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Abstract

We describe a robust method to recover the depth coordinate fronmehor slope
map of a scene, obtained e.g. through photometric stereo or integagonThe key
feature of our method is the fast solution of the Poisson-like integratioatiems by a
multi-scale iterative technique. The method accepts a weight map thatecased to
exclude regions where the slope information is missing or untrusted, aaitbto the
integration of height maps with linear discontinuities (such as along objecusittes)
which are not recorded in the slope maps. Except for pathologica$ ctiee memory and
time costs of our method are typically proportional to the number of pi¢elEests show
that our method is as accurate as the best weighted slope integratossibbtantially
more efficient in time and space.

1 Introduction

The integration of a slope mapo yield a height (or depth) map is a critical step in ma-
chine vision techniques such as shape-from-shadihglP] and multiple-light photometric
stereo [L3, 28]. Photometric stereo is a promising technology for 3D daifatere in many
applications, as shown in figufe It has a number of inherent advantages over other compe
ing techniques,such as laser and stereo triangulatioludimgy lower hardware cost, higher
resolution, and simultaneous albedo recovery. A majoraaiistto its wider use is the cost
and fragility of current slope map integration algorithmsahich are the topic of this paper.

Abstractly, the goal is to determine an unknown real fumcEmf someD C R?, given
its gradient]Z = (0Z/9x,0Z/dy). That s, findZ such thatdZ/dx=F anddzZ/dy = G,
whereF andG are two given real functions. This problem has a differdai¢igsolution if
and only if the field[F, G) is curl-free, that i9IF /dy — dG/dx = 0 everywhere. TheHB(x,y)
can be expressed as a line integral along any path from a&nefepointxg, o) to (X,y).

In practical contexts, however, there are at least thrdecudlties with this approach.
First, the slope functions andG are generallydiscretisedi.e. known only at certaislope
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sampling points fu,v], which usually form a regular orthogonal grid. Second, tatads
usually contaminated withoisearising from unavoidable measurement, quantization, and
computation errors. At some points, the expected magnitdidiee error may be so high
that the slope is essentially unknown; and this may happen lavge regions of the do-
mainD. Third, the height functiorZ is usuallydiscontinuous The height fieldZ(x,y) of

a real scene almost always tdifs—step-like discontinuities along the silhouettes of solid
objects. Some slope acquisition technologies, includingtrphotometric stereo methods,
will severely underestimate the mean slope across cliffepesSvalues will also be mean-
ingless wherever the height itself is poorly defined, e.gemgtthe scene is highly porous,
transparent, or covered with hair. In general, neither th&tipn nor the magnitude of
these anomalies can be deduced from the slope maps aloreudgeaf these complications,
several integration methods that have been described litehegture (see sectio?) are un-
suitable for photometric stereo, either for being too gemsio noise and cliffs, or for being
too costly for use with high-resolution maps.

Figure 1: Some applications of slope integration in photimetereo: 3D face
capture [L0], security inspections2f], archaeology 14, 21], and dermatology44].

In this paper we describe a multi-scale iterative integraprocedure that is as accurate
and robust as the best existing metods, but substantialle mificient. Except for some
pathological cases, its memory and time cost scales lyedit the number of data pixels,
making it quite practical even for multi-megapixel mapskd.the best existing method3||
our procedure also acceptsvaight maghat specifies the reliability of each gradient sample
and the location of suspected cliffs. This information abathe procedure to ignore unre-
liable data and to avoid integrating across cliffs. The \Wweigap can be obtained in many
ways, either from external information or by error detectadgorithms applied to the slope
datap, 3, 4,5, 16, 19, 23]. Most of these weight acquisition techniques can be usédudaur
integrator as well. In this paper, however, we are conceomigdwith the central integration
problem, and therefore we assume that the slope and weigi ana given and fixed.
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2 Related Work

Most of the previous algorithms for the integration of slopaps can be classified into four
broad groupspath integration Fourier filtering, local iteration, anddirect system solving

Path-integration methodsassign a height to one reference pixeand then compute the
height of every other pixed by performing a numerical line integral of the gradient field
along a path fronp to g. This group includes the naive row-by-row integrati@dj[as well

as other methods that choose the paths so as to avoid lowyoprainissing data—e.g. by
finding an optimum spanning tree and integraling along itl@w by Fraile and HancocR,[

7]. These methods are generally quite fast, since they reaquily O(N) operations for an
image withN pixels. However, they are very sensitive to noise and discotties: if the
heights of two adjacent pixels, p” are computed by distinct paths, integration of the nois
component of the gradient will result in a spurious heigfgrdince between them.

This problem can be alleviated, but not soved, by averadiegiritegral along many
distinct paths between the two pixel®). While this approach gets rid of spurious steps
due to noise, its cost is prohibitive (proportionalNé® for an image withN pixels) and its
results are still inferior to those of non-path methods dbed below.

Fourier filtering methods are based on the observation that integrating a functiorecor
sponds to dividing each component of the Fourier transfoyri2rbtimes its frequency. This
approach was pioneered by Frankot and Chell&pa [n the frequency domain the curl
component of the gradient data can be easily filtered outp#tmet smoothing filters can be
applied as well27]. Fourier techniques can be used also to efficiently solgautiweighted
Poisson equation (see below) as done by Georghietos[9].

Through the use of fast Fourier transform algorithms (FFDGIT), these methods ob-
tain the height field foN pixels using onlyO(N) space an®(NlogN) operations. However,
this approach does not allow the use of a weight map, beche$d=T always gives the same
weight to all data samples. As a result, these methods wiileéfiaout any invisible cliffs and
deform the surface over a wide area surrounding them.

Local iteration methods reduce the slope integration problem to a systerN @fquations
whose unknowns are the heights, and where each equation relates one height vatue a
its neighbours to the given derivatives in that neighboathd he equations (whether linear
or non-linear) are then solved as in the Gauss-Seideliiteratethod: starting with some
initial guess, each equation is solved in turn to recomput leeight value, assuming the
neighbours are fixed, until all the heights appear to s&blli1, 18].

The local equations can be derived in several way4& ], 22]. However, all these local
criteria generally yield some discrete (and possibly noadr) version of Poisson’s equation
0°Z = h(x,y). Since each equation refers to a small number of height sathe whole
system uses oni®(N) storage. This formulation, unlike path-integration methaloes not
generate spurious steps in the presence of noise. Indeesoliltion is theoretically equal
to that of the Fourier filtering. The advantage of the itemaformulation, as pointed out by
Agrawalet al. in 2006 [3], is that each equation can be tuned to ignore bad data ssiapde
suspected discontinuities, as indicated by a weight mapth®wther hand, although each
iteration requires onlyYD(N) operations, the number of iterations needed to reduce the er
below a specified tolerance is usually proportional to theasg of the image’s diameter, that
is to N; so the total running time is proportional Iz

In 2004, Chen, Wang and Wang described a “pyramid-basedioddb speed up iter-
ative solution of the Poisson equatior@. [ Their method (which does not accept weights)
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solves a sequence Bfx N Poisson systems, where at st&ggach height[u, V] is related to
heightszju+ 2¥,v=+2X. While the use of longer strides substantially improved thever-
gence of the iteration, the speed and accuracy of this metkoel still quite inferior to those
of Fourier-based algorithms.

Direct system solving methodsalso set up amN x N system of equations from local con-
straints, but solve the system by a direct method, such ass@aulLU or Cholesky factor-
ization. (If the equations are non-linear, they must bediirmed and the process must be
iterated over, as as in the Newton-Raphson method.) Thi®app is used, in particular, by
several of Agrawal’s “Poisson based” method. [

Direct solution methods are generally slower than Fouriethods but much faster than
iterative ones. However, their running time grows IRENY®), according our tests; and
their memory requirements (even with good sparse matrixsoé) makes them impractical
for multi-megapixel slope maps.

3 Weighted multiscale integration

Our multiscale integrator builds the linear equation sysfer a weighted variant of the
discrete Poisson problem, and solves it by the Gauss-Seid@lauss-Jacobi) iterative algo-
rithm. Unlike other local iterative methods, it obtains thigial guess by recursively solving
a reduced scale version of the problem. Namely, it reducegitlen slope maps$, g, w to
one half of their original width and height, recursively qmmes from them a reduced-scale
height mape, expands the latter to twice its size, and uses the GausggiSration to ad-
just this map accoding to the full-scale slope data. Therston stops at a levehwhere the
slope maps are so small that the iteration will quickly coges from any initial guess. See
figure 2.

Figure 2: The multiscale integration method.
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3.1 The algorithm

The central part of our algorithm is the recursive procedlomenputeHeightbelow:

ComputeHeightd, g, w)

1. If fissmall enough then
2. z+(0,0,...,0);

3. else
4. f'+ ShrinkSlopesf,w); g’ + ShrinkSlope, w);
5. W « ShrinkWeight&w);
6. Z <+ ComputeHeigh{d’,g’,w);
7. z+ ExpandHeight&);

8. A b+« BuildSysterif, g, w);

9. z+« SolveSyste(A,b,z);

10. Returre.

Note that our scheme differs substantially from the “py@dupdsed” method of Chen, Wang
and Wang @], since at each scalewe build a Poisson system with only/4% unknowns,
instead ofN.

Inputs: The the slope map§,g and the weight maw should be three real-valued arrays
with the same dimensions. Each samflie v] is assumed to be an average)@d/ dx around
the slope sampling point [p,v] = (u+1/2,v+1/2); and similarly forg[u,v]. Each weight
w(u,V] should be a non-negative number reflecting the relativeviarghiness of the corre-
sponding slope value§u, V], g[u,V]. The weightw[u,Vv] should be zero if the corresponding
slopes are completely unreliable — in particular, if theraynbe a cliff crossing the pixel
centered ap[u,v]. In that case, the datHu,Vv] andg[u,Vv] will be completely ignored. Our
algorithm assumes thafu,v] = 0 also for any pixels theat lie outside the domBin

Outputs: The algorithm returns an array of height sampesv|, nominally taken aheight
sampling points ,v] = (u,v), displaced from the slope sampling poinsl, v] by half a
step in each direction. Because of these assumptiongaiiay computed by our method
will have one more column and one more row than the slope maps.

Building the system: Like other Poisson-based methods$,[26], our algorithm builds in
step8 a linear equation system with one equation and one unknowedch height value
Z[u,Vv]. Each equation states the equality between two estimatesptdcianL (z) = O- (02)
at the pointq[u,v]: one computed from the unknown heights (the left-hand sialedl one
from the given slope values (the right-hand side).

The precise nature of the estimates is not critical; our isgdte iterative method can
be used with other Laplacian estimators, including noedimones.  In our implementa-
tion [17], we use the equatior.Z(2)[u,v] = —2(f,09)[u,V], where

Woo W.o Wo- Wo,
-2V = Zuv| - —z20— —20——2 ——12 1
@y = Auv) - 3070 5020 2 — i, @
W__ W_ W, _ W
—-9(f, = —f 4+——f,-—"f, T f
(.9 Woo Woo  Woo Woo @
W__ W, —+ W, .,
+ —09 _ + _ B
WOO g WOO g+ Woo g + W, g++
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and, forallr,se {—,+} = {—-1,+1},

fs = flut+rv+g Os = glu+rv+g Ws = WU+T,V+9

Wos = W;s+W.s Wro = Wy +Wro ©)
Woo = Wosr +Wo_ +W_o+W,o

Zs = Zu,v+§ Zo = Zu+ry

Boundary cases: These formulas assume that the weight, v] is O if the corresponding
point lies outside the domald. With this convention, equatior3 (1) can be used even along
the margins of the domaib, or at grid cornergy[u,V] that are adjacent to missing slope
data. As long as one of the slope samples surrouding a pgoini] has nonzero weight,
equation is valid and can be used to commitev] from its neighbours. As a consequence,
the algorithm will patch up isolated one- to three-pixel 8= in the data by integrating
around them.

Indeterminate values: On the other hand, when all four slope values surroundingeal pi
are missing the value afu,V] is essentially indeterminate. One may exclude those height
values from the linear system, and set them tmAN, or any other arbitrary value.

Analysis: To analyse the efficiency of this algorithm, we should coaswhat the steps do in
the frequency domain. When the slope maps are reduced, theriigquency components
of the data are lost, while the remaining lower-frequenaypgonents have their wavelengths
reduced by one half. Therefore, the recursively computdatisn Z¥t1) to the reduced
problem, after being expanded to the original scale, willnb@stly correct in the lower
frequencies; only the small detail (at the scale of one orpixels) will be missing. These
details will be fixed by the Gauss-Seidel solver after a smathber of iterations, largely
independent oN. So, the recursive process is fast because each Fourieroo@mipof the
height map gets computed at the scale where its wavelengttlyis few pixels. Therefore,
the time spent at scalewill be proportionalN/4%; and the total time for all scales will be
(14+1/4+1/4%4---1/4MO(N) < (4/3)O(N) = O(N).

4 Robustness and accuracy

To test the robustness and accuracy of our method, we cothjtareutput with that of
representative implementations of the main competing austh

Data sets:We used the slope datasets and weight maps shown in figilitee setsbabel ,
spdone, andcbr anp were derived from mathematically defined height fiedds, y). The
sbabel field is C1-smooth except at the ends of the ramp, with steep but natakvtalls.
The spdone field has a slope discontinuity around the dome’s rim. €he anp field is
Ci-smooth along the ramp but has vertical cliffs on three sidBse gradient maps were
obtained by Hann-weighted subsampling of the analytiovdévies, a process that results in
some sampling noise at gradient discontinuities, and ispbetely oblivious to cliffs. In
particular, the the cliffs around the top platformalir anp are completely invisible in its
slope map, and their location is defined only by the zerosengiien weight map. The
psf ace data set is the gradient field of a human face, obtained byopiettic stereo]0].

Its binary weight mask, manually created with an image edéxcludes regions where the
data is known to be unreliable.

Methods: Each dataset was processed with the algorithms listed Ie fab Methods
AS, EM, ME, AT, UP were described by Agrawel. alin 2006 JB]; we used their Matlab
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implementations]], adapted to use our input and output file formats. MethodSAf ME,
AT use the weighted Poisson-based approach, with Matlgalsse matrix solver; the first
three use iterative weight adjustment. However in AS and Edieight map is internal and
is neither accepted not returned by the code. UP is an untegigtoisson method whose
linear system is solved by discrete cosine transfom.

Table 1: Methods used in the accuracy tests.

Code | Type Takesw | Description
FC | Fourier transf. | No Frankot-Chellappa [8,15]
UP | Fourier transf. | No Least Squares (unweighted Poisson) [1, 3]
AS | Directsol. No a-Surface (3]
EM | Direct sol. No Energy Minimization [1, 3]
AT | Directsol. Yes Affine Transforms (or Diffusion) [1, 3]
ME | Direct sol. Yes M-Estimators [1, 3]
MS | Multi-scale iter.| Yes Our multiscale integratiom method ~ [17]

Reference solutions: Ideally, the accuracy of a slope integrator should be etatlay
comparing the computezivalues with the “true” height field. However, this infornatiis
not available for the thesf ace dataset, and its slope data is known to contain substanti
localized errors due to highlights and other non-Lamberfeatures. Even the synthetic
data are affected by gradient sampling noise in regions @i burvature.  Thus, if we
compared the integrated field with the original functibfx,y) or with laser-range height
maps we would not be able to separate the effects of datesdroon errors introduced by
the integrator. Therefore, we choose to evaluate the acgafeeach method by comparing
its output to that of Agrawal’s M-Estimators (ME) method, ialh appears to be the most
accurate and robust of the integrators we tested, and deturaproduces the true height
field of the synthetic maps. In each case we computed the RKB ebetween the two
integrated height fields, after shifting both to have zer@amend the relative RMS error
e/R, whereRis the RMS value of the two height fields. In these computatiee considered
only the parts of the domain where the weight fieldvas nonzero.

Results and conclusions:As table2 and figure3 show, the only methods that obtained
usable results in all data sets were Agrawal’s Affine Tramsfo(AT) and M-Estimators
(ME) methods, and our multiscale method (MS). The unwejmethods (FC and UP)
and those which do not accept external weight maps (AS andf&Myl completely on the
datasets with cliffs and invalid data.

Limitations The multiscale approach is not valid in situations like fegdrwhen the actual
domain (the region where the weights are nonzero) includesigand narrow corridor.
After a couple of reductions, the corridor will be overrunsro weights. Then the recursive
solution will be useless as a starting guess, and the Garidst8eration may take thousands
iterations to converge. In such cases, direct solutionefitiear system may be much faster
than our method. How to make MS work in such cases is beyonskcthye of this paper.
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spdone sbabel cbranp psface

f,g

FC

UP

AS

EM

AT

. O e L O

Figure 3: Datasets used in the tests, showing (from top tolmtthe gradient map
f, g, the reliability weight mapv, and the height field integrated by each method.
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Table 2: Relative RMS errors of each method from the ME refegesolution.

spdone sbabel cbranp psface \
Meth. e e/R e e/R e e/R e e/R
FC 0.66| 1.9% | 0.56| 2.1% || 29.99| 120.1%| 19.47| 98.0%
UP 0.14| 0.4% | 0.00| 0.0% || 29.61 | 107.1%/| 28.94 | 114.6%
AS 2.28| 6.6% || 3.22| 12.5%|| 29.30| 107.7% | 29.76 | 106.0%
EM 482 | 13.4% | 2.14| 8.0% || 29.61| 107.0%/| 24.67 | 108.7%
AT 1.77| 51% | 3.17| 12.3%| 0.00 0.0% || 0.10 0.7%
ME 0.00| 0.0% || 0.00| 0.0% | 0.00 0.0% || 0.00 0.0%
MS 0.67| 19% | 0.60| 2.2%| 4.23| 13.0%| 0.73 3.9%

Figure 4: A pathological case for multiscale integratiomor® left to right: f(©
andw© (256x 256),w (16 x 16), and the heightsobtained by ME and by our
algorithm with 200 iterations per level.

5 Time and memory

Datasets and methodsTo evaluate the efficiency of our method, we measured the abmp
ing time and memory needed for the integration of two squeadignt fieldsspdone and
psf ace, sampled with various grid sizes from 6464 to 512x 512.

We compared our method against two weighted Poisson iritegnarovided by Agrawal
et al. [1], namely the Affine Transforms method (AT) and the weight@is§on system
builder and solver (PC) that is the innermost loop of theiEstimator, Energy Minimisation,
and a-Surface methods. We removed the outermost loop of thesthlee methods since
we are concerned only with the integration problem, not tledlem of inferring the weight
map. Those are the only methods in the literature that aecegitability weight map (thus
solving the same problem as ours) and are fast enough faiqadagse.

Results and conclusions:The results of these tests are shown in fighireThe absolute
runing times are not directly comparable since our code 3 while the other methods are
in Matlab/Octave. However, the plots in figube(top) show that the running times scale
quite differently: likeO(N) for our algorithm (solid line). and apparently likN®) for
the direct Poisson solvers (dashed lines).

Our multiscale integrator also uses less memory than theetdgolvers; see figurgé
(bottom). Its memory usage is dominated by the Poisson myst@atrix A which has at
most 9N nonzero entriesit uses BObytes forA and 5N bytes for the reduced-scale maps.
The direct solving methods need to store the mairand also Gauss's triangular factdr
(or Cholesky’sR). For these methods, we counted the nonzero enttigs A andNy in
U, and estimated the memory usage conservativley Bls 26Ny bytes. We observed that
their memory usage seems to grow IREN?1%) (dashed lines).
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1000 1000 T T T
o AT psface (sec)

o AT s’pdome (se(.:)
o PC
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100 F u Ms ' BT 10 u Ms ,:::@:‘:i

64x64  128x128 256x256 512x512 64x64  128x128 256x256 512x512
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o AT  spdome (MB) ) o AT psface (MB)
o PC g o PC
100 f = MS e 1 100 f = MS
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Figure 5: Top: Log-log plots of the running time of two direstilving methods
(PC,AT) and of our multiscale method (MS), in seconds. Butthog-log plots
of memory usage for the system’s matfand itsU factor (if any), in MBytes.

6 Conclusions

Our weighted multiscale integration algorithm is substdiytfaster and uses substantially
less memory than other methods with comparable accuracyolndtness, both in practice
and asymptotically. As fas as we know, ours is the only methatican integrate slope maps
of megapixel resolution, with missing data and cliffs of noln height, within practical
memory and time limits. It can be used on its own, with a giveight mask, or as the core
of other methods that attempt to deduce the weight mask fnerslope data and other clues.
Out method can also be adapted to use other estimators fbafhacian and divergent.
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