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Abstract: Underactuated systems are extensively utilized in practice while attracting a huge deal of atten-
tion in theoretical studies. There are few robust control strategies for general underactuated systems because of
the variety of their dynamic models. A dynamic surface control strategy with a nonlinear disturbance observer
is proposed in this study, to stabilize multi-degree of freedom underactuated systems. In such systems the num-
ber of underactuated degrees of freedom is not higher compared to the actuated ones. A disturbance observer
is utilized to dispose of the uncertain disturbance and cross terms in dynamic model which may cause failure
to the controller. Then, a dynamic surface control strategy is presented which is not sensitive to the diversity
of dynamic models. The stability of whole system is proven by Lyapunov-based method. The control law is
successfully applied to nonlinear underactuated systems in benchmark cascade form such as two-Translational
Oscillator with Rotational Actuator, Crane, Wheeled Inverted Pendulum. The effectiveness of proposed con-
trollers are illustrated by MATLAB simulation results. Finally, comparative studies are presented to verify the
superiority of the proposed method.

Keywords: Dynamic Surface Control, Underactuated Systems, Uniformly Ultimately Bounded, Nonlinear
Disturbance Observer

1 Introduction

Stabilizing and tracking control of nonlinear underactuated systems have obtained significant applications in
robotic systems. Systems such as acrobot[1, 2], quadrotor[3, 4], cart-pendulum[5], translational oscillator
with rotational actuator (TORA)[6, 7], manipulators with structural flexibility [8], wheeled inverted pendu-
lum (MIP)[9, 10], and underactuated surface vessel[11, 12], are modeled as nonlinear underactuated structures.
However, it is more complex to design controllers for underactuated systems compared to the full actuated
ones. In recent decades, much work has been done on the control of underactuated systems. Various control
strategies such as dynamic surface control (DSC)[13, 14, 15, 16], sliding mode control (SMC)[17, 18, 19, 20] ,
fuzzy control[21, 22], backstepping[23, 24], and adaptive control [25, 26, 27] are proposed for one or a class of
underactuated systems.

Among those control strategies, robust control methods such as DSC, SMC are extensively applied to improve
the performance and robustness of the underactuated systems because of their less sensitivity to the external
disturbance and model uncertainties. However, the robustness of the SMC is obtained by increasing the gain
in discontinuous term. Consequently, the chattering problem caused by the discontinuous characteristics of
SMC becomes an important factor that make it unable to be applied in the actual systems. A systematic and
recursive methodology called DSC proposed by Swaroop [28] overcomes the disadvantage of SMC by introducing
a virtual control law. The DSC is initially applied to full actuated nonlinear systems[29, 30, 31, 32]. Recently,
the DSC technique are used by some researchers to control the underactuated systems, including the inverted
pendulum[13, 33], and the autonomous surface vehicles[14]. A T-S fuzzy adaptive DSC is utilized to meet the
objective of ball positioning subjected to parameter uncertainties for a ball and beam system [15] . Based on
the linear model of a class of two-degree of freedom (two-DOF) underactuated systems, a gain scheduled DSC
(GSDSC) was developed by introducing a neural network disturbance observer with adaptive law to estimate
uncertainties[16]. However, when the initial states are far away from the equilibrium, it may be failed or sensitive
to the parameters.

There are some studies on a specific underactuated system [13, 14, 15, 33] or a certain class of underactuated
systems[34, 35]. However, little work is performed on general underactuated systems, especially general multi-
DOF underactuated systems. The main difficulty is that underactuated systems can not be described by
standard models satisfying the special requirements in the controller design. The general cascade form of
underactuated systems may contain nonlinear functions or cross items causing computing feasibility problem in
the process of controller derivation. On the other hand, algorithms for two-DOF underactuated systems may
not be available for multi-DOF underactuated systems if computing problems are occurred such as the inverse
of non-square matrix, multiplication of matrices with different dimensions [7, 16].
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In this paper, to reduce the effects of the diversity of models, we propose a nonlinear disturbance observer
(NDO) based control strategy. Besides external disturbance, the cross items which can not meet the controller
design requirements are considered as disturbance and estimated by the NDO to avoid the computing feasibility
problem. The disturbance observer was originally proposed by Chen[36] and rapidly developed in recent years.
NDO[2], fuzzy logic observer[37, 38], sliding mode disturbance observer[39], radial basis function neural network
observer[16] have already been applied in underactuated systems. It was proven that an NDO can estimate a
continuous disturbance which is considered to be a part of system in the controller design[2].

A dynamic surface controller with a nonlinear disturbance observer (DSCNDO) is proposed for the general
underactuated systems where the number of underactuated DOFs is no more than that of actuators. The
main contributions of our work include: 1) An NDO-based strategy is proposed to reduce the effects of model
diversities of underactuated system and to estimate the external disturbance. 2) A novel DSCNDO with simpler
deriving process and less parameters ensure states uniformly ultimately bounded. 3) The proposed strategy is
applied to nonlinear underactuated systems in benchmark cascade form such as two-TORA, Crane and WIP
successfully.

The main structure of this paper is as follows. The control problem of a general underactuated system
modeled by Lagrange method is presented in Section 2. In Section 3, A DSCNDO is derived based on the cascade
form of dynamic model with external disturbance. Then, the convergence of the entire system is proven by
Lyapunov-based analysis. To demonstrate the theoretical analysis, application examples and simulation results
with comparison studies are presented in Section 4. Ultimately, the brief concluding remarks are provided in
Section 5.

2 Underactuated Systems Description

2.1 Problem Statement

In this paper, we take into account the mechanical systems with n-DOF. The dynamics is derived by Lagrangian
equations

d

dt
(
∂K

∂q̇i
)− ∂K

∂qi
+
∂P

∂qi
+
∂Ψ

∂q̇i
= τi + di

where K, P , Ψ are kinetic energy, potential energy, dissipative energy respectively; qi is the generalized coor-
dinate; τi is the generalized force; di includes model uncertainties and external disturbance.

The dynamics of underactuated systems derived by Lagrange-based method can be detailed as follows:

m11(q)q̈1 +m12(q)q̈2 +m13(q)q̈3 + h1(q, q̇) = τ1 + d1
m21(q)q̈1 +m22(q)q̈2 +m23(q)q̈3 + h2(q, q̇) = τ2 + d2
m31(q)q̈1 +m32(q)q̈2 +m33(q)q̈3 + h3(q, q̇) = τ3 + d3

(1)

where q = [q1, q2, q3]T , q1 ∈ Rm, q2 ∈ Rm, q3 ∈ R(n−2m), (n− 2m ≥ 0). h1, h2 contain Coriolis, centrifugal and
gravity terms. τ1 and τ2 are the control inputs meeting either of the following conditions[40].

C1) τ1 = 0 & τ2 = τ , q1 is underactuated. τ, τ3 are the inputs.
C2) τ2 = 0 & τ1 = τ , q2 is underactuated. τ, τ3 are the inputs.

Remark 1 Some mechanics, such as quadrotor-slung payload system , wheeled inverted pendulum, and
autonomous underwater vehicles, satisfy n−2m > 0. Some systems such as, acrobot, crane and TORA, satisfy
n− 2m = 0. In this case, the third equation in (1) and the following deduction related to q3 can be ignored.

2.2 Cascade Normal Form

The dynamics of underactuated system obtained from the Lagrangian equation can be transformed into cascade
system with structural features.

Global change of coordinates are chosen as:

x1 = q1 + β
x2 = m11q̇1 +m12q̇2 +m13q̇3 (for C1)
(x2 = m21q̇1 +m22q̇2 +m23q̇3 (for C2))
x3 = q2
x4 = q̇2
x5 = q3
x6 = q̇3

(2)

where β =
∫
m−111 (m12q̇2 +m13q̇3)dt for case C1, β =

∫
m−121 (m22q̇2 +m23q̇3)dt for case C2.

Then, convert the dynamics of (1) into a cascade form.
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ẋ1 = q̇1 +m−111 (m12q̇2 +m13q̇3) = m−111 x2 (for C1)
(ẋ1 = q̇1 +m−121 (m22q̇2 +m23q̇3) = m−121 x2 (for C2))

ẋ2 =
d

dt
(m11q̇1 +m12q̇2 +m13q̇3) = f1 +D1 (for C1)

(ẋ2 =
d

dt
(m21q̇1 +m22q̇2 +m23q̇3) = f1 +D1 (for C2))

ẋ3 = x4
ẋ4 = f2 + b1u+D2

ẋ5 = x6
ẋ6 = f3 + b2u+D3

(3)

where u = [τ, τ3], f2, f3, b1, b2, D1, D2, D3 can be extracted by the matrix operation in (1).
Without loss of generality, case C1 is taken as an example in the following deduction. For simplicity, (3)

can be structured as the vector form.

Ẋ = F1(X) +G1(X)u+G2d (4)

where X = [x1, x2, x3, x4, x5, x6]T , d = [D1, D2, D3]T ,

F1 =


m−111 x2
f1
x4
f2
x6
f3

 , G1 =


0
0
0
b1
0
b2

 , G2 =


0 0 0
I1 0 0
0 0 0
0 I1 0
0 0 0
0 0 I2


I1 ∈ Rm×m, I2 ∈ R(n−2m)×(n−2m) are identity matrices.
Remark 2 The dynamic model (1) is obtained through Lagrangian method. f1 contains gravity items (related

to x3), dissipative terms (related to x4), even cross items. The condition that ∂f1/∂x3 or ∂f1/∂x4 is invertible
is not necessarily satisfied when the cross item exists. In this case, ∂f1/∂x3 and ∂f1/∂x4 are irreversible at the
original point.

3 Dynamic Surface Control Strategy for Underactuated Systems

In this section, a dynamic surface controller with a disturbance observer is presented for underactuated systems
in cascade form.

3.1 Nonlinear Disturbance Observer

It was proven that the disturbance observer can estimate continuous differentiable uncertainties[2]. Considering
the underactuated dynamics (4) with continuous disturbance, the rth-order derivative of d satisfying ‖d(r)‖ ≤ µ,
where µ > 0 is a constant, construct a (r-1)-order nonlinear disturbance observer:{

d̂(i−1) = zi + pi(X)

żi = Li(−F1(X)−G1(X)u−G2d̂) + d̂(i){
d̂(r−1) = zr + pr(X)

żr = Lr(−F1(X)−G1(X)u−G2d̂)

(5)

where i = 1, 2, · · · , r − 1.
The gain matrix Li is determined as Li = ∂pi(X)/∂X.

Define the estimation error of ith-order of d as d̃(i) = d(i) − d̂(i).
The derivative of d̃(i−1) is:

˙̃
d
(i−1)

= d(i) − ˙̂
d
(i−1)

= d(i) − Li(−F1(X)−G1(X)u−G2d̂)− d̂(i) − LiẊ
= d(i) − LiG2d̃− d̂(i)
= d̃(i) − LiG2d̃

The derivative of d̃(r−1) is:

˙̃
d
(r−1)

= d(r) − ˙̂
d
(r−1)

= d(r) − LrG2d̃

Define an error vector D = [d̃,
˙̃
d, · · · , d̃(r−1)]T . We have:
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Ḋ = AD + Id(r) (6)

where

A =


−L1G2 In 0 · · · 0
−L2G2 0 In · · · 0

...
...

...
...

...
−Lr−2G2 0 0 · · · In
−Lr−1G2 0 0 · · · 0

 , I =


0
0
...
0
In


In ∈ Rn×n is an identity matrix.

Choose appropriate Li to satisfy matrix A negative definite. The (r-1)-order nonlinear disturbance observer
(5) ensures the disturbance tracking error uniformly ultimately bounded if d(r) is bounded. The nonlinear
disturbance observer (5) ensures the disturbance tracking error asymptotically stable if d(r) = 0.

3.2 Dynamic Surface Controller Design based on a Nonlinear Disturbance Ob-
server

The errors are defined as:
e11 = x1 − x1d, e12 = x2 − x2d, e13 = ẋ2 − ẋ2d, e14 = ḟ1 − ḟ1d, e21 = x5 − x5d, e22 = x6 − x6d.

where x1d, x2d, ẋ2d, ḟ1d, x5d, x6d are the desired value of x1, x2, ẋ2, ḟ1, x5, x6, respectively.
Following the lines of dynamic surface controller design, ẋ4 and ẋ6 should be included in the second dynamic

surface. To meet the requirement, when f1 related to x4 satisfies ∂f1/∂x4 6= 0, e14 is excluded in the second
dynamic surface, otherwise, e14 is included.

Near the equilibrium, three cases are discussed, one each for ∂f1/∂x4 = 0 & ∂f1/∂x3 6= 0; ∂f1/∂x4 6= 0;
∂f1/∂x4 = ∂f1/∂x3 = 0.

Case 1 : ∂f1/∂x4 = 0, ∂f1/∂x3 is invertible.
There are two stages for designing dynamic surface controller.
1) Designing the virtual control law
The first dynamic surface is defined as:{

S11 = c11e11 + c12e12 + e13
S21 = e21

(7)

where c11, c12 are positive constants.
The derivations of S11, S21 are stated as:{

Ṡ11 = c11m
−1
11 x2 + c12(f1 +D1) + ḟ1 + Ḋ1 −X1d

Ṡ21 = x6 − x6d
(8)

where X1d = c11m
−1
11dx2d + c12(f1d + D̂1) + ḟ1d + ˆ̇D1. D̂1,

ˆ̇D1 are the estimations of D1 and Ḋ1, respectively.
The virtual control law is determined as: {

α1 = −k11S11

α2 = −k21S21
(9)

where k11, k21 are constants.
Input α1, α2 to first-order filters. {

T1α̇f1 + αf1 = α1

T2α̇f2 + αf2 = α2
(10)

where T1, T2 are the filter time constants.
The filter errors are determined as: {

e1 = αf1 − α1

e2 = αf2 − α2
(11)

Integrating (9) and (11), we have: {
e1 = αf1 + k11S11

e2 = αf2 + k21S21
(12)

2) Designing the actual control law
The second dynamic surface is defined as:{

S12 = c11m
−1
11 e12 + c12e13 + e14 + ˆ̇D1 − αf1

S22 = e22 − αf2
(13)
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Then, the derivatives of S12, S22 can be stated as:

Ṡ12 = c11m
−1
11 ẋ2 + c11

dm−111

dt
x2 + c12(ḟ1 + Ḋ1) + f̈1 + ˆ̈D1 − Ẋ1d − α̇f1

= c11m
−1
11 (f1+D1)+c11

dm−111

dt
x2+c12(

∂f1
∂x1

m−111 x2+
∂f1
∂x3

x4+
∂f1
∂x5

x6+Ḋ1)+
∂f1
∂x1

m−111 (f1+D1)+
d

dt
(
∂f1
∂x1

m−111 )x2+

d

dt

∂f1
∂x3

x4+
d

dt

∂f1
∂x5

x6+
∂f1
∂x3

(f2+b1u+D2)+
∂f1
∂x5

(f3+b2u+D3)+ ˆ̈D1−α̇f1−c11
dm−111

dt
x2d − c11m−111 (f1d + D̂1)− c12(ḟ1d + ˆ̇D1)− f̈1d − ˆ̈D1

Ṡ22 = f3 + b2u+D3 − α̇f2 − ẋ6d
Select the dynamic surface controller as:

u = −B−1
[

Υ1

Υ2

]
(14)

where

B =

 ∂f1
∂x3

b1 +
∂f1
∂x5

b2

b2


Υ1 = c11m

−1
11 f1 + c11

dm−111

dt
x2 + c12(

∂f1
∂x1

m−111 x2 +
∂f1
∂x3

x4 +
∂f1
∂x5

x6) +
∂f1
∂x1

m−111 f1 +
d

dt
(
∂f1
∂x1

m−111 )x2 +
d

dt

∂f1
∂x3

x4 +

∂f1
∂x3

f2+
d

dt

∂f1
∂x5

x6+
∂f1
∂x5

f3+δ1D̂1+δ2D̂2+δ3D̂3+k12S12−
α1 − αf1

T1
−c11

dm−111

dt
x2d − c11m−111 f1d − c12ḟ1d − f̈1d

Υ2 = f3 + k22S22 + D̂3 −
α2 − αf2

T2
− ẋ6d

k12, k22 are positive constants. δ1 =
∂f1
∂x1

m−111 , δ2 =
∂f1
∂x3

, δ3 =
∂f1
∂x5

.

Theorem Considering the underactuated system (4), when ∂f1/∂x4 = 0 and B is invertible, a set of surface
gains k1, k2 and the filter time constant vector T satisfying

γ = min{k1 −
9

4
, k2 −

5

4
,

1

T
− 2} > 0 (15)

the DSCNDO (14) ensures that the states are uniformly ultimately bounded.
where k1, k2 are the minimum elements of k1 and k2, respectively. T represents the maximum elements of T .
k1 = diag(k11, k21), k2 = diag(k12, k22), T = diag(T1, T2).

proof. Choosing Lyapunov candidate:
V = V1 + V2 (16)

where V1 = D̃TPD̃, D̃ is the disturbance tracking error defined as D̃ =
[
d̃

˜̇
d, · · · , d̃(r−1)

]T
. P represents a

positive definite matrix. V2 =
1

2
ST1 S1 +

1

2
ST2 S2 +

1

2
eT e. S1 = [S11 S21]T , S2 = [S12 S22]T , e = [e1 e2]T

Differentiating both sides of V1 and replacing (5)-(6) into it, we have[2]:

V̇1 = D̃T (ATP + PAT )D̃T + 2D̃TPId(r)

A defined in (6) is a negative definite matrix satisfying ATP + PAT = −Q, where Q is a positive defined
matrix. We have:

V̇1 ≤ −λV1 + 2‖D̃‖‖PId(r)‖ (17)

where λ is the minimum eigenvalue of Q.
The tracking error D̃ exponentially converges to zero if d(r) = 0. D̃ is uniformly ultimately bounded if d(r)

is bounded.
Differentiating both sides of V2 and replacing (8)- (14) into it, we have

V̇2 = ST1 Ṡ1 + ST2 Ṡ2 + eT ė

= ST1

[
S12 + ˜̇D1 + e1 − k11S11

S22 + e2 − k21S21

]
+ ST2

[
−k12S12 + κ1
−k22S22 + κ2

]
+ eT

[
−T−11 e1 + k11Ṡ11

−T−12 e2 + k21Ṡ21

]
≤ −ST1 k1S1 − ST2 k2S2 − eTT−1e+ ST1 e+ ST1 S2+|ST1 η̄|+ |ST2 κ̄|+ eT k1Ṡ1

(18)

where η = [ ˜̇D1, 0]T , κ1 = (δ1 + c11m
−1
11 )D̃1 + δ2D̃2 + δ3D̃3 + c12

˜̇D1, κ2 = D̃3, κ = [κ1, κ2]T , ˜̇D = Ḋ − ˆ̇D, D̃i =

Di − D̂i. η̄, κ̄ are the upper bounds of η and κ , respectively.
It should be noted that k1Ṡ1 can be dominated by a continuous functions ρ, that is :

|k1Ṡ1| = |k1(S2 + e− k1S1 + η)| ≤ ρ(e, S1, S2,
˜̇D1)
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Based on the Young’s inequality, we have:
ST1 e ≤ eT e+ ST1 S1/4
ST1 S2 ≤ ST1 S1 + ST2 S2/4
|ST1 η̄| ≤ ST1 S1 + η̄T η̄/4
|ST2 κ̄| ≤ ST2 S2 + κ̄T κ̄/4
|eT ρ| ≤ eT e+ ρT ρ/4

(19)

Since any constant p > 0, set Π = {(e, S1, S2, η) = eT e+ ST1 S1 + ST2 S2 + ˜̇D
T

1
˜̇D1 ≤ 2p} is compacted in R4.

Thus, the continuous function ρ possesses a maximum %. Thus,

V̇2 ≤ −(k1 −
9

4
)ST1 S1 − (k2 −

5

4
)ST2 S2 − (

1

T
− 2)eT e+

1

4
%T %+

1

4
κ̄T κ̄+

1

4
η̄T η̄ (20)

By satisfying the inequalities, k1 −
9

4
> 0, k2 −

5

4
> 0,

1

T
− 2 > 0, we have:

V̇2 ≤ −2γV2 + Γ

where Γ =
1

4
κ̄T κ̄+

1

4
%T %+

1

4
η̄T η̄

By choosing appropriate parameters k1, k2, T to satisfy (15), we can make γ > Γ/2p. If V2(0) ≤ p, V2(t) ≤ p.
Accordingly, S1, S2, e are bounded. So are e21, e22.

Assuming that a constant matrix χ satisfies S11 = χ, thus, e13 = −c11e11 − c12e12 + χ, we have:[
ė11
ė12

]
= M

[
e11
e12

]
+

[
0
χ

]
(21)

where

M =

[
0 m−111

−c11 −c12

]
Choose appropriate c11, c12 to satisfy the eigenvalues of M negative. e11, e12 are bounded and converge

exponentially to the origin adjacent. So are e13, e14
According to the above analysis, the state tracking errors e11, e12, e13, e14, e21, e22 and disturbance tracking

error D̃ are uniformly ultimately bounded. Hence, the proof is completed.
Case 2 : ∂f1/∂x4 is invertible.

The first dynamic surface is chosen as:

S11 = c11e11 + e12 (22)

Following the lines from (8)-(13), the second dynamic surface is defined as:

S12 = c11m
−1
11 e12 + e13 − αf1 (23)

S21, S22 are selected as those in the second equation of (7) and (13), respectively.
Then, the derivative of S12 can be expressed as

Ṡ12 = c11m
−1
11 ẋ2 + c11

dm−111

dt
x2 + ḟ1 + Ḋ1 − α̇f1−c11

dm−111

dt
x2d − c11m−111 (f1d + D̂1)− ḟ1d − ˆ̇D1

= c11m
−1
11 (f1 +D1) + c11

dm−111

dt
x2 +

∂f1
∂x1

m−111 x2 +
∂f1
∂x2

(f1 +D1) +
∂f1
∂x3

x4 +
∂f1
∂x4

(f2 + b1u+D2) +
∂f1
∂x5

x6

+
∂f1
∂x6

(f3 + b2u+D3) + Ḋ1 − α̇f1−c11
dm−111

dt
x2d − c11m−111 (f1d + D̂1)− ḟ1d − ˆ̇D1

(24)
According to (24) and Ṡ22 in Case 1, we have the following control law:

u = −B−1
[

Υ1

Υ2

]
(25)

where

B =

 ∂f1
∂x4

b1 +
∂f1
∂x6

b2

b2


Υ1 = c11m

−1
11 f1 + c11

dm−111

dt
x2 +

∂f1
∂x1

m−111 x2 +
∂f1
∂x2

f1 +
∂f1
∂x3

x4 +
∂f1
∂x4

f2 +
∂f1
∂x5

x6 +
∂f1
∂x6

f3 +
∂f1
∂x2

D̂1 +
∂f1
∂x4

D̂2 +

∂f1
∂x6

D̂3 + k12S12 −
α1 − αf1

T1
− c11

dm−111

dt
x2d − c11m−111 f1d − ḟ1d
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Υ2 = f3 + k22S22 + D̂3 −
α2 − αf2

T2
− ẋ6d

Theorem Considering the underactuated system (4), when ∂f1/∂x4 and B are invertible, a set of surface
gains k1, k2 and the filter time constant vector T satisfying (15), the DSCNDO (25) ensures that the states are
uniformly ultimately bounded.

Proof. Selecting Lyapunov function candidate (16), and following the lines of the proof of Theorem??, the
stability of the NDO is proven in (17). Differentiating both sides of V2 and replacing (22)-(25) into it, we reach

V̇2 ≤ −(k1 −
9

4
)S2

1 − (k2 −
5

4
)S2

2 − (
1

T
− 2)eT e + ∆, where ∆ = %T %/4 + κ̄T κ̄/4, %, κ̄ are the upper bounds of

|k1Ṡ1| and [(c1m
−1
11 +

∂f1
∂x2

)D̃1 +
∂f1
∂x4

D̃2 +
∂f1
∂x6

D̃3 + ˜̇D1, D̃3]T , respectively. According to the Young’s inequality,

choosing appropriate parameters k1, k2, T to satisfy (15), we have V̇2 ≤ −2γV2 + ∆. If V2(0) ≤ p, V2(t) ≤ p.
Accordingly, S1, S2, e are bounded. So are e11, e12, e13, e21, e22, D̃.

According to the above analysis, the whole system is uniformly ultimately bounded.
Case 3: ∂f1/∂x3 and ∂f1/∂x4 are present but irreversible at the equilibrium.

Satisfying ∂f1/∂x3 = 0, ∂f1/∂x4 = 0 at the equilibrium, the DSCNDOs ((14) and (25 )) are invalid. The
underactuated system (4) is rewritten as:

Ẋ = F1(X) +G1(X)u+G2(X)d (26)

where F1 = [m−111 x2, f11, x4, f2, x6, f3]T , d = [f12 + D1, D2, D3]T , G1 and G2 are defined in (4). f11 includes
dissipative and gravity terms. f12 includes the cross items vanishing when states converge to the equilibrium.
f12 is regarded as the uncertainty of the system that can be estimated by the NDO. As ∂f11/∂x4 or ∂f11/∂x3
is invertible satisfying Case 1 or Case 2, Theorem?? or Theorem3.2 can be applied to this case.

4 Examples

In this section, three examples of underactuated mechanical systems are provided that are attracted a great
deal of interest in literature, one each for C1, C2 and a multi-DOF system that the number of actuated DOFs
is higher than that of the underactuated ones. To illustrate the effectiveness of the proposed method, the
simulation results controlled by DSCNDO is presented in comparison with those controlled by LQR and DSC.

Example 1: Two-Translational Oscillator with Rotational Actuator The mechanics and symbols of the two-
TORA are shown in figure 1. mi,Mi are the mass of i-th ball and cart respectively; θi, τi are the swing angle
of i-th ball and the torque acting on the i-th ball respectively, where i = 1, 2. kj is the spring coefficient, where
j = 1, 2, 3.

Figure 1: The mechanics of the two-TORA

The dynamics of two-TORA system is modeled as a four-DOF system with two actuators[6].

Mq̈ + h+ φ = [0, 0, τ1, τ2]T + d (27)

where

M =


M11 0 M13 0

0 M22 0 M24

M31 0 M33 0
0 M42 0 M44

 , h =


−m1l1sin(θ1)θ̇21
−m2l2sin(θ2)θ̇22
m1gl1sin(θ1)
m2gl2sin(θ2)

 , φ =


k1x1 + k2(x1 − x2)
k2(x2 − x1) + k3x2

0
0


q = [x1, x2, θ1, θ2]T , M11 = M1 + m1,M13 = m1l1cos(θ1),M22 = M2 + m2, M24 = m2l2cos(θ2), M33 =
J1 +m1l

2
1,M44 = J2 +m2l

2
2,M31 = M13,M42 = M24. d = [d1, d2, d3, d4]T is the external disturbance. τ1, τ2 are

the torques exerting on the system.
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Following the lines of coordinate transformation, choose a new coordinate:

X1 = X + β(θ)

X2 = MmẊ +Mmβ̇(θ)
X3 = θ

X4 = θ̇

(28)

where X =

[
x1
x2

]
, θ =

[
θ1
θ2

]
, Mm =

[
M11 0

0 M22

]
, β(θ) = M−1m

[
m1l1sin(θ1)
m2l2sin(θ2)

]
The dynamics of the two-TORA is converted into a cascade form.

Ẋ1 = M−1m X2

Ẋ2 = f1 +D1

Ẋ3 = X4

Ẋ4 = f2 + bτ +D2

(29)

where D1 = [d1, d2]T , τ = [τ1, τ2]T ,f2, b ,D2 are the last two items of −M−1(h + φ) , M−1b1 and M−1d,
respectively.

b1 =


0 0
0 0
1 0
0 1

 , f1 = K(X1 − β),K =

[
−(k1 + k2) k2

k2 −(k2 + k3)

]

Clearly, ∂f1/∂X2 = ∂f1/∂X4 = 0, ∂f1/∂X3 is invertible except at θ1 = ±π/2 or θ2 = ±π/2. Actually, the
swing angles always satisfy |θi| < π/2 in practical application.

Based on Theorem 1 , we apply the control law (30) to the two-TORA system.

τ = −(
∂f1
∂X3

b)−1(c1M
−1
m f1 + c2(

∂f1
∂X1

M−1m X2 +
∂f1
∂X3

X4) +
∂f1
∂X1

M−1m f1 +
d

dt

∂f1
∂X3

X4 +
∂f1
∂X3

f2

+δ1D̂1 + δ2D̂2 +K2S2 − T−1(α1 − αf1))
(30)

where

∂f1
∂X1

= K,
∂f1
∂X3

= −KM−1m
[
m1l1cos(θ1) 0

0 m2l2cos(θ2)

]
,
d

dt

∂f1
∂X3

= KM−1m

[
m1l1sin(θ1)θ̇1 0

0 m2l2sin(θ2)θ̇2

]
Parameters of the two-TORA are set as:
M1 = 5.4Kg,m1 = 0.96Kg, l1 = 0.6m,J1 = 0.0022Kg · m2,M2 = 6.4Kg,m2 = 1.26Kg, l2 = 0.8m,J2 =

0.0025Kg ·m2, g = 9.8m/s2, k1 = 190N/m, k2 = 100N/m, k3 = 146N/m.
and the nonzero initial cart position and rotational angles are : x1(0) = 0.2m,x2(0) = 0.2m, θ1(0) =

0.5rad, θ2(0) = 0.5rad. For the position control, the desired value is x1d = x2d = 0m, θ1d = θ2d = 0rad.
Moreover, the time-varying disturbance is:

d1(t) =

{
0.5sin(0.5t+ π/2) t ∈ [5π, 7π]s
0 others

d3(t) =

{
sin(0.5t+ π/2) t ∈ [7π, 9π]s
0 others

In the simulation, d1 = d2, d3 = d4. Considering that ḋ 6= 0 and d(2) is bounded, r = 2 in (5) is used in the
NDO design.

The control parameters in (30) are selected as:

K1 =

[
14 0
0 14

]
,K2 =

[
10 0
0 10

]
, T =

[
0.3 0
0 0.1

]
, c1 =

[
150 0
0 150

]
, c2 =

[
1.5 0
0 1.5

]
and the nonlinear disturbance observer parameter L2 = 2L1, and L1 is taken as:

L1 =

[
l11 l12 02×2 02×2

02×2 02×2 l21 l22

]
where l11 = l21 = diag([0.2; 0.2]), l12 = l22 = diag([3; 3]), 02×2 is a zero matrix with two rows and two columns.

The simulation results are given in Figure 2-4 , one each for the estimation of disturbance, the cart position
and the rotation angles of two-TORA system. Simulation results controlled by LQR and DSC are presented as
comparison. The quantified results of two-TORA system controlled by three methods are presented in Table 1.
It can be observed that all the methods can achieve the desired value with similar performance. The cart can
be stabilized efficiently at the equilibrium while the rotational angles converge to zero quickly. Compared to
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Figure 2: The estimation of disturbance
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Figure 3: The comparison of the position of carts controlled by DSCNDO with those controlled by DSC and
LQR

LQR, the proposed method reaches better transient performance bringing smaller overshoot and settling time.
Acting the disturbance from 5πs to 9πs, the disturbance is estimated by the NDO shown in Figure 2. The states
controlled by the three controllers can rapidly return to the equilibrium. However, the overshoot controlled by
LQR is highest and that controlled by DSCNDO is lowest. It implies that the proposed method has satisfactory
robustness.
Remark 3 According to (21), the dynamic surface parameters affect tracking accuracy directly. c11, c12 should
be chosen appropriately to satisfy the eigenvalues of M negative. Then, adjust the parameters to make the
minimum eigenvalue of M as big as possible to ensure the state error small. On the other hand, choose proper
K1,K2, T to ensure (15) satisfied. In addition, the filtering error is liable to cause system instability. Therefore,
the time constant should be chosen carefully.

Example 2: Crane The mechanics of crane is shown in Figure 5 and the dynamics is given by:
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Figure 4: The comparison of the angles of balls controlled by DSCNDO with those controlled by DSC and LQR

Table 1: The quantified results of two-TORA controlled by three methods

Methods
tsx1(s) tsx2(s) tsθ1(s) tsθ2(s) |x1max|(m) |x2max|(m) |θ1max|(rad) |θ2max|(rad)

∆ ≤ 1cm ∆ ≤ 0.01rad with disturbance

LQR 4.85 6.02 7.44 9.89 0 0 0.17 0.10

DSC 3.26 3.50 7.07 9.44 0 0 0.04 0

DSCNDO 3.26 3.50 7.07 9.44 0 0 0 0

Figure 5: The mechanics of the crane system

(m1 +m2)ẍ+m2lcos(θ)θ̈ +m2lsin(θ)θ̇2 = τ + d3
cos(θ)ẍ+ lθ̈ + gsin(θ) = d1

(31)

Choose a new coordinate: x1 = x + β, x2 = ẋ + lθ̇/cos(θ),x3 = θ,x4 = θ̇, where β = l · ln|sec(θ) + tan(θ)|.
Utilizing the global change of the coordinates (2), the dynamics of the crane can be written as:

ẋ1 = x2
ẋ2 = f1 + d1
ẋ3 = x4
ẋ4 = f2 + b1τ +D2

(32)

where f1 = −gtan(x3) + tan(x3)/cos(x3)x24, b1, f2, D2 are given in (3) for C2.
Obviously, ∂f1/∂x4 is irreversible at the original point satisfying Case 3. We divide f1 into two parts.

f1 = −gtan(x3)︸ ︷︷ ︸
f11

+ tan(x3)/cos(x3)ẋ23︸ ︷︷ ︸
f12

Based on (26), D1 = f12 + d1. ∂f11/∂x3 is invertible and ∂f11/∂x4 = 0. Apply Theorem?? to the crane
system. Parameters are selected as: m1 = 1Kg, m2 = 0.1Kg, l = 1m, g = 9.8N/Kg. d1 and d3 are defined in
example1 .
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Figure 7: The comparison of three methods on the crane system with disturbance

Table 2: The quantified results of Crane controlled by three methods

Methods
tsx(s) tsθ(s) |xmax|(m) |θmax|(rad)

∆ ≤ 1cm ∆ ≤ 0.01rad with disturbance

LQR 6.45 4.63 0.28 0.05

DSC 5.97 4.31 0.22 0.05

DSCNDO 5.97 4.31 0.04 0.05

The estimation of disturbance and performance is presented in Figure6 -7 and Table 2. It is shown that
all the methods can drive the underactuated crane system to the desired value. However, better performance
is obtained by the proposed method. The load’s swing decreases with smaller residual angle. Furthermore,
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the settling time of the proposed method is less than that of LQR. The system controlled by DSCNDO also
possesses satisfactory stability when acting disturbance.
Remark 4 In crane control, the swing angle always satisfies −π/2 < θ < π/2. The trolley is expected to
gradually reach the desired position without overshoot while the load oscillates as small as possible.

Figure 8: The mechanics of the wheeled inverted pendulum

Example 3: Wheeled Inverted Pendulum The mechanics of the WIP is presented in Figure 8. It is noticed
that the WIP is a three-DOF mechanics with an underactuated inclination angle. The dynamics is given [10]:

m(q)q̈ + h(q, q̇) + φ(q̇) = τ + d (33)

where q = [q1, q2, q3]T = [ψ, θ, α]T denotes the rotation angle of the wheels, inclination angle of the body and
yaw angle of the WIP, respectively.

m(q) =

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 , h(q, q̇) =

 h1
h2
h3

 , φ(q̇) =

 2Dw q̇1
2Db(q̇2 − q̇1)

2b2

r2
(Db +Dw)q̇3

 , τ =

 0
τ1
τ2


where m11 = a + bcos(q2),m12 = bcos(q2) + c, m21 = bcos(q2),m22 = c,m33 = Iblsin

2(q2) + 2b2

r2 (Iwa +
mwr

2), m13 = m23 = m31 = m32 = 0,a = (mb + 2mw)r2 + 2Iwa, b = mblr, c = mbl
2 + Iby, Ibl = Ibz +

mbl
2, h1 = −bsin(q2)(q̇22 + q̇23) − Iblsin(q2)cos(q2)q̇23 − Gsin(q2), h2 = −Iblsin(q2)cos(q2)q̇23 − Gsin(q2), h3 =

2Iblsin(q2)cos(q2)q̇2q̇3 + bsin(q2)q̇1q̇3, G = mbgl
Choose a new coordinate: x1 = x + β, x2 = m11q̇1 + m12q̇2, x3 = q2, x4 = q̇2, x5 = q3, x6 = q̇3, where

β = q2 + c−a√
a2−b2 arctan(

√
a−b
a+b tan( q22 ). Based on (3), the dynamic model (33) can be rewritten as

ẋ1 = m−111 x2
ẋ2 = f11 + f12 +D1

ẋ3 = x4
ẋ4 = f2 + b1u+D2

ẋ5 = x6
ẋ6 = f3 + b2u+D3

where f11 = Gbsin(x3)− 2Dwm
−1
11 (x2 −m12x4), f12 = bsin(x3)(x24 + x26) + Iblsin(x3)cos(x3)x26

Obviously, ∂f11/∂x4 is existed and invertible. Based on Theorem3.2, the control law (25) is applied to the
WIP.

Table 3: The quantified results of MIP controlled by three methods

Methods
tsφ(s) tsθ(s) tsα(s) |φmax|(rad) |θmax|(rad) |αmax|(rad)

∆ ≤ 0.01rad with disturbance

LQR 4.45 4.45 14.05 0.77 0.22 0.06

DSC 4.45 4.29 0.43 0.67 0.32 0.20

DSCNDO 4.45 4.29 0.43 0.36 0.27 0

The physical parameters are presented as: mb = 2.58Kg, Iby = 0.00177Kg ·m2, Ibz = Iby, Iwa = 0.00014Kg ·
m2, Iwd = 0.00084Kg ·m2, Dw = 0.8N · s/m,mw = 0.14Kg, l = 0.0622m, b = 0.15m, r = 0.04m,Db = 0.5m, g =
9.8N/Kg. The control parameters are selected as: k11 = k21 = 20, k12 = k22 = 20, T1 = T2 = 0.01, c11 = 3. The
initial states are chosen as: q1(0) = 0.3, q2(0) = −0.5, q3(0) = 0.3, q̇1(0) = 2, q̇2(0) = q̇3(0) = 0. The disturbance
is selected as d = [d1, d1, d3]T , where d1, d3 are defined in example 1 .The estimation of disturbance and per-
formance are presented in Figure 9-10 blue and Table 3. It is observed the proposed method can stabilize the
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Figure 9: The estimation of disturbance
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Figure 10: The comparison of three methods on the MWIP system with disturbance

WIP with better performance than those controlled by DSC and LQR.

5 Conclusion

In this paper, we propose an NDO-based DSC strategy overcoming chattering problem of SMC and the phe-
nomenon of ”explosion” in a highly complicated control law while using backstepping. It also solves the com-
putation feasibility problem when a dynamic model includes cross terms. The novel DSCNDO strategy is
generalized to underactuated systems derived by Lagrangian method. Lyapunov-based analysis is used to an-
alyze the stability of system and it is proven that the states are uniformly ultimately bounded. The control

13



strategy is applied to underactuated systems such as two-TORA, Crane and WIP. Several examples and com-
parisons are proposed to demonstrate the effectiveness of the proposed method. It is implied that the proposed
DSCNDO yields satisfactory performance.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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