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Abstract

We describe a robust method to recover the depth coordinate from a normal or slope
map of a scene, obtained e.g. through photometric stereo or interferometry. The key
feature of our method is the fast solution of the Poisson-like integration equations by a
multi-scale iterative technique. The method accepts a weight map that can be used to
exclude regions where the slope information is missing or untrusted, and toallow the
integration of height maps with linear discontinuities (such as along object silhouettes)
which are not recorded in the slope maps. Except for pathological cases, the memory and
time costs of our method are typically proportional to the number of pixelsN. Tests show
that our method is as accurate as the best weighted slope integrators, butsubstantially
more efficient in time and space.

1 Introduction

The integration of a slope mapto yield a height (or depth) map is a critical step in ma-
chine vision techniques such as shape-from-shading [11, 12] and multiple-light photometric
stereo [13, 28]. Photometric stereo is a promising technology for 3D data capture in many
applications, as shown in figure1. It has a number of inherent advantages over other compet-
ing techniques,such as laser and stereo triangulation; including lower hardware cost, higher
resolution, and simultaneous albedo recovery. A major obstacle to its wider use is the cost
and fragility of current slope map integration algorithms —which are the topic of this paper.

Abstractly, the goal is to determine an unknown real function Z of someD ⊆ R
2, given

its gradient∇Z = (∂Z/∂x,∂Z/∂y). That is, findZ such that∂Z/∂x= F and∂Z/∂y= G,
whereF andG are two given real functions. This problem has a differentiable solution if
and only if the field(F,G) is curl-free, that is∂F/∂y−∂G/∂x= 0 everywhere. ThenZ(x,y)
can be expressed as a line integral along any path from a reference point(x0,y0) to (x,y).

In practical contexts, however, there are at least three difficulties with this approach.
First, the slope functionsF andG are generallydiscretised, i.e. known only at certainslope
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sampling points p[u,v], which usually form a regular orthogonal grid. Second, the data is
usually contaminated withnoisearising from unavoidable measurement, quantization, and
computation errors. At some points, the expected magnitudeof the error may be so high
that the slope is essentially unknown; and this may happen over large regions of the do-
main D. Third, the height functionZ is usuallydiscontinuous. The height fieldZ(x,y) of
a real scene almost always hascliffs—step-like discontinuities along the silhouettes of solid
objects. Some slope acquisition technologies, including most photometric stereo methods,
will severely underestimate the mean slope across cliffs. Slope values will also be mean-
ingless wherever the height itself is poorly defined, e.g. where the scene is highly porous,
transparent, or covered with hair. In general, neither the position nor the magnitude of
these anomalies can be deduced from the slope maps alone. Because of these complications,
several integration methods that have been described in theliterature (see section2) are un-
suitable for photometric stereo, either for being too sensitive to noise and cliffs, or for being
too costly for use with high-resolution maps.

Figure 1: Some applications of slope integration in photometric stereo: 3D face
capture [10], security inspections [25], archaeology [14, 21], and dermatology [24].

In this paper we describe a multi-scale iterative integration procedure that is as accurate
and robust as the best existing metods, but substantially more efficient. Except for some
pathological cases, its memory and time cost scales linearly with the number of data pixels,
making it quite practical even for multi-megapixel maps. Like the best existing methods [3],
our procedure also accepts aweight mapthat specifies the reliability of each gradient sample
and the location of suspected cliffs. This information allows the procedure to ignore unre-
liable data and to avoid integrating across cliffs. The weight map can be obtained in many
ways, either from external information or by error detection algorithms applied to the slope
data [2, 3, 4, 5, 16, 19, 23]. Most of these weight acquisition techniques can be used with our
integrator as well. In this paper, however, we are concernedonly with the central integration
problem, and therefore we assume that the slope and weight maps are given and fixed.
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2 Related Work

Most of the previous algorithms for the integration of slopemaps can be classified into four
broad groups:path integration, Fourier filtering, local iteration, anddirect system solving.

Path-integration methodsassign a height to one reference pixelp and then compute the
height of every other pixelq by performing a numerical line integral of the gradient field
along a path fromp to q. This group includes the naive row-by-row integration [29] as well
as other methods that choose the paths so as to avoid low-quality or missing data—e.g. by
finding an optimum spanning tree and integraling along it, asdone by Fraile and Hancock [2,
7]. These methods are generally quite fast, since they require onlyO(N) operations for an
image withN pixels. However, they are very sensitive to noise and discontinuities: if the
heights of two adjacent pixelsp′, p′′ are computed by distinct paths, integration of the noise
component of the gradient will result in a spurious height diference between them.

This problem can be alleviated, but not soved, by averaging the integral along many
distinct paths between the two pixels [20]. While this approach gets rid of spurious steps
due to noise, its cost is prohibitive (proportional toN2.5 for an image withN pixels) and its
results are still inferior to those of non-path methods described below.

Fourier filtering methods are based on the observation that integrating a function corre-
sponds to dividing each component of the Fourier transform by 2π times its frequency. This
approach was pioneered by Frankot and Chellapa [8]. In the frequency domain the curl
component of the gradient data can be easily filtered out, andother smoothing filters can be
applied as well [27]. Fourier techniques can be used also to efficiently solve the unweighted
Poisson equation (see below) as done by Georghiadeset al. [9].

Through the use of fast Fourier transform algorithms (FFT orDCT), these methods ob-
tain the height field forN pixels using onlyO(N) space andO(N logN) operations. However,
this approach does not allow the use of a weight map, because the FFT always gives the same
weight to all data samples. As a result, these methods will flatten out any invisible cliffs and
deform the surface over a wide area surrounding them.

Local iteration methods reduce the slope integration problem to a system ofN equations
whose unknowns are theN heights, and where each equation relates one height value and
its neighbours to the given derivatives in that neighbourhood. The equations (whether linear
or non-linear) are then solved as in the Gauss-Seidel iterative method: starting with some
initial guess, each equation is solved in turn to recompute one height value, assuming the
neighbours are fixed, until all the heights appear to stabilise [11, 18].

The local equations can be derived in several ways [3, 11, 22]. However, all these local
criteria generally yield some discrete (and possibly non-linear) version of Poisson’s equation
∇2Z = h(x,y). Since each equation refers to a small number of height values, the whole
system uses onlyO(N) storage. This formulation, unlike path-integration methods, does not
generate spurious steps in the presence of noise. Indeed, the solution is theoretically equal
to that of the Fourier filtering. The advantage of the iterative formulation, as pointed out by
Agrawalet al. in 2006 [3], is that each equation can be tuned to ignore bad data samples and
suspected discontinuities, as indicated by a weight map. Onthe other hand, although each
iteration requires onlyO(N) operations, the number of iterations needed to reduce the error
below a specified tolerance is usually proportional to the square of the image’s diameter, that
is toN; so the total running time is proportional toN2.

In 2004, Chen, Wang and Wang described a “pyramid-based” method to speed up iter-
ative solution of the Poisson equations [6]. Their method (which does not accept weights)
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solves a sequence ofN×N Poisson systems, where at stagek each heightz[u,v] is related to
heightsz[u±2k,v±2k]. While the use of longer strides substantially improved the conver-
gence of the iteration, the speed and accuracy of this methodwere still quite inferior to those
of Fourier-based algorithms.

Direct system solving methodsalso set up anN×N system of equations from local con-
straints, but solve the system by a direct method, such as Gaussian LU or Cholesky factor-
ization. (If the equations are non-linear, they must be linearized and the process must be
iterated over, as as in the Newton-Raphson method.) This approach is used, in particular, by
several of Agrawal’s “Poisson based” methods. [3].

Direct solution methods are generally slower than Fourier methods but much faster than
iterative ones. However, their running time grows likeO(N1.5), according our tests; and
their memory requirements (even with good sparse matrix software) makes them impractical
for multi-megapixel slope maps.

3 Weighted multiscale integration

Our multiscale integrator builds the linear equation system for a weighted variant of the
discrete Poisson problem, and solves it by the Gauss-Seidel(or Gauss-Jacobi) iterative algo-
rithm. Unlike other local iterative methods, it obtains theinitial guess by recursively solving
a reduced scale version of the problem. Namely, it reduces the given slope mapsf ,g,w to
one half of their original width and height, recursively computes from them a reduced-scale
height mapz, expands the latter to twice its size, and uses the Gauss-Seidel iteration to ad-
just this map accoding to the full-scale slope data. The recursion stops at a levelmwhere the
slope maps are so small that the iteration will quickly converges from any initial guess. See
figure2.

⇒ ⇒ ⇒ ⇒

⇓ ⇓ ⇓ ⇓ ⇓

⇐ ⇐ ⇐ ⇐

Figure 2: The multiscale integration method.
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3.1 The algorithm

The central part of our algorithm is the recursive procedureComputeHeightsbelow:

ComputeHeights( f ,g,w)
1. If f is small enough then

2. z← (0,0, . . . ,0);
3. else

4. f ′← ShrinkSlopes( f ,w); g′← ShrinkSlopes(g,w);
5. w′← ShrinkWeights(w);
6. z′← ComputeHeights( f ′,g′,w′);
7. z← ExpandHeights(z′);

8. A,b← BuildSystem( f ,g,w);
9. z← SolveSystem(A,b,z);
10. Returnz.

Note that our scheme differs substantially from the “pyramid-based” method of Chen, Wang
and Wang [6], since at each scalek we build a Poisson system with onlyN/4k unknowns,
instead ofN.

Inputs: The the slope mapsf ,g and the weight mapw should be three real-valued arrays
with the same dimensions. Each samplef [u,v] is assumed to be an average of∂Z/∂x around
theslope sampling point p[u,v] = (u+1/2,v+1/2); and similarly forg[u,v]. Each weight
w[u,v] should be a non-negative number reflecting the relative trustworthiness of the corre-
sponding slope valuesf [u,v], g[u,v]. The weightw[u,v] should be zero if the corresponding
slopes are completely unreliable — in particular, if there may be a cliff crossing the pixel
centered atp[u,v]. In that case, the dataf [u,v] andg[u,v] will be completely ignored. Our
algorithm assumes thatw[u,v] = 0 also for any pixels theat lie outside the domainD.

Outputs: The algorithm returns an array of height samplesz[u,v], nominally taken atheight
sampling points q[u,v] = (u,v), displaced from the slope sampling pointsp[u,v] by half a
step in each direction. Because of these assumptions, thez array computed by our method
will have one more column and one more row than the slope maps.

Building the system: Like other Poisson-based methods [18, 26], our algorithm builds in
step8 a linear equation system with one equation and one unknown for each height value
z[u,v]. Each equation states the equality between two estimates ofLaplacianL(z) = ∇ ·(∇Z)
at the pointq[u,v]: one computed from the unknown heights (the left-hand side), and one
from the given slope values (the right-hand side).

The precise nature of the estimates is not critical; our multiscale iterative method can
be used with other Laplacian estimators, including non-linear ones. In our implementa-
tion [17], we use the equation−L (z)[u,v] =−D( f ,g)[u,v], where

−L (z)[u,v] = z[u,v]−
w−0

w00
z−0−

w+0

w00
z+0−

w0−

w00
z0−−
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and, for allr,s∈ {−,+}= {−1,+1},

frs = f [u+ r,v+s] grs = g[u+ r,v+s] wrs = w[u+ r,v+s]
w0s = w+s+w−s wr0 = wr++wr−

w00 = w0++w0−+w−0+w+0

z0s = z[u,v+s] zr0 = z[u+ r,v]

(3)

Boundary cases:These formulas assume that the weightw[u,v] is 0 if the corresponding
point lies outside the domainD. With this convention, equation (3.1) can be used even along
the margins of the domainD, or at grid cornersq[u,v] that are adjacent to missing slope
data. As long as one of the slope samples surrouding a pointq[u,v] has nonzero weight,
equation is valid and can be used to computez[u,v] from its neighbours. As a consequence,
the algorithm will patch up isolated one- to three-pixel “holes” in the data by integrating
around them.

Indeterminate values: On the other hand, when all four slope values surrounding a pixel
are missing the value ofz[u,v] is essentially indeterminate. One may exclude those height
values from the linear system, and set them to 0,NAN, or any other arbitrary value.

Analysis: To analyse the efficiency of this algorithm, we should consider what the steps do in
the frequency domain. When the slope maps are reduced, the higher-frequency components
of the data are lost, while the remaining lower-frequency components have their wavelengths
reduced by one half. Therefore, the recursively computed solution z(k+1) to the reduced
problem, after being expanded to the original scale, will bemostly correct in the lower
frequencies; only the small detail (at the scale of one or twopixels) will be missing. These
details will be fixed by the Gauss-Seidel solver after a smallnumber of iterations, largely
independent ofN. So, the recursive process is fast because each Fourier component of the
height map gets computed at the scale where its wavelength isonly a few pixels. Therefore,
the time spent at scalek will be proportionalN/4k; and the total time for all scales will be
(1+1/4+1/42+ · · ·1/4m)O(N)< (4/3)O(N) = O(N).

4 Robustness and accuracy

To test the robustness and accuracy of our method, we compared its output with that of
representative implementations of the main competing methods.

Data sets:We used the slope datasets and weight maps shown in figure3. The setssbabel,
spdome, andcbramp were derived from mathematically defined height fieldsZ(x,y). The
sbabel field isC1-smooth except at the ends of the ramp, with steep but not vertical walls.
Thespdome field has a slope discontinuity around the dome’s rim. Thecbramp field is
C1-smooth along the ramp but has vertical cliffs on three sides. The gradient maps were
obtained by Hann-weighted subsampling of the analytic derivatives, a process that results in
some sampling noise at gradient discontinuities, and is completely oblivious to cliffs. In
particular, the the cliffs around the top platform ofcbramp are completely invisible in its
slope map, and their location is defined only by the zeros in the given weight map. The
psface data set is the gradient field of a human face, obtained by photometric stereo [10].
Its binary weight mask, manually created with an image editor, excludes regions where the
data is known to be unreliable.

Methods: Each dataset was processed with the algorithms listed in table 1. Methods
AS, EM, ME, AT, UP were described by Agrawalet. al in 2006 [3]; we used their Matlab
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implementations [1], adapted to use our input and output file formats. Methods AS, EM, ME,
AT use the weighted Poisson-based approach, with Matlab’s sparse matrix solver; the first
three use iterative weight adjustment. However in AS and EM the weight map is internal and
is neither accepted not returned by the code. UP is an unweighted Poisson method whose
linear system is solved by discrete cosine transfom.

Table 1: Methods used in the accuracy tests.

Code Type Takesw Description
FC Fourier transf. No Frankot-Chellappa [8, 15]
UP Fourier transf. No Least Squares (unweighted Poisson) [1, 3]
AS Direct sol. No α-Surface [3]
EM Direct sol. No Energy Minimization [1, 3]
AT Direct sol. Yes Affine Transforms (or Diffusion) [1, 3]
ME Direct sol. Yes M-Estimators [1, 3]
MS Multi-scale iter. Yes Our multiscale integratiom method [17]

Reference solutions: Ideally, the accuracy of a slope integrator should be evaluated by
comparing the computedz values with the “true” height field. However, this information is
not available for the thepsface dataset, and its slope data is known to contain substantial
localized errors due to highlights and other non-Lambertian features. Even the synthetic
data are affected by gradient sampling noise in regions of high curvature. Thus, if we
compared the integrated field with the original functionZ(x,y) or with laser-range height
maps we would not be able to separate the effects of data errors from errors introduced by
the integrator. Therefore, we choose to evaluate the accuracy of each method by comparing
its output to that of Agrawal’s M-Estimators (ME) method, which appears to be the most
accurate and robust of the integrators we tested, and accurately reproduces the true height
field of the synthetic maps. In each case we computed the RMS error e between the two
integrated height fields, after shifting both to have zero mean; and the relative RMS error
e/R, whereR is the RMS value of the two height fields. In these computations we considered
only the parts of the domain where the weight fieldw was nonzero.

Results and conclusions:As table2 and figure3 show, the only methods that obtained
usable results in all data sets were Agrawal’s Affine Transforms (AT) and M-Estimators
(ME) methods, and our multiscale method (MS). The unweighted methods (FC and UP)
and those which do not accept external weight maps (AS and EM)failed completely on the
datasets with cliffs and invalid data.

Limitations The multiscale approach is not valid in situations like figure 4, when the actual
domain (the region where the weights are nonzero) includes along and narrow corridor.
After a couple of reductions, the corridor will be overrun byzero weights. Then the recursive
solution will be useless as a starting guess, and the Gauss-Seidel iteration may take thousands
iterations to converge. In such cases, direct solution of the linear system may be much faster
than our method. How to make MS work in such cases is beyond thescope of this paper.
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spdome sbabel cbramp psface

f ,g

w

FC

UP

AS

EM

AT

ME

MS

Figure 3: Datasets used in the tests, showing (from top to bottom) the gradient map
f ,g, the reliability weight mapw, and the height field integrated by each method.
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Table 2: Relative RMS errors of each method from the ME reference solution.

spdome sbabel cbramp psface
Meth. e e/R e e/R e e/R e e/R
FC 0.66 1.9% 0.56 2.1% 29.99 120.1% 19.47 98.0%
UP 0.14 0.4% 0.00 0.0% 29.61 107.1% 28.94 114.6%
AS 2.28 6.6% 3.22 12.5% 29.30 107.7% 29.76 106.0%
EM 4.82 13.4% 2.14 8.0% 29.61 107.0% 24.67 108.7%
AT 1.77 5.1% 3.17 12.3% 0.00 0.0% 0.10 0.7%
ME 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0%
MS 0.67 1.9% 0.60 2.2% 4.23 13.0% 0.73 3.9%

Figure 4: A pathological case for multiscale integration. From left to right: f (0)

andw(0) (256×256),w(4) (16×16), and the heightsz obtained by ME and by our
algorithm with 200 iterations per level.

5 Time and memory

Datasets and methods:To evaluate the efficiency of our method, we measured the comput-
ing time and memory needed for the integration of two square gradient fields,spdome and
psface, sampled with various grid sizes from 64×64 to 512×512.

We compared our method against two weighted Poisson integrators provided by Agrawal
et al. [1], namely the Affine Transforms method (AT) and the weighted Poisson system
builder and solver (PC) that is the innermost loop of their M-Estimator, Energy Minimisation,
andα-Surface methods. We removed the outermost loop of these last three methods since
we are concerned only with the integration problem, not the problem of inferring the weight
map. Those are the only methods in the literature that accepta reliability weight map (thus
solving the same problem as ours) and are fast enough for practical use.

Results and conclusions:The results of these tests are shown in figure5. The absolute
runing times are not directly comparable since our code is inC while the other methods are
in Matlab/Octave. However, the plots in figure5 (top) show that the running times scale
quite differently: likeO(N) for our algorithm (solid line). and apparently likeO(N1.5) for
the direct Poisson solvers (dashed lines).

Our multiscale integrator also uses less memory than the direct solvers; see figure5
(bottom). Its memory usage is dominated by the Poisson system’s matrix A which has at
most 5N nonzero entriesit uses 60N bytes forA and 5N bytes for the reduced-scale maps.
The direct solving methods need to store the matrixA and also Gauss’s triangular factorU
(or Cholesky’sR). For these methods, we counted the nonzero entriesNA in A andNU in
U , and estimated the memory usage conservativley as 12NA+16NU bytes. We observed that
their memory usage seems to grow likeO(N1.15) (dashed lines).
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Figure 5: Top: Log-log plots of the running time of two directsolving methods
(PC,AT) and of our multiscale method (MS), in seconds. Bottom: Log-log plots
of memory usage for the system’s matrixA and itsU factor (if any), in MBytes.

6 Conclusions

Our weighted multiscale integration algorithm is substantially faster and uses substantially
less memory than other methods with comparable accuracy androbustness, both in practice
and asymptotically. As fas as we know, ours is the only methodthat can integrate slope maps
of megapixel resolution, with missing data and cliffs of unknown height, within practical
memory and time limits. It can be used on its own, with a given weight mask, or as the core
of other methods that attempt to deduce the weight mask from the slope data and other clues.
Out method can also be adapted to use other estimators for theLaplacian and divergent.
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