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Abstract 

The current BDII model relies on information gathering from agents that run on each core 

node of a Grid. This information is then published into a Grid wide information resource 

known as Top BDII. The Top level BDIIs are updated typically in cycles of a few minutes 

each. A new BDDI architecture is proposed and described in this paper based on the 

hypothesis that only a few attribute values change in each BDDI information cycle and 

consequently it may not be necessary to update each parameter in a cycle. It has been 

demonstrated that significant performance gains can be achieved by exchanging only the 

information about records that changed during a cycle. Our investigations have led us to 

implement a low latency and fault tolerant BDII system that involves only minimal data 

transfer and facilitates secure transactions in a Grid environment. 

 

Keywords: decentralized BDII, performance aware cache control, data redundancy and 

compression, data authentication and secure data transfer.  

 

1. Introduction 

The Berkeley Database Information Index (BDII) [1] plays a key role in any Grid 

infrastructure.  The BDII database reflects the current status of the Grid resources that 

are available at a particular moment in time. Such information is normally collected and 

propagated by information services, which can be defined as “databases of resource 

attributes and metadata for system management and resource discovery” [2]. This 

information is used for tasks such as resource discovery, workflow orchestration, meta -

scheduling, files transfer/cataloguing and security [3].  

The current BDII model is hierarchical in nature. Agents running on each core node of a 

site collect the current status of the resources in value-attribute pairs [19], aggregate 

them and update the BDII on that particular site (the so called siteBDII). At a higher 

level in a Grid, the resources’ data is fetched from all site BDIIs that are running at 

individual sites and is updated in a Grid wide BDII (the so-called TopBDII). This 

mechanism is depicted in figure 1. Thus having information about the resources and 

their status is critical for a fully functional Grid. 

In the current model, the TopBDIIs in each cycle fetch resource information from 

their respective siteBDIIs. This information is fetched in an LDIF [13] [14] format an d 

is stored in an ldap database [5]. This mechanism keeps the TopBDIIs updated with the 

latest information and as a consequence the TopBDIIs provide a global overview of the 

resources and services that are available at a given instance in a Grid. Normally the 
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operation required to update or refresh entries in a database takes a few minutes for 

each cycle. An analysis of the LDIF data fetched during any two consecutive cycles 

from a siteBDII reveals that the values of only a few attributes undergo changes, while 

the remainder of the attributes remain the same (see table 1). Laurence Field et al., 

observe [7]  that “97.8% of the changes are confined to 14 attributes only”.  

Another approach to studying the attributes’ behaviour is to find the changes at 

record level in the LDIF datasets that are being fetched, rather than finding the 

attributes that have undergone changes in a cycle. This approach provides an effective 

mechanism for analysing the attribute changes and helps in proposing modifications in 

the BDII model for performance improvements. The approach also makes the 

implementation phase relatively simple, as will be discussed in the later sections.  

 

 

Figure 1: Information gathering process in a TopBDII 

 

This paper discusses the findings of an analysis that has been performed on the fetched 

datasets and proposes modifications in the BDII model for performance improvement. 

Section 2 provides background to the proposed approach, whereas in section 3 the 

architecture and description of the proposed approach have been discussed. Section 4 

describes the experimental framework that has been used to evaluate the proposed approach. 

Section 5 provides a detailed overview of the results that were achieved by implementing and 

executing the proposed algorithms. Section 6 gives an overview of the state of the art and 

section 7 concludes the findings and briefly presents the future directions in this work. 

 

2. Background to the Proposed Approach 
 

 In the analysis described in this paper the same ldapsearch querying model (for collecting 

the LDIF datasets) has been used as is being employed in the current WLCG model [15]. The 

Worldwide LHC Computing Grid (WLCG) combines the computing resources of more than 

323 computing centres in 55 countries, aiming to harness the power of 100,000 CPUs to 

process, analyze and store data produced from the LHC, making it equally available to all 
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partners, regardless of their physical location. The trends of the attributes’ changes and data 

redundancy were observed in the data that has been fetched from all sites, but being the most 

resource rich and representative site in the WLCG Grid, results have only been presented for 

the CERN-PROD production site [12]. The findings can also be applied to other Grid 

Information Services that employ models that are similar to BDII [18][19][20]. 

An experimental setup has been prepared to measure the differences in the datasets that 

have been fetched from a siteBDII during several consecutive cycles. The statistics generated 

from this experiment reveal that the number of records changed in each cycle, on average, is 

less than 2.37%. This led us to propose a more effective approach in which we only exchange 

the information in datasets that has undergone some change in a previous cycle. The details 

about the experimental setup and the results are described in the later sections of this paper. 

On the basis of these results, it is proposed to introduce a caching mechanism into the BDII 

model. The model will use the “differences” in the datasets instead of exchanging the whole 

datasets for updating the TopBDIIs. To dynamically utilize the caching mechanism in the 

current implementation, it is introduced as a plug-in since this will require very few 

modifications in the BDII implementation scripts. The following is a summary of the 

advantages that have been envisaged by implementing the proposed modifications: 

 Removing Data Redundancy: The BDII schema [10] contains data for static and dynamic 

parameters. The static parameters undergo changes only at the time of resource 

reconfiguration in a Grid site. In the dynamic parameters, very few variations have been 

observed between datasets of any two consecutive cycles, due to the short time interval 

between the cycles. Developing a cache mechanism will eliminate the redundancies and 

improve the BDII performance. 

 Secure Data Transfer: Currently the data transfer between a TopBDII and a siteBDII is 

triggered through ldapsearch, which is an insecure method of data transfer [3], since the 
data movement is in plain text. In the proposed model, the data from a local ldap 

database will be searched, at the same site where the siteBDII is collecting the data, and 

the “differences” will be calculated and stored locally in a file. This file can then be 
pulled by other remote TopBDIIs using secure protocols such as gridftp. This 

mechanism will help in providing secure data transfer without adding a new security 

layer in the BDII model. 

 Separating Retrieval and Remote Transfer Mechanisms: The proposed model suggests 

that the data should be retrieved and stored in a file locally. This file should then be 
pulled by other remote TopBDIIs through secure protocols, as discussed in the previous 

paragraph. This mechanism will separate the search and the remote transfer operations, 

thus minimizing the probability of failures when compared to the data querying process 
using the ldapsearch command. In addition the new protocol for fetching the 

“differences” file may have built-in multi-streams/data recovery strategies. This feature 

will help in providing a swift transfer of the data and, in case of a failure, will provide 
some level of data recovery. Separating the retrieval and the transfer mechanisms has 

also another advantage in that a transfer protocol can be replaced with an improved one, 

as and when new releases or implementations of such protocols become available. 

 Checking Data Transfer Authenticity: The data can get corrupted during transfer due to a 

number of reasons. In the current model there is no mechanism to verify the authenticity 
of the data that is being transferred. The proposed model will require the metadata to be 

encapsulated alongside the dataset. This metadata will complement the data, with some 

additional information, for improving the quality and authenticity of the data. 
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 Data Compression: Extra mileage can be drawn from the proposed scheme by 

implementing various compression methods on the files that are being exchanged. This 

mechanism will further reduce the data transfer time. 

As a database model, BDII caters for both the storage and the retrieval of information. The 

approach in this paper will remain limited to proposing and implementing the improvements 

at the highest tier i.e. the TopBDII. At this level, significant amounts of data are exchanged, 

the redundancies in the data are quite high and the frequent data transfer processes consume 

much of the internet bandwidth in a Grid infrastructure. The proposed model has been 

introduced as a plug-in to the existing system.  This scheme has been devised so that during 

the implementation phase, the proposed model should not disturb the current working of the 

model in the WLCG. The new scheme will add some overhead in finding the differences and 

then generating the ldif files, however, as discussed later in the results section, the advantages 

of the new scheme far outweigh the overheads introduced. 

 

 

Figure 2: ldif dataset exchanges between TopBDIIs 

 

3. Description of the Proposed Architecture 

Before the proposed model is presented, it is useful to briefly discuss the current BDII 

approach. In the existing model, each TopBDII fetches datasets from its siteBDII servers that 

are available in the Grid infrastructure. A BDII script (the so called BDDI-update) is invoked 

during each cycle which sends queries to remote BDIIs, by making use of the URLs that have 

been retrieved from a configuration file. The outputs are stored in files that are uniquely 

named according to the site’s abbreviated naming conventions. The naming conventions are 

also retrieved from the configuration file. The output files thus created are given the ldif 

extension. In order to achieve efficiency, the BDII script forks as many child processes as 

there are URLs in the configuration file. At the end of each cycle, the BDII script rebuilds the 

ldap database and its indices by merging all the data in the Glue Schema [10] format, using 

the ldif files that have been recently fetched [7]. It means that if N sites are running TopBDIIs 

in a Grid infrastructure and there are M siteBDIIs connected to the TopBDIIs, then M*(N-1) 

sets of data will be exchanged during each cycle. This mechanism is depicted in figure 2. 
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3.1. The proposed BDII model 

During the data exchange and synchronization process between the TopBDIIs, as discussed 

earlier in the introduction, significant data redundancy has been observed. It is proposed that 

instead of exchanging the data as a full dataset, if only the changes in the data that occurred in 

a site during each cycle are exchanged, the performance of a Grid infrastructure will be 

improved. The proposed mechanism works in the manner now described. 

To enable this “changes only” approach to function properly, it is necessary to locally 

calculate the differences between the datasets that have been fetched from each siteBDII. For 

this to happen, an algorithm needs to be implemented at every siteBDII, which queries the 

local resources in the same manner as it queries the remote siteBDII in the current model. The 

retrieved data should be stored in a file, hereafter called the ldif file. To establish the 

differences, this data should be compared with the dataset that was retrieved and saved in a 

previous cycle. The changes found are stored in another file, hereafter called the dif file. All 

TopBDIIs, which so far pull the full datasets, may now fetch these dif files. An up-to-date 

dataset can then be generated by patching the changes stored in the dif file to its 

corresponding dataset, that has been saved in an ldif file during a previous cycle. The 

generated datasets can then be used for updating their local databases in a similar way since 

they are being used in the current implementation. This means that the existing model will in 

no way be disturbed and a caching mechanism can be introduced for exchanging the ldif data. 

By getting rid of the major redundancies in the ldif data, it is expected that the sizes of the 

files, that contain only the differences in the datasets, will be small when compared to the full 

datasets, thereby significantly reducing the time required for their transfer. The proposed 

model is depicted in figure 3. 

 

 
Figure 3: Only changes in the parameters are exchanged in the proposed mode 

 

Some metadata needs to be wrapped up along with the differences dataset so that the goals 

defined in the introduction section of this paper can be achieved. This metadata will help in 

verifying the integrity and authenticity of the data and will contain the information that is 
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required during the implementation phase. The metadata will be saved as an XML file, so that 

its different fields could easily be parsed. 

A template for the wrapper file is given here: 

<wrapperfile> 
<action> Value </action> 

<cycleno> Value </cycleno> 

<freshtime> Value </freshtime> 
<checksum> Value </checksum> 

<payload> 

records 
</payload> 

</wrapperfile> 

 

3.2. The proposed approach 

As has been discussed in the previous sections, the “differences” are calculated at the same 

siteBDII where the data has been produced (acting as a server) and are fetched by all other 

TopBDIIs for their consumption (acting as clients). This means that the server’s and client’s 

parts will be working asynchronously and a server side script will start producing dif files as 

soon as a siteBDII is in operational mode. However, the timing for fetching the files will 

differ from one site to another, depending on when the execution starts at a particular site. To 

ensure synchronisation, it is proposed that a server side script must always produce two types 

of files during each cycle; one file storing a full dataset and the other file storing the 

differences between the datasets. A cycle number is assigned to each file that has been 

produced in the cycle. The same cycle-number needs to be stored under the attribute 

<cycleno> for both ldif and dif types of the wrapper files. The checksum of the full dataset 

file is also calculated and is stored in the wrapper file. Refer to the XML template above for 

all the attributes discussed here. 

When a script running at a TopBDII as a client starts retrieving data from a remote 

siteBDII for the very first time, it begins by fetching the file containing the full dataset and 

saves it in a ldif file. This file will serve as the base LDIF dataset. After waiting for the 

<freshTime>, it fetches a dif file with a string “cycle-no+1” that is appended in the file name. 

The data thus found will be used for the generation of the current cycle’s LDIF data by 

patching it to the saved ldif file that was received during the previous cycle. This process can 

be repeated, by fetching dif files, doing the patching and obtaining the data for the current and 

next cycles. The checksum of the generated file should be compared with the checksum value 

contained in the wrapper to ensure the validity of the generated data. An <action> value 

“Initialize” has been used to instruct the client that it should restart itself.  It is required in the 

case where a server side script fails due to the reasons discussed in the following paragraphs. 

In normal cases, this attribute contains a “Normal” value. 

If at any stage during the operation it is found that the cycle-number of a server side differs 

from that of a client side then the two sides have become out of sync. In this case, it should 

follow one of the solutions discussed under the failure cases. By default, the daemon running 

on the server side is invoked as a service with an action-value of ”Normal”. In the case of a 

problem, a cron job will investigate and invoke it with an action-value of ”Initialize” which is 

an indicator to all clients that the server side script has been restarted. The discussion on using 

a cron job as a test script is detailed in the following paragraphs.  
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The configuration file will contain the sites’s abbreviated names (abbrev-names), delta-

time and query details. The abbrev-names should be the same as those found in the 

configuration file on the client side. The delta-time is the wait time between two queries. A 

query is formed according to a local site_bdii configuration, for example, for CERN-PROD 

site; it will look like the following: 

ldapsearch -x -LLL -h prod-bdii.cern.ch -p 2170  -b mds-vo-name=CERN-PROD,,o=grid  
'(|(objectClass=GlueSchemaVersion)(objectClass=GlueTop))’ 

To make the system robust, a script has been implemented that keeps track of the status in 

a process. It has been proposed to run this script as a cron job. This type of script should be 

running both on the server and on the client side. On its invocation, it will check whether the 

client and server side scripts are behaving normally. The criterion for checking the status is to 

find that the file to be created during each cycle has been created in time. This is done by 

comparing its date stamp with the system date. If the difference is beyond some tolerance 

limit, a cron job will investigate and then re-execute the failed daemon. 

The proposed scheme may have shortcomings. Some of the possible issues and their 

remedies are the following.  

a) a server side script may fail 
b) a client side script may fail 
c) a checksum may reveal that the data has been corrupted during the transfer/generation 

d) a retrieval side may fail to retrieve dif files during one or more cycles 

The solution for the first of these problems is to restart the server side script, by putting the 

string “Initialize” in the <action> section of the wrapper file. This notifies the clients that the 

server side script has been restarted and that they need to readjust their values. All the client 

sides on sensing the indicator should retrieve an ldif file, instead of a dif file, and should 

restart themselves as they did for the first cycle. To address the other issues in the list, it is 

again recommended to restart the client side script; it should start operating in the same way 

as it did after receiving the “Initialize” indicator. For restarting the client or server side 

scripts, another script has been written, which is invoked by cron. This assesses the status of 

currently running scripts and re-runs a new copy with initial conditions, after killing the old 

processes, just in case a script is malfunctioning. Another problem that has been observed is 

related to the status of a siteBDII. If a siteBDII is down, the script for updating a ToBDII 

keeps on waiting until a time-out occurs. It is thus recommended to ping all the sites 

occasionally and skip those which are inaccessible for any reason. 

 

4. Experimental Setup 

Due to security issues and access privileges, it may not be possible to deploy the proposed 

system on all sites in the WLCG Grid.  It may also not be desirable to deploy a prototype of 

the proposed approach in a production Grid infrastructure since it could disturb its operation. 

Therefore, the sample data for this research study was retrieved from the CERN-PROD site 

and was then transferred to a local setup for further studies. The data was captured for 100 

cycles and each cycle had an interval of 5 minutes. For the experimental setup, two scripts 

have been implemented to calculate the statistics mentioned in this paper. The differences 

between the data of consecutive cycles were calculated and are plotted as shown in figure 4.  
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Figure 4: Difference between data of consecutive cycles 

The experiment was repeated at different times and it was found that the number of records 

that were changed in a cycle were less than 2.37% of the total ldif records. The files that 

contain changes in the datasets are quite small in size when compared to the ldif files that 

contain the full datasets. Zipping the dif files yield even lighter file sizes (see figure 5). It is 

obvious that exchanging the comparatively smaller files will reduce the amount of data 

transfer across wide area networks in Grids, save bandwidth and reduce the failure rates, thus 

improving the performance of BDII [8][17]. 

0 20 40 60 80 100

10

100

1000

10000

F
il

e
s

 S
iz

e
 (

K
B

)

Cycles

  ldif

  dif

  difZipped

Figure 5: ldif, difference 

and zipped difference file sizes 

 

The test scripts that have been written for this study do not contain any logic for generating 

wrapper and meta data parts, which are actually required at the implementation time. The 

wrapper feature can easily be incorporated in the scripts at the deployment time. The dif files 

have been processed further to calculate the different types of statistics presented in this paper 

and are discussed further in the results and discussion section. To check the validity of the 

generated files, they were compared with an original copy of the datasets by using the 

procedure now explained. 
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We started with an ldif file that contained a full dataset which was taken as the 0th cycle 

data. It was patched with the “differences” data of the following cycle, thus generating a full 

dataset for the next cycle. The generated file was compared with its corresponding original 

file and was found compatible at the bit level. The process was repeated for the whole sample 

data and complete agreement was verified. 

In the proposed approach, it has been considered that the model should be implemented as 

a plug-in to the existing BDII model. In the existing model, a script (the so-called bdii-

update) is executed and its configuration parameters are kept in a file called bdii.conf [16]. 

The script, using ldapsearch, keeps on fetching the data from the siteBDIIs in a Grid and 

stores them in files. At the end of a cycle, these files are merged and used for updating the 

TopBDII. Under the new scheme, a plug-in has been introduced into bdii-update by making a 

few minor modifications in the existing code. The plug-in implements a caching mechanism 

to carry out the required processing at local sites. After the modifications the system does not 

fetch the data directly from the remote siteBDIIs. The proposed system can now consume the 

cache data and resumes its processing in a normal way as before. Using this approach the 

proposed scheme can be introduced seamlessly in the production BDII’s. To control the 

enabling/disabling of the plug-in, a new attribute “PLUGIN” has been introduced in the bdii-

update.conf file. In a routine operation, bdii-update will be running as a normal legacy code, 

with PLUGIN set to OFF. By setting the value of the PLUGIN attribute to ON, it starts 

working according to the new scheme. This approach will help in creating a dynamic plug-in 

for the new scheme, without disturbing the current working of a Grid. Under the new 

framework, it is mandatory to keep on executing the server side software so that it should 

always be able to provide the dif files to the sites that have adopted the proposed model. 

 

5. Results and Discussion 
 

The worldwide LHC Computing Grid (WLCG) [11][15] project was initiated with the aim 

of developing the Grid for the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland. 

The LHC is expected to produce around 15 Peta bytes of data annually. This data is replicated 
around the world to enable thousands of physicists to carry out their analyses from their home 

institutes. The WLCG is assigned the task of selecting and deploying appropriate middleware 

– the software that provides seamless access to the computing Grid, and controls and 
monitors its performance. It is then ready to provide an environment for job execution to 

hundreds of global users [4]. Currently 323 grid sites located in 55 countries are contributing 

computing resources to this project. At the time of this paper, the WLCG grid is functional 

with computing nodes of more than 73,000 CPU’s and a storage capacity of more than 195 
PB. Some of these sites are interconnected via multiple 10GB WAN links. Through the Grid 

these resources are available to its users, as if it is virtually a single resource.  

As stated earlier in this paper, data was fetched from all siteBDIIs of the WLCG 
production Grid and was stored in files in the LDIF format. At the time of experiment, it was 

found that almost 323-siteBDII servers and a fewer number of TopBDIIs are deployed in 

WLCG [20]. There are almost as many TopBDIIs as the number of sites (with a few 
exceptions as a few sites are using TopBDIIs of other sites). Figure 6 shows the graph of 

these file sizes. The site with the highest peak belongs to CERN-PROD. The ldif files were 

fetched from all siteBDIIs for one cycle and their total size sums to 66MB for the sample 
data. Using the familiar M*(N-1) formula explained in section 2, we can calculate that 

66M*322 = 21GB data is transferred in just one cycle. 
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Figure 6: LDIF files from all sites 

There are almost as many TopBDIIs as the number of sites (with a few exceptions as a few 

sites are using TopBDIIs of other sites). Figure 6 shows the graph of these file sizes. The site 

with the highest peak belongs to CERN-PROD. The ldif files were fetched from all siteBDIIs 

for one cycle and their total size comes out to be 66MB for the sample data. Using the 

familiar M*(N-1) formula explained in section 2, we can calculate that 66M*322=21GB data 

is transferred in just one cycle. 

A frequency distribution table that has been prepared from the ldif data is shown in table 1. 

The data clearly shows that 99.78% of the most frequently changing parameters are confined 

to only a few attributes. Almost similar statistics were calculated by Field et al. in their paper 

[7] and are reproduced later in table 4 for comparison. 

Table 1: Most Frequently Changing Attributes 

Attributes Freq. (%) 

Attributes Freq. 

(%) 

GlueCEStateEstimatedResponseTime 27.49 GlueCEPolicyAssignedJobSlots 0.25 

GlueCEStateWorstResponseTime 26.17 GlueCEInfoTotalCPUs 0.25 

GlueCEStateFreeJobSlots 11.51 GlueSEUsedOnlineSize 0.16 

GlueCEStateFreeCPUs 10.08 GlueSESizeFree 0.16 

GlueCEStateTotalJobs 8.33 GlueServiceDataKey 0.08 

GlueCEStateRunningJobs 7.65 GlueSchemaVersionMinor 0.05 

GlueCEStateWaitingJobs 3.01 GlueSchemaVersionMajor 0.05 

GlueServiceStartTime 1.09 GlueTop 0.05 

GlueSAStateAvailableSpace 0.83 GlueSchemaVersion 0.05 

GlueServiceStatusInfo 0.75 GlueKey 0.05 

GlueSAUsedOnlineSize 0.54 GlueChunkKey 0.04 

GlueSAFreeOnlineSize 0.54 GlueServiceDataValue 0.04 

GlueSAStateUsedSpace 0.27 GlueServiceData 0.04 

GlueCEPolicyMaxRunningJobs 0.25 Total: 99.78 
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A further investigation into the “differences” files reveals that only a small fraction of the 

total number of records in the ldif datasets underwent changes. Even the records that contain 

changes have several duplicate entries. As a consequence the unique records have been 

identified and the statistics are plotted in figure 7. From this information, we can conclude 

that a significant redundancy still remains in the files and further gains can be achieved if 

these dif files are zipped before being exchanged. 
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Figure 7: Number of changed records/Unique records 

 

The records that underwent changes cannot be used in the statistical analysis, because they 

are not in a format that can be used for patching. However, the differences obtained using the 

diff commands in Linux are in a format that can be further utilised. This format carries an 

overhead, which helps in generating the n+1th cycle ldif file, by applying the “differences” on 

the nth cycle ldif file. The overheads include a slight increase in the sizes of the dif files, the 

additional time taken during the execution of the scripts for finding the differences at the 

server side and the additional time spent in the unzipping and patching processes to 

regenerate the ldif files at the client site. The unzipping and patching process in particular 

consumes more time as this has to be done for all the dif files. As an illustration, the times 

spent on gzipping, and then serially generating the files by the unzipping and patching 

operations on 100 files are shown in table 2: 
 

Table 2: The time spent on gzipping, unzipping and patching 

 Gzipping Unzipping and Patching 

Real Time 0m0.655s 0m22.802s 

User Time 0m0.451s 0m2.991s 

System Time 0m0.041s 0m3.527s 

These times have been calculated on a 32-bit machine with a 3.2GHz processor. The time 

taken can be reduced by performing these tasks in parallel, using a multithreading approach. 

The sizes of the dif files in zipped as well as unzipped forms are plotted in figure 8. The data 
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transfer activity between TopBDIIs is accomplished through ldapsearch, which is currently 

insecure. In the proposed system, “globus-url-copy” has been used for the data transfer, which 

will increase the efficiency and security of the transfer protocol. If a protocol that is being 

used has an inherent capability of multi-streaming, it will further improve the data transfer 

efficiency. The peaks in figures 7 and 8 look different because they represent different data 

sets. In figure 7 the numbers of changed records have been plotted whereas figure 8 

represents the dif file sizes in zipped and unzipped formats. 

. 

 

 

 

 

 

 

 

Figure 8: Changes between the consecutive cycles (normal/zipped) 

 

For comparison, the sizes of the ldif files that contain the original data are shown in figure 9.  
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Figure 9: File sizes of raw ldif datasets retrieved from the CERN_PROD site 

The trends in figure 9 show that the dataset size retrieved from the CMS-PROD site during 

each cycle remains almost the same (~4.57MB). These graphs suggest that the response of the 

BDII system, as a result of the proposed changes, is such that it is a good candidate for the 
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addition of a cache mechanism in its architecture. As discussed in the proposed model 

section, the changes as well as the metadata are saved in the dif files. The sizes of these files 

for a run of 100-cycles are shown in figure 8. Comparing figures 8 and 9 shows that the 

implementation of the proposed model has reduced the dataset size to almost 27KB per cycle 

from 4.57MB, which is a significant optimization. If this saving is considered in the light of 

the refresh-time and the available sites in the Grid, the optimization achieved could be around 

99.40%, which is difficult to ignore for optimal Grid operations.  

We are also expecting similar reductions in the data transfer from other sites because all of 

the Grid sites operate under similar conditions, as far as the BDII model is concerned. The 

proposed scheme becomes more significant in the light of the fact that the trends in almost all 

Grid infrastructures show that the number of sites and the number of jobs executing are ever 

increasing [7]. This phenomenon contributes directly towards the amount of the ldif data that 

is being exchanged in a Grid. During the operation of the Grid site PAKGRID-LCG2, it was 

observed that the ldif data retrieved in a cycle from the CERN_PROD site increased from 

~1.5MB to ~4.5MB during the period 2007-2010, as a greater number of sites joined the 

WLCG during this period. 

0 20 40 60 80 100

1000

10000

100000

1000000

F
il

e
 S

iz
e

 

Cycles

 Diff

 ZippedDiff

 Bytes

 
Figure 10: Bytes level changes comparison with zipped dif file sizes 

To provide comprehensive statistics about the total number of records found in the raw ldif 

files, the number of records that have been changed in each cycle, and the bytes level changes 

are shown in figure 10. To identify the byte level changes, the values of the 

attributes containing the changed records were extracted and plotted by counting the number 

of bytes involved in the change. These numbers can be taken as a theoretical limit, which 

suggests how much redundancy can be removed. It is obvious from the nature of the data that 

the dif files contain many duplicate records. The attributes are taken from the same schema 

and are repeatedly populated, so there remains a lot of redundancy in the data. 
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The results demonstrate that the compression operation will further reduce the data 

transfer size. This fact is also verified in the results that have been presented in the figures in 

this section. The reduction in the data that is being transferred will obviously improve the 

performance of BDII. The data transfer operation will consume less bandwidth, which means 

that even the sites that do not have good internet connectivity can maintain their own 

TopBDIIs. Maintaining a local TopBDII at each site will reduce the retrieval time and the 

probability of failures. It will also help in load balancing. Normally a BDII database performs 

many more retrieval operations than updates (due to an ldap server), so it is expected that 

having more TopBDIIs in a Grid will have a profound effect on the performance of a Grid. 

The efficiency of a TopBDII depends on how much up-to-date data it contains at a given 

instant and this is very much dependent upon the refresh time. After the implementation of 

the proposed scheme, it is now possible to reduce the refresh time interval. Due to the smaller 

sizes of the files that need to be transferred, this will have a very profound effect on the 

resource utilization where TopBDII’s are hosted. To save time and to speed up the operations, 

the TopBDII script spawns many child processes that fetch the information from all siteBDIIs 

in parallel. Due to the smaller file sizes, these child processes need small buffers and also 

collapse in relatively shorter periods of time, thus releasing the resources promptly. This has 

also helped in improving the scalability of the BDII model. 

During the data fetching operation from the CERN_PROD site, it was observed that the 

ldapsearch client failed with the error “Can't contact LDAP server (-1)” for almost 14-16% of 

the cycles, providing partially retrieved datasets. The percentage of failures may be even 

higher at peak loads on a site. It was also observed that the LDAP server in a BDII does not 

provide any recovery mechanism in case of a failure. The same data when collected in CERN 

(locally) reduced the failure rate to almost zero. It is expected that a protocol used for fetching 

the files should have a built-in mechanism for a fail-safe data transfer. The proposal made in 

this study will provide the remedy for testing the failures and improving the chances of 

recovery. Moreover, the checksum value will verify that the data at the producer and 

consumer sides are in agreement. If some differences are found, the original ldif file can be 

downloaded and the same mechanism can be carried out again. The patching operation may 

complain if a dif file does not contain the proper data and thus should store the rejected 

records in another file. Some additional features can also be implemented in the code that 

runs at the client side for checking the integrity of the data. For example, it can retry if 

globus-url-copy fails to download the data. The same script keeps on checking the update 

operation on the regenerated data. If these files are not updated within a tolerable time 

limit, they can be downloaded again.  

The achieved optimization comes at a cost. The individual BDII servers have to do 

additional work to identify the changes and some time is always spent on data encoding and 

decoding operations. Once a dif file has been fetched, a site has to do more work in 

reconstructing the ldif files from the decoded data. This means that the operations will add 

more complexity at the TopBDII and siteBDII levels in Grid sites. However, the savings 

achieved in the internet bandwidth, the data transfer time, in achieving safe and secure data 

transfers and in reducing the probability of service failures far outweigh the overheads. The 

overheads that are involved in providing additional activities such as coding/decoding were 

calculated and, as shown in table 3, they are found minimal when compared to the gains. 

The data presented in table 3 suggests that a file of 27K bytes requires a fraction of the time 

when compared to downloading a file of 4.57M bytes. Moreover, the overheads incurred for 
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processing the data for the cache mechanism seem quite tolerable. Taking into account the 

case that all TopBDIIs are fetching the same amount of data, the savings become quite 

significant. These statistics were calculated on a Linux box with a Intel Pentium(R) 4 and 

having a CPU of 3.40GHz. 

Table 3: Statistics obtained during the validation of the proposed model 

Actions  Remarks 

Size of raw data retrieved 4.5MB  

Size after coding/zipping 27KB Reduction > 99% 

Time taken during coding and zipping <0.1s  

Time taken during unzipping and generation <0.1s  

Total overhead (time-wise) <0.2s  

Diff. file transfer time <2s  

 

 
6. Related work 

Field et al. in their paper [7] calculated the mutability in the BDII data. The conclusions 

drawn in the paper show a direct correlation with the work presented in this study. The 

frequency distribution for the frequently changing attributes has been reproduced in table 4. It 

is worth noting that the set of attributes and their frequencies measured in this study and the 

one calculated by Field et al. do differ. In our opinion, these values will always differ and 

depend upon the instance when the data is collected and the scope of the data that is being 

analyzed. Our dataset is confined to the CERN-PROD production site whereas Field’s et al. 

have collected it from the whole WLCG for a week, approximately [7]. 

Table 4: Mutability in BDII data 

Attribute Percentage 

GlueCEStateTotalJobs  9.41% 

GlueCEStateFreeCpus  9.52% 

GlueSAStateUsedSpace  5.38% 

GlueCEStateFreeJobslots  19.36% 

GlueCEStateWorstResponseTime  11.79% 

GlueSASateAvailableSpace  6.57% 

GlueCEStateEstimatedResponseTime  12.50% 

GlueCEStateRunningJobs  7.90% 

GlueCEInfoTotalCpus  4.67% 

GlueCEStateWaitingJobs  6.37% 

GlueCEPolicyAssignedJobSlots  0.90% 

GlueServiceStartTime  0.71% 

GlueSAUsedOnlineSize  1.34% 

GlueSAFreeOnlineSize  1.37% 

The proposal made in this study is consistent with the approach adopted in [7], the only 

difference being that the referenced paper calculates mutability and suggests its use at the tier 

level 1 during implementation of the existing model, whereas our approach proposes a 

caching mechanism that needs to be introduced as a plug-in at the tier level 2. As discussed 

earlier, in such a dynamically changing system, one cannot predict which set of attributes will 

always be involved as an agent of change. The set of attributes being monitored can vary 
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from time to time. Therefore any solution provided must be sufficiently generic to cater for 

the dynamically changing situation in the system. The modifications proposed in this paper, 

for finding the changes at records level, appear to meet the requirements of this criterion. 

Astalos et. al. in their paper [6] state that each TopBDII should ask for an entire site info, 

thus generating a huge network load. A BDII could be limited to changed entries only. A 

BDII database could be reloaded after each rebuild, indices would need to updated and the 

hierarchy could be improved at the top level. But they suggest a solution which requires an 

overhaul of the entire BDII system for its implementation. In our opinion, it may not be 

feasible to introduce a completely new information system in an existing production system 

since such changes will affect many other components in the Grid. 

 

7. Conclusions and Future work 

This paper presented a performance aware model of BDII. It has been demonstrated that 

significant performance gains can be achieved in a Grid infrastructure with the adoption of 

the proposed model. The implementation includes mechanisms for the information retrieval 

from the BDII databases, the algorithm for finding the changes for a particular number of 

cycles and decoding it in a format suitable for the caching. The algorithm implementation can 

also generate ldif files and update the BDII database using the decoded data. These generated 

ldif files were found to be 100% bit compatible with the original ldif datasets, when compared 

with the data of 100-cycles having an interval of 5 minutes between them. The algorithm used 

in the proposed model dictates that the data generated during the 100th iteration depends on 

the 99th iteration, which itself depends on the 98th iteration and so on. The compatibility of 

the data generated in the 100th iteration with the original data, which was retrieved directly 

by ldapsearch after the 100th cycle, proves the reliability of the proposed algorithm. 

This exercise is sufficient as a proof-of-concept that the proposed solution will work for all 

sites in a Grid, however, the plug-in does need to be fully integrated and rigorously tested for 

a production environment such as the WLCG. For the collection of the statistics and the 

generation of the ldif files, this test case was executed for one site (CERN) only. For real 

tests, it needs to be launched on all TopBDIIs participating in a Grid. This is not currently 

possible due to limited accessibility on account of security issues and operational limitations. 

However, the provision of the plug-in on/off feature enables the sites to adopt the proposed 

BDII system at their convenience. It will help them in a smooth transition when they want to 

adopt the new model, without disturbing the working of a Grid. All the components that have 

been introduced in the proposed model are available as an open source project, can be 

selected on merit and performance and can be replaced or upgraded as a new version or an 

equivalent component becomes available. 
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