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Abstract—This work presents the instrumentation of the Pr-
Hand upper-limb prosthesis with optical fiber sensors to measure
the angle of the proximal interphalangeal joint. The angle sensors
are based on bending-induced loss and are fabricated with
polymer optical fiber (POF). The finger angle information is
used in a k-Nearest Neighbor (k-NN) machine learning algorithm
for grasp recognition. Four kinds of grasp are evaluated: hook
grip, spherical grip, tripod pinch, and cylindrical grip, with three
objects each. As mentioned in the algorithm validation, it is
essential to note: The average accuracy was 92.81 %.

Index Terms—Angle sensor, k-NN, Machine learning, upper-
limb prosthesis.

I. INTRODUCTION

The most common causes of limb loss are cerebrovascular
problems and occupational accidents [1]. In 2018 around
59,000 amputations were performed in Brazil [2] and in 2019
it was estimated that there were more than 528,000 people
with disabilities in their hands and legs in Colombia [3].
Also, it was predicted that around 30 million people did not
have assistive devices in developing countries. Therefore, the
interest in developing robotics hands has increased in the last
years [4].

The main goal of robotic hands is to help improve users
self-esteem and support activities of daily living [5]. These
devices can be classified as humanoid hands, prosthetic hands,
and research hands [6]. Humanoid hands aim to be as similar
as possible to the human. In the case of hand prostheses the
main focus is that their functionality is close as possible to
the human hand. Finally, research on prostheses seeks that
the aesthetic and functional parts have the most remarkable
similarity to the human hand [7]. Generally, the prostheses
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are made with rigid and industrial mechanisms and heavy
materials that increase the cost. Their performance is based
on several motors and axes, making them more complex
devices [8].

To overcome the disadvantages of traditional prostheses, a
new line of prostheses is being investigated, with which the
actuation mechanism is based on soft robotics. The advantages
of this approach are the reduced costs, lightweight, increased
functionality, and making the modules of the device elasticity
more like the human body, improving the safety when using
the device [9].

For monitoring the activity of the prosthesis and detecting
external stimuli such as force and pressure, the use of sensors
to monitor these variables is necessary. The commonly used
sensors are accelerometers, onboard sensing to evaluate the
choice of grasp, and strain gauges, among others [10], [11].
Since prostheses are based on rigid materials, the commonly
used sensors have the same characteristic. However, for soft
robotics-based prostheses, sensors coupled to their soft struc-
ture must be as flexible as possible to adapt to prostheses
movements efficiently [10]. For that reason, optical fiber
is taking place in the world of soft robotics, because one
of its principal advantages is its flexibility, insensitivity to
electromagnetic interference, low cost, lightweight and small
dimensions [12].

The optical fiber is a medium through which light is
propagated. Internally the light is reflected along the fiber to be
transmitted from one side to the other. Optical fiber sensors
have been included in several biomedical applications such
as: monitoring the wrist [12], the fingers [13], the elbow and
the ankle [14]. In prosthesis, some works related to sensing
the pressure in the socket-user interface [15] and mapped the
strain of a below-knee prosthesis [16].

PrHand is a hand prosthesis, described in [17], an electro-
pneumatic device based on soft robotics and compliant mech-
anisms. The prototype and parts of the PrHand are presented
in Fig. 1. It is a soft robotic prosthesis with elastic joints that
extend fingers with an internal flexible tendon. On the other
hand, finger flexion is performed with an inelastic tendon and
a servomotor. For that each tendon goes from the fingertip
to the unifying mechanism. Here all the inelastic tendons
join and convert into the unifying tendon that goes to the
servomotor. The fingers are based on a compliant mechanism



allows them to have the degree of freedom (DOF) of flexion,
extension, abduction, and adduction. For the abduction and
adduction movements are used air-controlled silicone actuators
are located between the fingers in the red points in Fig. 1.
Another characteristic of the prosthesis is that it is underacted
because it can control up to 15 DOF with one motor and
one pump air. The fingers have silicone coatings to improve
grasping by increasing the friction between the object and the
fingers. The control is performed in Robot Operating System
(ROS) on a Single Board Computer (SBC, Raspberry Pi 3).

Fig. 1. PrHand prosthesis based on soft-robotics.

The main goal of this work is to report the development of a
fiber optic angle sensor for angle measurement of the proximal
interphalangeal joint in the PrHand prosthetic fingers. The de-
veloped sensor is based on optical power measurement, where
the angle changes are related to the power losses during light
transmission through the optical fiber. The angle information is
used in the k-Nearest Neighbor (k-NN) classifier to recognize
grasp kinds.

II. METHODOLOGY

A. Angle sensor and benchmark

A polymeric optical fiber (SH4001, Mitsubishi Chemical
Co.) was used for sensor development, due to the aforemen-
tioned advantages including flexibility, impact resistance, and
high deformation. The working principle of the sensor is based
on intensity variation in transmission mode which means that
optical power variations are measured considering a variation
in the curvature of the fiber. A lateral cut creates a sensitive
zone where there are power losses for better sensor sensitivity.
The more the angle increases in the sensitive zone, the more
bending losses are induced, leading to an attenuated signal in
the photodetector. The length of the fiber, the length of the
cut and the depth are factors that will influence the power
variation [18]. A polymeric optical fiber (POF) curvature
sensor is fabricated and anchored to measure the angle in the
proximal interphalangeal joint of the fingers.

Six cycles of opening and closing the hand were performed
per finger for the evaluation. Every 20 seconds the angle of the
motor was changed by approximately 30° until the hand made
a complete cycle of closed and opened. The voltage in the
photodetector was measured with a microcontroller (Arduino

Uno, Arduino, Italy). As a reference, a camera was used to
record the open/close cycles and the Kinovea software tracked
the changes in the finger angle.

B. Data Processing for ML Algorithms

1) Grasp types recognition protocol: Considering the kind
of grasp the human hand can do and the need to grasp objects
in daily life activities, three objects were chosen to make the
classification algorithm. The first is the hook grasp (H), where
a skillet lid (H1), a cup (H2), and a pitcher base (H3) are used.
The second is a spherical grip (SG), where three spheres of
different diameters (75 mm (SG1), 96 mm (SG2), and 140 mm
(SG3)) were selected. The third one is a tripod pinch (TP) with
a large marker (TP1), a tuna can (TP2), and a golf ball (TP3).
The last one is a cylindrical grip (CG) with a chip can (CG1),
a chocolate can (CG2), and a tube (CG3). Fig. 2 shows the
prosthesis grasping one object (SG1). As shown in Fig. 2, one
fiber sensor for angle measurement border each finger, and the
red parts are the sensitive zone (the light radiate out the fiber).
To generate the database for the classification algorithm, the
following protocol was proposed:

• The prosthetic hand is open
• Put the object over the prosthesis
• Close the prosthetic hand
• The prosthesis holds the object
• Open the prosthesis
• Remove the object
• The prosthetic hand is completely open again
All steps were made with all objects three times. For each

step, 2500 samples of the angle sensor were taken.

Fig. 2. PrHand grasping SG1 object of the protocol. It shows the optical fiber
sensors and their sensitive zone.

2) k-Nearest Neighbor (k-NN): The Euclidean distance is
used for calculating the distance between the testing sample
and the training samples. The database is divided into two
parts, the first one for training (30 %) and the second for
testing (70 %). For calculating the k value, the training data
was divided into two equal parts and proven with k= 1,
2, 3, 6, and 9. To evaluate the algorithm performance, the
accuracy is calculated. The K-Fold Cross Validation was used
to assess the algorithm better. Aleatory parts of the database
(testing and training samples) were taken and was calculated
the accuracy with each one. This process was performed ten



times; considering previous studies have a low bias and modest
variance with that number of repetitions [19].

III. RESULTS AND DISCUSSION

A. Benchmark

The fingers characterization leads to the equations of Ta-
ble I, where Ac is angle close, Vc is voltage close, Ao is angle
open, and Vo is voltage close. Equations of line 1 describe little
finger behaviour, line 2 ring finger, line 3 equations describe
middle finger, line 4 index finger, and line 5 are the equations
for the thumb. The results show a linear coefficient R2 higher
than 87 % for all fingers, implying an acceptable relationship
between the angle and voltage changes. Two equations have
been used for the open and close cycles since the curvature
sensors show hysteresis in the worst cases with 4 %. Leal et
al. have proposed techniques [20] to compensate the hysteresis
and the viscoelastic effects .

TABLE I
ANGLE VOLTAGE EQUATIONS PER FINGER

Finger Close hand Open hand
Little Vc=-0.0042Ac+4.8808 Vo=-0.0045Ao+4.9131
Ring Vc=-0.0194Ac+2.3561 Vo=-0.0217Ao+2.5834
Middle Vc=-0.006Ac+2.3778 Vo=-0.0061Ao+2.4054
Index Vc=-0.0054Ac+4.6702 Vo=-0.0043Ao+4.5757
Thumb Vc=-0.0357Ac+8.1344 Vo=-0.0483Ao+9.9173

B. Data Processing for ML Algorithm

One thousand samples were taken per repetition when the
prosthesis was in step 4 of the protocol. The dataset consists of
36000 samples where 3000 were per object. Fig. 3 shows the
Principal Components Analysis (PCA) graph per object of the
database, each kind of grasp has a different marker. In most
of the objects, there are differences between the others. In the
case of the hook grip (diamond markers), and the cylindrical
grip (square markers), their objects clustered in a concentrated
region, and that was related to the position of the fingers is
similar independently of the object shape. In both kinds of
grip, all the fingers make the grasp. In cylindrical objects, the
principal change will be how much the finger closes due to the
diameter of the cylinder, and in hook the fingers are always
almost close.

To validate the k-NN algorithm for the proposed approach,
the data was divided into 30 % for training (10800 samples)
and 70 % for testing (25200 samples). The k with better
accuracy response was k=1. For that reason all tests were made
with that k value. Table II are presented the k-NN results for
each object. H1, H3, SG1, SG2, CG1, and CG2 are always
classified in their corresponding groups, and it makes sense
because the PCA (Fig. 3) shows that per object, the data is
always in a region of the graphic. In the case of H2, TP1,
TP2, and CG3 their distribution is more scattered, making
them recognized as others.

Consedering that the same objects will not always be
available, it will always be possible to classify them within
a grip type. In that order of ideas, the database is divided by

Fig. 3. Principal Components Analysis (PCA) for the angles sensors per
object. The diamond is related to the objects of Hook grasp. The triangle is
connected to the objects of spherical grip, the stars are tripod pinch objects,
and the squares are the cylindrical grip objects.

grip type, joining the samples of the three objects by grip type.
The accuracy results of the classifier by grip type are given
in Table III. Although H2 has some percentage error in the
hook grasp, its accuracy is 100 % because, at all times, the
classification was always related to a hook object. The most
complex to classify is the travel pinch; Table II confirms that
information, specifically TP1, where its classification has a
large error percentage in H3. This is related to the fact that
it was a tiny object, so the fingers had to be closed almost
entirely as in the hook-type grips. Even, in Fig. 3, it is seen
that there is a group of TP1 that is close to H3. There is another
considerable error percentage in the SG3 object with the object
CG3, that was related to object geometry because both have
circular forms in their structures. The average accuracy for
all data is 92.81 ± 0.47 %, showing that a machine learning
algorithm is a good alternative to classify those signals.

One study found in the literature about the use of ML
algorithms for the perception of an upper-limb prosthesis,
used angle sensors information for gesture, shape, weight,
and size recognition; although they were tested with different
algorithms, the k-NN had better accuracy [21]. In most of the
other articles found, the information used for the algorithm
was related to camera information [22], [23], which makes a
system more expensive.

IV. CONCLUSIONS

A fiber optical angle sensor for the PrHand hand prosthesis
fingers was developed and characterized. The sensor is easy to
fabricate, and its characteristics agree with the prosthesis soft
robotics attributes due to the optical fiber flexibility. A linear
relationship was found between the voltage and finger angles
higher than 87 %. The angle information was used in the
k-NN algorithm for grasp and object recognition. Regarding
the grasp type, the achieved accuracy was higher than 85 %.
However, the accuracy for object classification was lower.



TABLE II
K-NN ACCURACY PER OBJECT

Prediction
H1 H2 H3 SG1 SG2 SG3 TP1 TP2 TP3 CG1 CG2 CG3

H1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H2 0.00 55.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H3 0.00 44.44 100.00 0.00 0.00 0.00 44.44 0.00 0.00 0.00 0.00 0.00

SG1 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SG2 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Real SG3 0.00 0.00 0.00 0.00 0.00 64.44 0.00 0.00 0.00 0.00 0.00 4.44
TP1 0.00 0.00 0.00 0.00 0.00 0.00 55.56 0.00 0.00 0.00 0.00 0.00
TP2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.22 31.11 0.00 0.00 0.00
TP3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.78 68.89 0.00 0.00 0.00
CG1 0.00 0.00 0.00 0.00 0.00 8.89 0.00 0.00 0.00 100.00 0.00 26.67
CG2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 22.22
CG3 0.00 0.00 0.00 0.00 0.00 26.67 0.00 0.00 0.00 0.00 0.00 46.67

TABLE III
K-NN ACCURACY PER KIND OF GRASP

Prediction
H SG TP CG

H 100.00 0.00 14.81 0.00
Real SG 0.00 88.15 0.00 1.48

TP 0.00 0.00 85.19 0.00
CG 0.00 11.85 0.00 98.52

Some objects were classified correctly with 100 % accuracy,
and others were classified with lower accuracy but shared
the same type of grasp. In future work, it is proposed to
complement the angle information with pressure sensors in
the fingers and, in that way, improve the grasp recognition.
In addition, the sensor hysteresis will be reduced by applying
some of the techniques reported in the literature. The angle
sensor will be optimized using another kind of fiber to house
the sensors inside the fingers.
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