonly reported in faeces [9,239,240]. Hydrogen sulphide is probably most likely to 1205 

occur due to the metabolism of sulphate by sulphate-reducing bacteria [239]. Sulphate, 1206 

which is poorly absorbed in the small bowel, is naturally present in cruciferous 1207 

vegetables and nuts and as an additive in bread and beer [239]. The main sulfur-1208 

containing flatus components in healthy individuals have been quantified: hydrogen 1209 

sulphide (1.06 µmol l−1), followed by methanethiol (0.21 µmol l−1) and dimethyl sulphide 1210 

(0.08 µmol l−1 [239]. The authors were concerned about the social aspect of pungent 1211 

flatus and found in their study that hydrogen sulphide and methanethiol appeared to be 1212 

principally responsible and not indole-based compounds as previously thought. 1213 



 1214 

5.8. Volatile organic compounds from semen 1215 

In semen, 196 compounds have been reported. To date, it appears only one research 1216 

group has published on VOC profiles in semen, using an investigation of  healthy subjects, 1217 

using SPME in the headspace above the semen combined with GC-MS detection [241].  1218 

Semen assessment is the key test for infertility problems with a seminogram being the 1219 

gold standard. Recently, metabolomics research was proposed as a method supporting 1220 

male fecundity. Changes in the pattern of metabolites in semen may reflect the metabolic 1221 

status of the sperm cells and the composition of the seminal fluid, which could affect the 1222 

reproduction capacity. Most of the metabolomic studies on semen have been conducted 1223 

using NMR and LC-MS, focusing on the secondary metabolites [242–244]. On the other 1224 

hand, the volatile pattern of semen which could contribute to the fast detection of fertility 1225 

problems remains hardly explored [241]. The authors detected the presence of 196 VOCs 1226 

in semen samples collected from 69 men. The number of VOCs in semen, from each man, 1227 

ranged from 3-28 VOCs. Curiously, no compound was present in all samples and 126 1228 

compounds was observed only once. Also, interestingly, 98 of the reported compounds 1229 

were detected for the first time in biological fluids. The dominant group of compounds in 1230 

semen were nitrogen-containing volatiles, comprising more than 30 % of all the 1231 

compounds identified. The tetramine, spermine, a compound found in semen at about 3.3 1232 

mg/g and responsible for the characteristic odour of semen [245] was not reported in the 1233 

study of Longo et al [241].  1234 

It is worthwhile to underline that the majority of the compounds were detected only in 1235 

one of the analysed samples, and only 70 VOCs were detected at least twice. The most 1236 

frequently observed compounds were pyrrole, ethanol and 2-methylbutanal. The 1237 

majority of the compounds had an exogenous origin according to the Human Metabolome 1238 

Database [246], with 57 compounds that could have both exogenous and endogenous 1239 

origin. The authors found there was an association between the VOCs profile and the 1240 

sperm motility. There surely are more volatile compounds to be discovered in semen, 1241 

considering the number of VOCs reported from other bodily fluids. It is suggested that 1242 

further research in this area to establish a better base of VOC composition in semen from  1243 

healthy men, could be beneficial to aid diagnoses of certain urological diseases. 1244 

 1245 

6. Conclusion 1246 



A study of VOCs from  healthy humans is presented for a variety of reasons. There are 1247 

many more papers than ever before now comparing ill patients with controls, These 1248 

publications more often than not, have a favourable conclusion, that there are promising 1249 

differences in the VOC profiles between the diseased patients and the non-diseased 1250 

volunteers. Furthermore, there are many published studies where presence and absence 1251 

of VOCs is considered for correlations with disease and controls (some researchers, now 1252 

avoid the term VOC biomarkers). The present review now shows many of these 1253 

“absences” are being found in  healthy subjects, which neutralizes to a degree, their use 1254 

in disease diagnoses. Presence and absence is no longer good enough, concentration is 1255 

key. Absence could be that the compound really is not there, such as in the case of 1256 

detecting a microbial toxin, where a bacterium does or does not produce a toxin. It is 1257 

appreciated there may still be a case for comparison if exactly the same conditions and 1258 

equipment sensitivity is applied. Diet from weeks, months ago could affect breath 1259 

volatiles. It is simply very hopeful to design methods for clean air breathing with the belief 1260 

that this will permit standardised results. An important reason for justifying this, is 1261 

expanded on. Diet from weeks/months ago affects the lipid composition of the body, our 1262 

MUFAs and PUFAs are determined by genetics and diet. These lipids are continuously 1263 

being oxidized, producing a wide range of VOCs. such as alcohols, alkenes, alcohols and 1264 

carboxylic acids [10], which can then be further metabolized into daughter compounds, 1265 

e.g. by further oxidation in the liver etc., also concomitantly there are many new 1266 

compounds being reported. There is a huge difference, almost 1000 compounds, between 1267 

the numbers reported in 2014 and in 2020. There is then more scope, considering the 1268 

huge variety of compounds, for finding correlations for disease diagnoses.    1269 

Limited studies have been undertaken on exercise/movement and VOCs in breath etc. 1270 

One such study has shown isoprene for instance does fluctuate with exercise in healthy 1271 

humans. This might simply be considered as a simple, interesting observation, however 1272 

if this phenomenon occurs for isoprene, what about the thousands of VOCs now listed in 1273 

this review, which have not been studied, maybe the same phenomenon occurs for many 1274 

of these. It could very well be the case that ill people may be less active, they may even be 1275 

horizontal in a hospital. If a range of VOCs are being used for disease diagnoses it may be 1276 

somewhat compromised by this situation. 1277 

When the 2014 review was published the tables showed there were many gaps in the sub 1278 

tables i.e. there would be a homologous series with compounds missing here and there 1279 



i.e. “gaps), such as in the first years of the periodic table being constructed. The absence 1280 

of a certain compound could be considered to be due to a lack of a metabolic route, or due 1281 

to the inability of the detection equipment, or some other reason.  Many of these “gaps” 1282 

have been filled in this current review compared to 2014 highlighting that further studies 1283 

are required to identify the extent of the human volatilome. Another important 1284 

consideration is the lack of validation of the current reported compounds from the human 1285 

volatilome with a small % validated by standards. Therefore, effort should also focus on 1286 

proper validation of the already reported compounds adhering to the principles of 1287 

identification outlined in the metabolomic standards initiative.    1288 

This review, unlike the earlier 2014 review shows within the tables the publications 1289 

where each compound was originally reported, this can add confidence to the data 1290 

especially where several research groups have identified the same compounds. 1291 

For discussion, one might think the healthy controls would have many similarities, 1292 

although this review shows only 14 compounds were common to all the bodily fluids and 1293 

breath. One might not have expected this, and it would be preferable for disease 1294 

diagnoses if there was a greater core number of compounds that differ in concentration 1295 

between disease states. As an example, a recent study, described herein, found 4941 GC-1296 

MS peaks in the sweat of a group of healthy humans and found very few peaks common 1297 

to all samples. 1298 

In an attempt to have more control over the jungle of compounds, one might consider 1299 

controlling diet, between patients and volunteers however then there is the difficulty that 1300 

there are different type and concentrations of bacteria, in our bodies. Gut transit time in 1301 

healthy humans, varies between individuals. and this is known to affect gut chemistry. 1302 

Then there are the VOCs in the environment – “the human exposome” which is highly 1303 

individual, and furthermore these compounds can often be converted to other 1304 

compounds in our bodies. The control group and patients are unlikely to individually be 1305 

exposed to the same compound types at the same concentration levels.  1306 

We are therefore assured that there will be a wide range of differences in the human 1307 

volatilome, each of us could very well be unique, hopefully though with enough similarity 1308 

so that quality correlations between control and disease states, will occur. 1309 

This review now summarises many classes and sub-classes of compounds and hopefully 1310 

now that they are easily visible will assist in deciding whether to target particular classes 1311 

or sub-classes or combinations thereof, to aid disease diagnoses, and also to decide which 1312 



is the appropriate bodily fluid or breath, which is the goal for many researchers in the 1313 

VOC field. 1314 
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