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Abstract

A major consideration in state-of-the-art face recognition systems is
the amount of data that is required to represent a face. Even a small
(64×64) photograph of a face has 212 dimensions in which a face may sit.
When large (> 1MB) photographs of faces are used, this represents a very
large (and practically intractable) space and ways of reducing dimension-
ality without losing discriminatory information are needed for storing data
for recognition. The eigenface technique, which is based upon Principal
Components Analysis (PCA), is a well established dimension reduction
method in face recognition research but does not have any biological ba-
sis. Humans excel at familiar face recognition and this paper attempts to
show that modelling a biologically plausible process is a valid alternative
approach to using eigenfaces for dimension reduction. Using a biologically
inspired method to extract the certain facial discriminatory information
which mirrors some of the idiosyncrasies of the human visual system, we
show that recognition rates remain high despite 90% of the raw data being
discarded.

1 Introduction

Face recognition has been an area of intense research for over forty years and,
although significant progress has been made, a number of major challenges
remain. Much of the research focuses on face recognition using 2D images
which has highlighted some universal problems that affect recognition accuracy.
Two of these problems, pose and illumination variance, can be compensated
for using 3D models rather than 2D photographs. Because of this, and the
increased availability of 3D capture devices, 3D face recognition has become an
active research area over the past decade.

A primary goal of automatic face recognition is to reproduce the phenomenal
ability of human face discrimination. Certain approaches have modelled features
of the Human Visual System (HVS) with great effect e.g. the use of Gabor filters
in [1], but most approaches tend to use more traditional pattern recognition
and classification techniques. The reason for this is arguably two-fold: 1) the
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processes underlying human face recognition are still poorly understood and 2)
good results are achieved using classical pattern recognition approaches.

The motivation for this work therefore comes from attempting to improve
aspects of automatic face recognition by incorporating features of the HVS. In
particular we look at dimension reduction and present a method based upon the
idea of caricaturing that was theorised by Unnikrishnan [2]. By only using facial
data which falls outside the 5th and 95th percentiles for a given face database
(i.e. 90% is discarded) we show that recognition rates only show a proportionally
small decrease thus lending support to Unnikrishnan’s hypothesis.

1.1 Related work

Early research into automatic face recognition focused on describing a face in
terms of absolute or ratios of distances between features [3, 4, 5]. Information
theory inspired a new statistical approach termed eigenfaces by which Principal
Components Analysis (PCA) is used to describe a face in terms of a linear com-
bination of coefficients [6]. Recognition is is then performed using the smallest
Euclidean distance between the coefficients of a probe image and the mean co-
efficients for each identity within the gallery. This approach has the advantage
of not needing to mark and measure fiducial features on the faces as was neces-
sary with the earlier approaches. The Fisherface technique [7] incorporates class
information (in this case the identities of the photographs) in order to find a
better dimensional representation which maximises the clustering of the classes,
making discrimination easier. Both eigenfaces and Fisherfaces are commonly
used in state-of-the-art research as they represent acknowledged benchmarks,
with Fisherfaces providing better recognition performance as long as there are
sufficient training examples [8]. For this reason, the Fisherfaces technique is
adopted for use in this paper.

A different and biologically motivated approach comes from using Gabor
filters [1, 9, 10]. The Gabor filter [11] is fundamentally a sine wave windowed
by a Gaussian. By varying the orientation and frequency of these waves, filter
banks which mimic functionality of an area in the primary visual cortex (area
V1) are created [12, 13]. In the approach used by Wiskott et al. [10], it is
not necessary to mark out fiducial features, as an elastic bunch graph map
(EBGM) finds the features most similar to those in its database automatically.
Testament to the benefits of using biologically inspired Gabor filters comes from
the FERET [14] evaluation and FVC2004 [15] face recognition tests, in which
the top performing algorithms used Gabor filters for feature extraction.

The main drawback of implementing Gabor filters is that they are computa-
tionally intensive. More efficient alternatives are Local Binary Patterns (LBP)
which approximate the Gabor function. This approach is most commonly as-
sociated with face detection e.g. [16] but it has also been used successfully for
face [17] and even expression recognition [18].

The approximation of area V1 functionality by Gabor filters represents the
reproduction of a low-level process. While face recognition undoubtably relies
on this, it is not something uniquely associated with it. A number of high-level

2



features which are directly involved with human face recognition can be found
in [19] including caricaturing. Caricaturing can be defined as the exaggeration
of features away from the average e.g. if someone has a larger than average nose,
the caricature would exaggerate the nose to make it even larger. Caricaturing
essentially enhances those facial features that are unusual or deviate sufficiently
from the norm. It has been shown that humans are better able to recognise a
caricature than they are the veridical image [20, 21]. This finding is interesting
as caricaturing is simply distorting or adding noise to an image, but this noise
aids human recognition and this, in turn, provides insights into the storage or
retrieval mechanism used by the human brain.

Unnikrishnan [2] conceptualises an approach similar to face caricatures,
whereby only those features which deviate from the norm by more than a thresh-
old are used to uniquely describe face. Unnikrishnan suggests using those met-
rics whose deviations lie below the 5th percentile and above the 95th percentile,
thereby discarding 90% of the data. Apart from dimension reduction, an in-
teresting feature of this approach is that because it is norm-based, faces from
under-represented groups (in our case ethnicity and gender) will possess fea-
tures not present in the average population. These features are distinguishing
to that group leading to a clustering of minority groups making discrimination
for difficult. This is analagous to a well documented feature in human face
recognition known as the own-race effect [22] by which discrimination of faces
from races other than the subject’s own is diminished. No empirical support for
Unnikrishnan’s hypothesis is given in [2], so the aim of this paper is to test the
presented theory.

Most face recognition experiments in the research literature are carried out
using 2D photographs, but it has been shown that 3D models lead to improved
recognition rates because illumination and pose can be compensated for [23],
although this finding is not always replicated [24]. The database used for the
experiments in this paper consists of surface normal data captured using the
PhotoFace device (Fig. 1). PhotoFace is a 3D photometric stereo capture system
which was placed in a workplace corridor for six months and left to capture
unconstrained images of employees walking through the device (for more details,
the interested reader is referred to [25]). Photometric stereo is a technique of
illuminating an object from multiple directions and using the known positions
of illuminants and pixel intensity to estimate surface orientation [26]. Surface
normal data is particularly well suited to face recognition as shown by Gökberk
in his meta-analysis [27] on the effect of different data representations for face
recognition. He concluded that “. . . surface normals are better descriptors than
the 3D coordinates of the facial points.”.

If Unnikrishnan’s hypothesis is correct (and also applicable to surface nor-
mal data) we can expect to see little effect on recognition results when only
the outlying 10% of data is used. Also, if Unnikrishnan’s hypothesis reflects a
real process in the HVS, then we should expect it to exhibit some of the id-
iosyncracies of human face recognition abilities. As mentioned above, one such
phenomenon is the own-race effect, and we test whether recognition is worse for
a subject from a minority race than the norm. This is also extended to what
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Figure 1: The PhotoFace capture device. The insets show a flashgun light
source and the ultrasound trigger, which detects the presence of a person using
the device.

we term the own-sex effect by which we might expect worse recognition on the
gender which is under-represented. (NB There is no evidence for the own-sex
effect in human recognition, probably because exposure to one sex over another
to the same levels as to generate the own-race effect is not feasible).

1.2 Contributions

The contributions of this paper are four-fold:

• We show that discarding 90% of facial data by only keeping the outlying
10% just leads to a 24% drop in recognition performance on 3D surface
normal data.

• The drop in performance using 2D data, on the other hand, is much greater
(a drop of 43%).

• This provides empirical support for Unnikrishnan’s hypothesis concerning
the important discriminatory properties of outliers.

• We find no evidence to support Unnikrishnan’s assumption that using
outlying data reflects a process in the HVS in terms of own-race/sex effect
(although further experiments are required).

4



• We show that 3D surface normal data gives better recognition perfor-
mance than 2D photographs on a database of images captured in an un-
constrained “real world” environment.

2 Data and Methodology

The data used for our experiments consists of 61 subjects with at least six
sessions each (that is six sets of photometric stereo images per subject). All
images were taken in a frontal pose with neutral expression. The maximum
number of sessions per subject is 70, the mean number of sessions per subject is
16 with a mode of 7. Of the 61 subjects, only two are female, and only one is not
caucasian - these are the subjects whose sessions are used for exploring the own-
race/sex effect. There are a total of 1000 sessions. Four images are captured
per session with different illuminants in ≈20ms. This effectively freezes the
subject’s motion. For these experiments, visible light flashguns are used (colour
temperature ≈5600K). A standard photometric stereo technique [28, Section 5.4]
is then used to estimate the surface normals at each pixel. Although not used
in this paper, the normals can be integrated to form a surface via, for example,
the well known Frankot-Chellappa method [29]. An example set of images can
be seen in Fig. 2.

The centre of the eyes and nasion are manually labelled on each image. The
images are then scaled and aligned to one another. Fig. 3 shows how the face
region is cropped based around the distance between the centres of the eyes.
This results in a close crop around the eyes nose and mouth, and excludes areas
such as the chin and forehead which can frequently be covered with hair and
are therefore unreliable features for recognition. Due to memory limitations the
images are then scaled down to 80 × 80px.

In order to remove any artefacts which are caused by the flashguns having
different brightness, the greyscale intensity of the images is normalised. This
is achieved by making the mean of each image the same as the mean of all
session images. Other normalisation techniques such as histogram equalisation,
contrast limited adaptive histogram equalisation and increasing the range of
intensity values to a maximum 0-255 were investigated in terms of their effect
on recognition performance, but none offered any improvement.

The images that we use for 2D recognition are generated by taking the mean
of each pixel of the four differently lit images. This reduces any confounding
influence of illumination variance that may be present if only one lighting con-
dition were used e.g. extreme lighting and cast shadows. Each mean image
is reshaped into a vector and these vectors are added into a matrix such that
columns represent sessions and rows represent greyscale intensities at a partic-
ular pixel. As each mean image is 80 × 80px, the dimension of the matrix used
for percentile calculation and subsequent recognition is 6400 × 1000.

For the 3D surface normal data, only the x and y components of the normals
are used, as there is redundancy in the z component. When calculating per-
centiles and performing recognition using the Fisherface technique, the x and
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Figure 2: Four differently illuminated images, the needle map of surface normals
and the integrated surface

y components of each session are reshaped and then concatenated into a single
vector. In the same way as for the 2D mean images, these vectors are added
into a matrix such that columns represent sessions and rows represent x and y
components at a particular pixel. As there are 80×80 values for both the x and
y component, each session is therefore represented by a vector 6400×2 = 12800
in length. The dimensions of the matrix are therefore 12800 × 1000.

In order to work out which data in each image falls in the outlying 10% of
the data, we first need to calculate the thresholds for each pixel which represent
the 5th and 95th percentile values. This is a norm-based approach, and we are
interested in the norm across the whole dataset for each pixel rather than the
norm for each image. For the 2D photographs, percentile values are calculated
for the greyscale intensity value for each pixel. There are 1000 sessions, so there
are 1000 values for each pixel from which we calculate the 5th and 95th percentile
values. Once reshaped into the original dimensions, this results in two 80 × 80
matrices (one for the 5th and one for 95th percentile), examples of which can be
seen in Fig. 4. In the same way, for 3D surface normal data, percentile values
are calculated for x and y surface normal component values for each pixel. Once
these thresholds have been calculated, all pixels which have a value between the
5th and 95th percentile are discarded, leaving only the 10% outlying data.

The method used to test recognition accuracy is the leave-one-out paradigm.
This dictates that every session is used as a probe against a gallery of all other
sessions once. There are therefore 1000 classifications per condition of which
the percentage correctly identified is shown.

The Fisherface technique [7] is used for subspace representation and simple
pairwise Euclidean distance comparison between class means and the probe
image is used for recognition. This particular method has been chosen as it is
well known in the literature, is proven to be effective, it is a linear technique
and it is computationally efficient. While there are better algorithms available,
absolute performance is not what we require for these experiments; we need to
measure relative performance between conditions – a task which the Fisherface
technique is well suited to.
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Figure 3: Cropping the face images based on the inter-eye distance. The distance
between the eye centres is denoted by d.
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Figure 4: Images of 5th, 50th and 95th percentile values (respectively) for 2D
photographs (top row) and 3D surface normals (bottom row). The normals
have been integrated here via the Frankot-Chellapa method to form a surface
(for illustrative purposes only). In the 2D images, there is a general trend from
dark to light as would be expected, but both sets of images also show different
identities for each percentile which do not match any individual in the database.
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Base rate Outliers

2D photographs 91.2 30.2
3D surface normals 97.5 73.5

Table 1: Recognition rates (%) on 2D photographs and 3D surface normal
data. The base rate column shows recognition rates for the raw data, and the
outliers column shows recognition rates on the outlying 10% of data (data whose
deviation lies below the 5th percentile and above the 95th percentile).

3 Results

Example data for two subjects can be seen in Fig. 5. 2D examples are shown
in the eight images on the left, and 3D examples are shown on the right. The
3D examples only show y-component data to simplify visualisation – it should
be noted that the experiments are also performed on the x-components. Each
row represents data for one subject. The first two images on each row of the
groups show examples of aligned and cropped greyscale intensity images (2D
photographs) and raw y-component surface normals. The next two images show
the corresponding outlying data of the first two images (i.e. those pixels with
a value whose deviation lies below the 5th or above the 95th percentile). There
is visibly more consistency between the outlying 3D data than the 2D data,
especially for the first subject.

Table 1 shows the baseline recognition rates for 2D and 3D data, as well as
the rates using only the most outlying 10% of data. The table can be summarised
as follows:

1. 3D surface normal data gives better recognition rates than 2D photographs
(97.5% vs 91.2%)

2. Far better recognition is seen on the 3D outlying data than the 2D outlying
data (73.5% vs 30.2%).

3. The decrease in performance when only the outlying 10% of data is used
is only 24% on the 3D data which is disproportional to the 90% of data
which has been discarded.

Table 2 is designed to investigate the own-race and own-sex effect. It is clear
from the table however, that neither the own-race nor the own-sex effect are
being exhibited as the performance drop of the outlying data is less than that
across the whole group (as seen in Table 1). Caution should be exercised in
any interpretation of these results as the number of sessions available for ethnic
minority/female subjects is very small (one subjects with 16 sessions and two
subjects with 42 sessions respectively). These results are discussed further in
Section 4.

It is possible that Unnikrishnan’s assumption that the most outlying data
provides the most discriminatory information is inaccurate as no empirical evi-
dence is offered. However, these experiments do suggest that more information
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Base rate Outliers

2D own-race 100 50
3D own-race 100 75
2D own-sex 97.62 50
3D own-sex 97.61 88.1

Table 2: Recognition rates (%) for subjects using a single race/sex subset of the
data.

is generally contained in the outlying data than the rest of the data. It may
be that there are other bands of percentiles which provide better recognition.
This was investigated by measuring the recognition rate using different bands
of percentiles e.g. [10-15, 90-95], [15-20, 85-90] etc. which account for 10% of
the data. Fig. 6 shows a plot of the recognition rate against these bands and
provides support for Unnikrishnan in that the most outlying 10% of the data
gives the best recognition performance. Interestingly, after a decrease in per-
formance, there is a rise as we near the 50th percentile. The reason for this
pattern is unknown, but will be explored in further research.

Figure 5: Examples of data from two sessions of two subjects. 2D data is shown
on the left and one component (the y-component) of the 3D data on the right.
Within each group the first two columns show examples of the baseline condition
(all data), and the last two columns show the outlying data which falls outside
the 5th and 95th percentile values.

4 Discussion

The results show that recognition rates of over 90% are achieved on the frontal,
neutral expression data from the PhotoFace database, with surface normal data
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Figure 6: Recognition accuracy as a function of percentile band. Each tick on
the x-axis shows the (upper, lower) limits of the 10% percentile band e.g. (0-5,
95-100), (5-10, 90-95) etc. This shows that the best recognition performance is
given by the most outlying data that is less than the 5th percentile and greater
than the 95th percentile.

providing the highest level of discrimination (97.5%). By applying Unnikrish-
nan’s theory that most discriminating data can be found in the outlying 5%
percentile ranges, we have tested recognition rates after discarding 90% of the
data. There is a decrease in recognition performance but it is not proportional to
the amount of data that has been discarded e.g. 90% of data has been removed
without an accompanying 90% decrease in recognition performance. In the case
of the surface normal tests this is a 24% decrease in performance and for the 2D
data, a 61% decrease. What we can infer is that there is more reliable discrimi-
natory information in the 3D outliers than in the mass of the data. By looking
at the examples of outlying data in Fig. 5 however, it seems unlikely that this
discriminatory information is the same as that used to aid human recognition.
Although features do indeed appear to be picked out (e.g. the broad nose in the
first subject), there is no obviously discernable pattern in the images which one
could liken to a caricature (which Unnikrishnan likens his approach to), and for
the second subject there is little similarity between the 3D outlying data images.
Arguably, one could say that the subject shown on the bottom has distinctive
eyebrows and that this is highlighted in the second 2D outlier image, but no
such feature is highlighted on the first 2D outlier image.

While using the outlying data does not lead to improved recognition rates, it
does offer a relatively simple way of reducing the amount of data without losing
the same amount of discrimination. It could also provide a rough (but relatively
accurate) metric as to where the face may lie in face-space, which can then be
searched more exhaustively to provide an accurate match. This has implications
in real world recognition systems, where the numbers of identities which may be
stored in a central database could be in the millions (or even billions). If we have
a quick, low computation key by which we can reduce the search space then we
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can use more thorough recognition algorithms on this subset only. Attempting
to use complex recognition algorithms across a very large database would cripple
even the most advanced systems currently available.

We did not see any evidence of the own-race or own-sex effect. Where we
might have expected a far greater performance decrease in the outlying data
condition according to Unnikrishnan’s hypothesis, we actually have a far smaller
one. This implies that these under-represented samples are actually more readily
discriminated between. In the case of the own-race test, a problem arises in that
there is only one subject available to test against. This means that instead of not
being able to tell subjects from the same race apart it actually becomes easier
as one can say this person is not of the majority race, and therefore it is that
one particular person. However as there are three subjects (≈ 5% of the sample
population) for the own-sex effect there is likely be a different reason for the
improved performance on the outlying data compared with the whole dataset
results. One possible reason could be that they are sufficiently different from
the rest of the sample population. This would mean that they form a discrete
subspace within the total subspace away from the general population and still
provide sufficient between-class scatter amongst themselves to accurately enable
recognition. An analysis of the Fisherface subspace would provide evidence for
this and will likely be the subject of further work. As mentioned previously,
caution must be exercised in drawing any conclusions from this data due to the
very small number of samples. Future work will attempt to verify these results
using a larger number of samples.

Limitations and future research

• The images were reduced to 80x80 pixels in order to be able to run the
experiments on a standard desktop computer (Quadcore 2.5GHz, 2GB
RAM, Windows XP SP3). Although good recognition rates are achieved
at this resolution, the full size images are likely to offer better data.

• Currently, the images are aligned manually by selecting three points on the
face. This task is time consuming and requires vigilance. It is likely that
some data will not be aligned perfectly with the rest due to small human
errors. This process would be ideally automated using feature detection
techniques such as Gabor filters. Ideally any alignment algorithm would
also need to take into account 3D rotations.

• Future work will look into whether humans group similar looking faces
together in face space. It would be interesting to code the data by hand
to group individuals who look similar to one another and see whether
these groupings are represented by the outlier face space. It would then
be possible to see whether humans group similar looking people together
based on their most unusual features and to give support to norm-based
face processing when people make similarity judgements.

• This paper looks primarily at outlying data (deviation from the norm less
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than the 5th percentile and more than the 95th percentile) as suggested by
Unnikrishnan. We also see how the amount of discriminatory information
in other ranges differs (Fig. 6). Further work is required to see whether
better recognition could be achieved by using the percentile values which
provide the best performance individually and combining the data i.e. are
there certain super-percentiles which contain more discriminatory infor-
mation than others?

• Investigate why the discriminatory information dips towards the 25th/75th
percentile as shown in Fig. 6 before rising again.

5 Conclusion

This paper has provided evidence that outlying data contains disproportionately
more discriminatory information which is useful for face recognition. Discarding
90% of the data typically results in only a 24% decrease in recognition perfor-
mance on 3D surface normal data. This lends direct support to Unnikrishnan’s
[2] hypothesis, but it is unlikely that this particular implementation reflects any
particular process of the HVS as images of the outliers are not easily recognis-
able by humans and no own-race or own-sex effects were observed (although
alternative explanations are explored). Additionally we show that 3D surface
normal data leads to better recognition than 2D photographs. Future work will
look into the suborganisation of face space to see whether there are discrete
subspaces for under-represented groups.
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[17] T. Ahonen, A. Hadid, M. Pietikäinen, Face description with local binary
patterns: Application to face recognition, IEEE Transactions on Pattern
Analysis and Machine Intelligence (2006) 2037–2041.

[18] C. Shan, S. Gong, P. W. McOwan, Facial expression recognition based on
local binary patterns: A comprehensive study, Image and Vision Comput-
ing 27 (6) (2009) 803–816.

13



[19] P. Sinha, B. Balas, Y. Ostrovsky, R. Russell, Face recognition by humans:
Nineteen results all computer vision researchers should know about, Pro-
ceedings of the IEEE 94 (11) (2006) 1948–1962.

[20] R. Mauro, M. Kubovy, Caricature and face recognition, Memory & Cogni-
tion 20 (4) (1992) 433–440.

[21] G. Rhodes, S. Brennan, S. Carey, Identification and ratings of carica-
tures: Implications for mental representations of faces, Cognitive Psychol-
ogy 19 (4) (1987) 473–497.

[22] C. A. Meissner, J. C. Brigham, Thirty years of investigating the own-race
bias in memory for faces: A meta-analytic review, Psychology, Public Pol-
icy, and Law 7 (1) (2001) 3–35.

[23] K. Chang, K. Bowyer, P. Flynn, Face recognition using 2D and 3D facial
data, in: ACM Workshop on Multimodal User Authentication, 2003, pp.
25–32.
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[27] B. Gökberk, M. O. İrfanoğlu, L. Akarun, 3D shape-based face representa-
tion and feature extraction for face recognition, Image and Vision Comput-
ing 24 (8) (2006) 857–869.

[28] D. A. Forsyth, J. Ponce, Computer Vision: A modern approach, Prentice
Hall Professional Technical Reference, 2002.

[29] R. T. Frankot, R. Chellappa, A method for enforcing integrability in shape
from shading algorithms, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 10 (4) (1988) 439–451.

14


