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Abstract. Eye centre localisation is critical to eye tracking systems of various 

forms and with applications in variety of disciplines. An active eye tracking ap-

proach can achieve a high accuracy by leveraging active illumination to gain an 

enhanced contrast of the pupil to its neighbourhood area. While this approach is 

commonly adopted by commercial eye trackers, a dependency on IR lights can 

drastically increase system complexity and cost, and can limit its range of track-

ing, while reducing system usability. This paper investigates into a passive eye 

centre localisation approach, based on a single camera, utilising convolutional 

neural networks. A number of model architectures were experimented with, in-

cluding the Inception-v3, NASNet, MobileNetV2, and EfficientNetV2. An accu-

racy of 99.34% with a 0.05 normalised error was achieved on the BioID dataset, 

which outperformed four other state-of-the-art methods in comparison. A means 

to further improve this performance on high-resolution data was proposed; and it 

was validated on a high-resolution dataset containing 12,381 one-megapixel im-

ages. When assessed in a typical eye tracking scenario, an average eye tracking 

error of 0.87 degrees was reported, comparable to that of a much more expensive 

commercial eye tracker. 
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1 Introduction 

Eye tracking has seen a long history of extensive use in differing application domains 

since its early-stage development in psychological studies tracking eye movements in 

reading [1-2]. The increasing variety and quantity of commercial eye trackers [3-4] and 

related research works [5] have provided strong evidence that this technology bears 

high potentials in contributing to multi-disciplinary research and to assistance with day-

to-day human activities. For example, eye tracking was employed by marketers and 

designers to measure the effectiveness of advertisements in magazines [6]; and more 

recently to understand how users would view websites [7]. When applied to a distinc-

tive discipline, eye tracking could assist with diagnosis of neurodegenerative diseases 

by providing eye movement biomarkers able to assess cognitive performance [8]. An-

other trending area of application concerns human-computer interaction, in the form of 

gaming-based learning [9] or control of a computer [10], for example.  



Eye centre localisation is fundamental to development of eye tracking technologies, 

and it has a significant impact on eye tracking accuracy and precision. Choice of ap-

proach to eye centre localisation also directly affects complexity, cost, and usability of 

an eye tracking system. Generally, systems which work at a close proximity to eyes 

such as head-mounted eye trackers, and which have complex designs such as those 

utilising active illumination, can offer greater precision and accuracy but have lower 

affordability and usability. For example, a typical head-mounted system employed by 

psychological or medical research [11] can cost tens of thousands of pounds or more, 

resulting in limited adoption of such technologies. More importantly, uncomfortable 

intrusiveness of a head-mounted device is likely to undermine exhibition of natural user 

behaviours which are often critical to such studies. Although remote eye trackers exist, 

they usually have a limited range of working distance (e.g. 40cm) as well as a lower 

accuracy than their head-mounted counterparts [12]. While offering a less expensive 

option, they are still far from being widely affordable. 

Motivated by these challenges, this paper presents a deep learning based approach 

for eye centre localisation with a single camera, which aims to accelerate development 

of a cost-effective solution for remote and passive eye tracking with a high precision 

and accuracy. This research makes a contribution by investigating the effectiveness of 

different convolutional neural network (CNN) architectures for eye centre localisation, 

and by assessing the impact of image resolution on localisation accuracy. Based on 

research findings, a possible means to further improve the performance of the proposed 

approach is discussed and future works are recommended. 

2 Related Works 

Depending on whether active illumination is required, an eye centre localisation ap-

proach can be categorised as either active or passive, with the former being the predom-

inant category due to the number of benefits active illumination can offer. Commonly, 

active illumination takes the form of infrared (IR) or near infrared light oriented to-

wards the eyes. When an IR source is positioned close to the optical axis of a camera, 

active illumination causes the pupil to be lit, creating a brighter elliptical shape in high 

contrast to its neighbourhood. This is known as the bright pupil method. Different to 

this setup, the dark pupil method requires off-axis positioning of IR light(s), leading to 

a darker pupil but also an enhanced contrast [13]. In both methods, active illumination 

also causes cornea reflections, which provide additional features to allow conversion 

from eye centre locations to gaze positions taking into consideration head movements. 

For example, the Tobii Pro Nano device [12] employs an approach that switches be-

tween the bright pupil mode and the dark pupil mode according to environmental con-

ditions. However, active eye centre localisation methods are often faced with real-world 

challenges. For example, as sunlight has a broad IR spectra, its interference to active 

illumination could lead to inaccurate eye centre localisation results in an outdoor appli-

cation [14].  

Different to these active methods, passive eye centre localisation approaches do not 

rely on active illumination, but they employ inherent eye appearance and/or geometry 



 

features under ambient lighting. While this can lead to a reduced system cost and com-

plexity, there is a higher demand for and emphasis on overcoming interfering features, 

such as eyelids and makeup, which will often appear to be more prominent in unstruc-

tured image data due to a lack of active illumination. This has motivated various studies 

to exploit geometric features of the eyes by modelling circular (but realistically ellipti-

cal) contours of the pupil and iris. For example, one of the approaches [15] designed an 

objective function of gradient based features, drawing on the fact that gradients residing 

on the edge of a disk would be oriented towards its centre. This approach achieved 

reasonable eye centre localisation results by solving this optimisation problem, alt-

hough its performance would be largely compromised by presence of strong gradients 

from shadows, other facial features such as eyebrows, and occluded pupil or iris. To 

deal with these interfering features, a study [16] based on image topography explicitly 

detected eyebrows such that false candidates from these regions could be removed dur-

ing a multi-resolution analysis of iris features. Another method [17] tried to tackle this 

challenge by employing a two-stage approach to perform a coarse-to-fine estimation. 

In this approach, a convolution operator would be used to obtain an initial estimation 

of the eye centres based on geometric features; boundary tracing and ellipse fitting were 

then used to refine previous estimations. Similarly, the method proposed by [18] de-

signed a two-stage approach combining gradient features and isophote features filtered 

by a bespoke selective oriented gradient filter to progressively reduce interfering fea-

tures at a global scale before carrying out a local-level analysis in order to achieve im-

proved accuracy. However, specularities and shadows mimicking geometric character-

istics of pupil and iris still pose a fundamental challenge.  

As machine learning approaches generally excel in dealing with complex patterns 

that cannot be easily and explicitly characterised, their capabilities have been leveraged 

to improve the accuracy of eye centre localisation. A method proposed in [19] em-

ployed a number of deep neural networks for face detection, eye detection, and open-

ness assessment in succession; all as preliminary stages to eye centre localisation. How-

ever, instead of taking advantage of machine learning throughout all stages, they de-

signed heuristic-based features for analysis of the iris. Similarly, the method presented 

in [20] only employed machine learning in a preliminary stage that served to identify a 

smaller region of interest. To achieve this, the Dlib toolkit [21] was utilised to detect 

facial landmarks including those of eye corners and eyelids. Both approaches reported 

incremental improvements, but occluded pupil and iris, as well as presence of glasses, 

still caused a large localisation error. A different approach [22] embracing a higher 

utilisation of machine learning designed an end-to-end CNN for predicting eye centre 

locations within face regions. Building on established network architectures, such as 

Inception-v3 [23] and ResNet [24], this approach achieved a significantly higher eye 

centre localisation accuracy.  



3 Methodology 

3.1 Datasets and data capture experiments 

Most state-of-the-art methods have reported results on a publicly available dataset, 

namely the BioID dataset [25-26]. Therefore, we incorporated this dataset for develop-

ing and validating the proposed method to facilitate quantitative and comparative per-

formance evaluation. This dataset consists of 1521 grayscale images of 23 different 

subjects, and it contains realistic challenges such as a variable ambient illumination, 

presence of glasses, and other types of inter-subject and intra-subject eye appearance 

variability. The images are of a low resolution, i.e., 384×288 pixels. Inclusion of a large 

background area means that the effective region of a face or an eye in these images has 

even fewer pixels. While deep learning is known to be able to handle small images 

effectively in a wide range of challenges such as object detection and classification, 

low-resolution data will inevitably limit eye tracking performance. In view of this, we 

constructed a new dataset that has a higher image resolution, and we assessed its impact 

on CNN models for eye centre localisation. To capture these data, we recruited ten 

participants at the University of the West of England (UWE), Bristol, including seven 

males and three females, aged between 18 and 55 years and of different ethnic back-

grounds. The research experiments had been approved by UWE Faculty Research Eth-

ics Committee (reference No: HAS.19.08.017). All data were recorded in a laboratory 

environment where overhead lighting was consistent but could lead to self-shadowing 

on faces. Each participant watched a five-minute video on a 27-inch screen positioned 

at approximately 60cm away showing a moving visual target used to trigger eye move-

ments. A chin rest was used to restrict large head movements such that eye movements 

would become more prominent. A machine vision camera (FLIR Grasshopper3) be-

neath the screen, angled towards the face regions, was set to capture images at 160 

frames per second at a size of 1024 by 1024 pixels. A workstation with an Intel Xeon 

E5-2630 processor and 128GB RAM hosted the control programme and interfaced with 

the camera. The experiment was repeated four times for each participant (i.e., four tri-

als). The system setup and experiment procedure we employed are representative of 

those in eye tracking based psychological and medical studies, such as [27] and [28]. 

This would help place our research in context and would facilitate a more meaningful 

performance validation.  

We manually annotated a random subset of data (12,381 images) from the first trials 

only, with pixel coordinates of eyes centres. The resolution of our data is 10 times as 

high as the BioID dataset (considering pixel count of an image). The camera field-of-

view is primarily covered by face regions, leaving little background. Therefore, the 

pixel count of a face region is effectively over 20 times higher than the BioID dataset. 

The 60cm screen-to-participant distance, the 27-inch screen size, and the moving visual 

target also caused eyes to move to extreme positions, horizontally, vertically, and diag-

onally. This introduced various levels of iris occlusions (by eyelids) contributing to data 

variability.  



 

3.2 CNNs for eye centre localisation 

Building on the success of our prior investigation [22], in this study, we further em-

ployed different CNN architectures to solve eye centre localisation as a regression prob-

lem. We utilised an established CNN backbone to learn various levels of features. A 

global averaging pooling layer then condenses these features before passing them 

through fully connected layers, finally outputting the left and right eye centre coordi-

nates. The Mean Squared Error (MSE) was used as the loss function. For the BioID 

dataset, we employed the Dlib library for face detection which successfully removed 

the background in each image. The face regions then became the input to our CNN 

models. For the new dataset we constructed, as the area of background is negligible, we 

directly input raw images to the CNN models. A number of backbones were experi-

mented with, including Inception-v3 [23], the NASNet [29], MobileNetV2 [30] and the 

EfficientNetV2 (V2-L and V2-B3) [31]. Without unfolding the backbones and exhaust-

ively listing all their layers, the general CNN architecture can be illustrated in Fig. 1.  

 

Backbone Inception-v3 

Concatenate 
Input: 

(8, 8, 320) 

(8, 8, 768) 

(8, 8, 768) 

(8, 8, 192) 

Output: (8, 8, 2048) 

+ 

Global average pool-

ing 

Input: (8, 8, 2048) 

Output: 2048 

+ 

Fully connected 
Input: 2048 

Output: 4 

Fig. 1. An illustration of the CNN architecture, using Inception-v3 as an example 

All these different backbone architectures achieved outstanding top-1 and top-5 accu-

racy on the ImageNet [32] validation dataset, which evidenced their exceptional capa-

bilities of feature extraction in general image classification tasks. Despite this, one of 

the problems these models may encounter is loss of spatial precision in a landmark 

localisation task. This is caused by spatial pooling of features typically occurring in a 

CNN, which is intended to progressively enlarge the overall receptive field while re-

ducing the number of parameters. While it can serve this dual purpose, it effectively 

downsamples feature maps passed through the network; and therefore, this reduces lo-

calisation capability of the network. In view of this, without modifying the network 

architecture, we investigated into the impact of image resolution on CNN performance. 

In addition, from the perspective of eye tracking, acquisition of high-resolution images 

can also contribute to a higher accuracy.  

 



 

Fig. 2. Illustration of a screen-based eye tracking scenario where the two dots within image of 

face represent the extreme pupil centre positions, giving a maximum displacement value of 𝑟 

pixels. 

Taking a typical eye tracking scenario for example (depicted in Fig. 2) and assuming 

that a user gazes at information on a screen with a diagonal size of 𝑠 cm, while a remote 

eye tracker performs image-based eye centre localisation at a distance of 𝑑 cm; an eye 

centre localisation error of one pixel, namely the smallest value in the discrete image 

domain, corresponds to an error of 𝑒𝑑𝑒𝑔 degrees that can be calculated by Equation (1).  

 𝑒𝑑𝑒𝑔 =  
2 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑠

2𝑑
)

𝑟
∙

180

𝜋
 (1) 

This means that, when user distance 𝑑 and screen size 𝑠 are fixed, an increase in image 

resolution will proportionally increase displacement of pupil centre 𝑟, leading to a re-

duced error. Although high-resolution images can potentially reduce eye tracking error, 

an increased number of input neurons will drastically increase computation, conse-

quently demanding a much larger GPU memory. Therefore, we employed the Dlib 

toolkit to detect eye corners in each face image, which informed extraction of two 

square eye regions from each face image, such that these smaller regions of interest 

could then become model input. This allowed utilisation of a reasonable batch size for 

training without having to downsample input size. Consequently, the model was 

changed to output coordinates of a single eye centre at a time. 

4 Results and discussions 

The CNN models were implemented with Python 3.8, Tensorflow and Keras 2.8.0, and 

were evaluated on a workstation with an Intel i9-9940X CPU, 64GB memory, and a 

Nvidia Titan RTX GPU.  

As the number of samples in the BioID dataset is not particularly large in the context 

of deep learning, we employed the five-fold cross validation method with a 8:2 split for 

training and validation in each fold. We followed the commonly used relative error 



 

metric proposed by [23] to evaluate eye centre localisation accuracy. This metric cal-

culates an error as the Euclidean distance between eye centre estimates and their ground 

truth before normalising this distance relatively to the pupillary distance. This is for-

mulated by Equation (2). 

 𝑒𝑚𝑎𝑥 =
max

 
(𝑑𝑙, 𝑑𝑟)

𝜔
 (2) 

where 𝑑𝑙 and 𝑑𝑟 are the absolute errors for the eye pair, and 𝜔 is the pupillary distance 

in pixels. The maximum value of 𝑑𝑙 and 𝑑𝑟 after normalisation is defined as the maxi-

mum normalised error 𝑒𝑚𝑎𝑥. A normalised error of 0.05 would be equivalent of the 

average pupil diameter. To train the model, cropped face regions from images were 

used, as mentioned previously. They were resized to 299×299 pixels, meaning that they 

had to be significantly upscaled. We used the Adam optimiser, a batch size of 32, a 

learning rate of 0.001. We observed that the model would generally converge within 

300 epochs without showing severe overfitting; therefore, we do not emphasise the im-

portance of hyperparameter tuning here. We first show in Fig. 3 that this CNN ap-

proach, when employing different backbones, could achieve highly accurate eye centre 

localisation results.  

 

Fig. 3. Accuracy curves of the CNN model on the BioID dataset when utilising different archi-

tectures 

These accuracy curves can demonstrate that accuracies with a tolerance of 0.05 nor-

malised error approached 100%. The highest accuracy overall was obtained by Effi-

cientNetV2-B3 that was one of the most compact models experimented with, able to 

perform inference at 46ms per step. The EfficientNetV2-L model achieved a similar 

overall accuracy, but its parameter count is over seven times higher. The Inception-v3 

model produced a slightly worse accuracy but it could perform inference faster at 36ms 



per step. The lowest accuracy was from NASNet despite its large model size and topo-

logical depth, which overfitted when having not received further hyperparameter tun-

ing. A few examples of inaccurate localisation results (where 𝑒𝑚𝑎𝑥 > 0.05) by the Effi-

cientNetV2-B3 model are shown in Fig. 4. It can be seen that, in a few instances, the 

CNN predictions appear to be more accurate than the ground truth. Admittedly, manual 

annotation of data is prone to error, but this could be overcome by a CNN given a 

sufficient amount of correctly labelled data. We then compared the CNN performance 

with that of four other state-of-the-art methods on the BioID dataset. The results are 

shown comparatively in Table 1. 

 

 

Fig. 4. Examples of inaccurately localised eye centres where the green dots represent the ground 

truth and red dots the predictions. Only the eye regions are displayed to give the areas of interest 

a better visibility. 

Table 1. Comparative evaluation of the proposed method on the BioID dataset. The * notation 

means that the exact value of accuracy has not been provided by the referenced works, but it was 

approximated according to the accuracy curves. 

Method 

  Normalised error 

𝑒𝑚𝑎𝑥 ≤ 0.03 
 
𝑒𝑚𝑎𝑥 ≤ 0.05 

 
𝑒𝑚𝑎𝑥 ≤ 0.10 

 
𝑒𝑚𝑎𝑥 ≤ 0.25 

EfficientNetV2-L 93.71%  99.34%  100%  100% 

EfficientNetV2-B3 94.65%  98.52%  99.92%  99.92% 

Inception-v3 95.80%  99.34%  99.92 %  99.92% 

MobileNetV2 92.76%  98.27%  99.92%  99.92% 

NASNet 6.25%  74.34%  100%  100% 

[20] 52%*  94.50%  100%  100% 

[19] /  94.25%  98.40%  99.45% 

[17] 50%*  85.08%  94.30%  98.13% 

[16] 62%*  85%*  94%*  99.5%* 

 



 

As this demonstrates superior performance of the proposed method, we followed a sim-

ilar process to evaluate it further on the high-resolution dataset we constructed, utilising 

the Inception-v3 model. As this dataset has approximately ten times as many images as 

the BioID dataset, it was partitioned into training, validation, and testing with a split of 

8:1:1. With an input image size of 512×512 pixels, the model arrived at the minimum 

validation loss at epoch 62 within five hours of training. When further trained beyond 

this point, the model did not severely overfit. More details can be seen in Fig. 5.  

 

Fig. 5. Training and validation loss curves on the high-resolution dataset and the Inception-v3 

model 

Model performance was then evaluated on input images downsampled to different 

sizes, respectively. As mentioned in the preceding section, eye regions cropped by Dlib 

were also used to train the model. We compared these results and report them in Fig. 6. 

 

Fig. 6. Accuracy curves on the high-resolution dataset 



When model input received uncropped images, high-resolution images contributed to 

improved model performances. When cropped eye regions were used to train the model, 

a further improvement on overall accuracy was achieved, as shown in Fig. 6. This is 

one of the ways to increase the pixel count of the regions of interest (i.e., the eyes) 

without dramatically increasing the size of model input. Examples of inaccurate eye 

centre localisation were shown in Fig. 7. A normalised error 𝑒𝑚𝑎𝑥>0.02 was used, as 

all instances had an error smaller than 0.05.  

 

 

Fig. 7. Examples of inaccurate eye centre localization on the high-resolution dataset 

Following Equation (1), the average eye localisation error was calculated to be 0.87 

degrees and was similar for different resolutions of input. We also experimented with 

data augmentation to simulate data variability caused by head movements, such as roll, 

yaw and pitch of the head, horizontal and vertical translation, and a variable distance to 

camera. This was achieved by applying a moderate rotation and translation to batches 

of images during training. In all cases, we observed that data augmentation did not 

improve model performance on the datasets. The reasons are likely that the training 

data employed already sufficiently modelled data variability such as eye occlusion, 

shadows and specularities in the testing set; and also that the CNN models were able to 

differentiate between useful features from these interferences. However, we argue that 

when the models are exposed to a large number of unseen faces and significant head 

movements, data augmentation will likely contribute to an improved model perfor-

mance. 

5 Conclusions 

This study investigated into CNN capabilities for eye centre localisation on high- and 

low-resolution images. Based on the low-resolution BioID dataset, it first validated the 

performance of a number of state-of-the-art CNN architectures, including Inception-



 

v3, NASNet, MobileNetV2, and EfficientNetV2; and demonstrated superior localisa-

tion accuracies in comparison to other similar approaches. Both the Inception-v3 model 

and the EfficientNetV2 model achieved an eye localisation accuracy close to 100% 

with a normalised error of 0.05. Following this, the CNN model was evaluated on a 

high-resolution dataset; and it showed that a higher resolution could improve eye centre 

localisation performance, given the same model architecture. Additionally, we used 

Dlib to detect and crop eye regions as a preliminary step to CNN based eye centre 

localisation. By removing a large amount of background, this effectively increased res-

olution of the regions of interest only, such that the size of input to model remained 

relatively small. The proposed eye centre localisation approach, when placed in a typi-

cal eye tracking scenario, could achieve an error of 0.87 degrees, comparable to a much 

more expensive commercial eye tracker. We also experimented with data augmentation 

for improving data variability, which did not lead to a higher model performance. How-

ever, we argue that the proposed data augmentation technique is likely to be able to 

make a contribute when large head movements are present.  

In our future works, we will investigate into model architectures optimised for re-

ceiving high-resolution images as a means to further reduce eye centre localisation er-

ror. We also intend to combine localisation with tracking to overcome inaccuracies 

caused by eye blinks as well as to improve efficiency. We will also employ this cost-

effective eye tracking approach to facilitate healthcare studies such as early diagnosis 

of eye diseases and neurodegeneration.  
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