
20538 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

On Determinism of Game Engines Used for
Simulation-Based Autonomous Vehicle Verification
Greg Chance , Abanoub Ghobrial , Kevin McAreavey, Séverin Lemaignan, Tony Pipe , and Kerstin Eder

Abstract— Game engines are increasingly used as simulation
platforms by the autonomous vehicle community to develop
vehicle control systems and test environments. A key requirement
for simulation-based development and verification is determin-
ism, since a deterministic process will always produce the same
output given the same initial conditions and event history. Thus,
in a deterministic simulation environment, tests are rendered
repeatable and yield simulation results that are trustworthy
and straightforward to debug. However, game engines are
seldom deterministic. This paper reviews and identifies the
potential causes and effects of non-deterministic behaviours in
game engines. A case study using CARLA, an open-source
autonomous driving simulation environment powered by Unreal
Engine, is presented to highlight its inherent shortcomings in
providing sufficient precision in experimental results. Different
configurations and utilisations of the software and hardware
are explored to determine an operational domain where the
simulation precision is sufficiently high i.e. variance between
repeated executions becomes negligible for development and
testing work. Finally, a method of a general nature is proposed,
that can be used to find the domains of permissible variance in
game engine simulations for any given system configuration.

Index Terms— Autonomous driving, autonomous vehicles,
determinism, game engines, physics engines, verification and
validation (V&V), simulation, testing.

I. INTRODUCTION

S IMULATION-BASED verification of autonomous driving
functionality is a promising counterpart to costly on-road

testing, that benefits from complete control over (virtual)
actors and their environment. Simulated tests aim to provide
evidence to developers and regulators of the functional safety
of the vehicle or its compliance with commonly agreed upon
road conduct [57], national rules [53] and road traffic laws [55]
which form a body of safe and legal driving rules, termed
assertions, that must not be violated.

Manuscript received 17 May 2021; revised 28 October 2021 and 3 February
2022; accepted 21 May 2022. Date of publication 10 June 2022; date of
current version 7 November 2022. This work was supported in part by the
ROBOPILOT and CAPRI projects through the Centre for Connected and
Autonomous Vehicles (CCAV), delivered in partnership with Innovate U.K.,
under Grant 103703 (CAPRI) and Grant 103288 (ROBOPILOT); and in
part by the “UKRI Trustworthy Autonomous Systems Node in Functional-
ity” under Grant EP/V026518/1. The Associate Editor for this article was
Q. Zhang. (Greg Chance and Abanoub Ghobrial contributed equally to this
work.) (Corresponding author: Greg Chance.)

Greg Chance, Abanoub Ghobrial, Kevin McAreavey, and Kerstin Eder
are with the Trustworthy Systems Laboratory, Department of
Computer Science, University of Bristol, Bristol BS8 1UB, U.K.
(e-mail: greg.chance@bristol.ac.uk; abanoub.ghobrial@bristol.ac.uk;
kevin.mcareavey@bristol.ac.uk; kerstin.eder@bristol.ac.uk).

Séverin Lemaignan and Tony Pipe are with the Bristol Robotics Labora-
tory, University of the West of England, Bristol BS34 8QZ, U.K. (e-mail:
severin.lemaignan@brl.ac.uk; tony.pipe@brl.ac.uk).

Digital Object Identifier 10.1109/TITS.2022.3177887

Design confidence is gained when the autonomous vehi-
cle (AV) can be shown to comply with these rules e.g., through
assertion checking during simulation. There have been several
fatalities with AVs, some of which could be attributed to
insufficient verification and validation (V&V), e.g. [40].

While on-road testing is an essential part of AV verification,
it can be complemented by simulation-based testing, which
offers a means to explore the vast parameter space safely
and efficiently [26] whilst reducing the amount of costly road
trials [23]. In particular, simulations can be biased to increase
the frequency at which otherwise rare events occur [25]; this
includes testing how the AV reacts to unexpected behaviour
of the environment [18].

Increasingly, the autonomous vehicle community is adopt-
ing game engines as simulation platforms to support the devel-
opment and testing of vehicle control software. CARLA [11],
for instance, is an open-source simulator for autonomous
driving that is implemented in the Unreal Engine,1 a real-time
3D creation environment for the gaming and film industry as
well as other creative sectors.

State-of-the-art game engines provide a convenient option
for simulation-based testing. Strong arguments exist that they
offer sufficient realism [25] in the physical domain combined
with realistic rendering of scenes, potentially suitable for
perception stack testing and visual inspection of accidents or
near misses. Furthermore, they are easy to set up and run
compared to on-road testing and are simple to control and
observe, both with respect to the environment the AV operates
in as well as the temporal development of actors [56]. Finally,
support for hardware-in-the-loop development or a real-time
test-bed for cyber-security testing [21] may also be provided
if required. Compared to the vehicle dynamics simulators
and traffic-level simulators used by manufacturers [45], game
engines offer a simulation solution that meets many of the
requirements for the development and functional safety testing
of the autonomous features of AVs in simulation. However,
while game engines are designed primarily for performance
to achieve a good user experience, the requirements for AV
verification go beyond that and include determinism.

In this paper, we investigate non-determinism and how
it affects simulation results using the example of CARLA,
an open-source autonomous driving simulation environment
based on the Unreal Engine. In our case study, scenarios
between pedestrian and vehicle actors are investigated to
determine the actor position variance in the simulation output
for repeated simulation runs. We establish that the CARLA

1https://www.unrealengine.com/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3699-8805
https://orcid.org/0000-0002-8404-294X
https://orcid.org/0000-0001-9746-1409
https://orcid.org/0000-0001-5334-370X

CHANCE et al.: ON DETERMINISM OF GAME ENGINES USED FOR SIMULATION-BASED AUTONOMOUS VEHICLE VERIFICATION 20539

simulator is non-deterministic. Actor path variance was found
to be non-zero and, under certain conditions, a deviation from
the mean was observed of up to 59cm. In such an urban
environment, we consider a deviation of up to 1cm to be
permissible for AV verification. However, in our experiments,
CARLA only exhibits this permissible variance when system
utilisation is restricted to 75% or less and the simulation is
terminated once a vehicle collision has been detected.

The insights gained from this case study motivated the
development of a general step-by-step method for AV devel-
opers and verification engineers to determine the simulation
variance for a given simulation environment. Knowing the
simulation variance will help assess the suitability of a game
engine for AV simulation. In particular, this can give a better
understanding of the effects of non-determinism and to what
extent simulation precision may impact verification results.

This paper is structured as follows. Section II defines terms
used throughout the paper and identifies when determinism
is needed. Section III briefly introduces how game engines
work before investigating in Section IV the potential sources
of non-determinism in game engines. An empirical case study
of simulation variance for a number of scenarios involving
pedestrians and vehicles is given in Section V including inter-
nal and external setting and system screening tests. The results
from the case study are presented in Section VI. Section VII
presents the step-by-step method to assess the suitability of a
simulation system for AV verification in general. We conclude
in Section VIII and give an outlook on future work.

II. PRELIMINARIES

A. Definitions

Refer to Fig. 1 for the definitions introduced in this section.
1) Determinism: Schumann et al. describe determinism as

the property of causality given a temporal development of
events such that any state is completely determined by prior
states [46]. However, in the context of simulation this should
be expanded to include not just prior states but also the
history of actions taken by all actors. Therefore, a deterministic
simulation will always produce the same result given the same
history of prior states and actions.

A simulation can be thought of as the process of generating
or producing experimental data. In the case of a driving
simulator, kinematics will describe future states of actors given
the current conditions and actions taken, thereby generating
new data. If a simulation is deterministic, Fig. 1b, then
there will be no variation in the generated output data, i.e.
all future states are perfectly reproducible from prior states
and actions. However, if a simulation is non-deterministic,
Fig. 1a, then there will be a variation in the output
data.

2) Variance, Precision & Tolerance: We adopt terminol-
ogy from the mechanical engineering and statistics domains
to describe when there is variation in the generated out-
put data [1]. Variance is used here to define the spread
or distribution, of the generated output data with respect
to the mean value. Precision is synonymous with variance
although inversely related mathematically. Therefore, vari-

Fig. 1. Illustration of accuracy, variance, precision and tolerance in the
context of non-determinism and determinism.

ance can indicate the degree to which a simulation can
repeatedly generate the same result when executed under
the same conditions and actions. Tolerance is defined as the
permissible limit of the variance, or in short the permissible
variance.

As an analogy, the simulator can be thought of as a
manufacturing process that produces data. To determine the
precision of this process, the output must be measured and
analysed for differences when the process is repeated. Those
differences describe the spread or variance in the process
output. A hard limit on the variance can then be defined,
Fig. 1a, beyond which the output fails to meet the required
tolerance, e.g. the output is rejected by quality control. Real
manufacturing fails to achieve absolute precision. Hence, there
is a need for tolerances to be specified to account for the
variance in real-world manufacturing processes.

If a simulator is deterministic then it will produce results
with absolute precision or zero variance, Fig. 1b, and hence
will be within tolerance by design. If the simulator is
non-deterministic then there will be a measurable, non-zero
variance in the output data.

20540 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

3) Accuracy: Precision and tolerance should not be con-
fused with accuracy, which describes how closely the mean
of the generated output of a process aligns to a known
standard or reference value. Therefore, we define accuracy
as the difference between the true value, or reference value,
and what has been achieved in the data generation process or
simulation. For a driving simulation, the reference value may
be the real world that the simulation seeks to emulate, where
any divergence from this standard is termed the reality gap.
In practice, full accuracy will often not be achievable due to
modelling and associated computational demands of creating
and executing an exact replica. In most cases it is unnecessary
and some authors state that ‘just the right amount of realism’
is required to achieve valid simulation results [25].

4) Simulation Trace: A simulation trace is the output log
from the simulator consisting of a time series of all actor
positions (x, y, z) in a 3D environment recorded at regular
time intervals. This definition could be extended to include
other variables. A set of simulation traces derived from the
same input and starting state then forms the experimental data
on which variance is calculated for a given simulation run.

5) Simulation Variance & Deviation: If the simulator is
non-deterministic then how can the simulation variance be
measured? This can be achieved by monitoring the values of
any of the recorded output variables that should be consistent
from run to run. For example, actor position variance is a
distance-based metric that can be derived from simulation
traces. The actor position over time, i.e. the actor path, is often
used in assertion checking, e.g. to determine whether vehicles
keep within lanes or whether minimum distances to other
vehicles and road users are being maintained. Thus, in the case
study presented in this paper, the term simulation variance,
measured in SI unit m2, refers to a measure of actor path
variance in the simulation, assuming fixed actions. Case study
results are presented using deviation (SI unit m), the square
root of variance, rather than variance, as this is a more intuitive
measure to comprehend when interpreting test results.

6) Scene, Scenario & Situation: We adopt the terminology
defined for automated driving in [56], where scene refers to all
static objects including the road network, street furniture, envi-
ronment conditions and a snapshot of any dynamic elements.
Dynamic elements are the elements in a scene whose actions or
behaviour may change over time; these are considered actors
and may include the AV, or ego vehicle, other road vehicles,
cyclists, pedestrians and traffic signals. The scenario is then
defined as a temporal development between several scenes
which may be specified by specific parameters. A situation
is defined as the subjective conditions and determinants for
behaviour at a particular point in time.

B. When Is Determinism Needed?

Determinism is a key requirement for simulation during AV
development and testing, it ensures repeated runs have the
same output and therefore have zero variance. A simulator with
non-zero variance is non-deterministic but may be sufficient
for some applications as long as variance is permissible,
i.e. within tolerance. Therefore, tolerance is the acceptable

degree of variability between repeated simulations. When the
simulation output is within tolerance, coverage results are
stable and, when a test fails, debugging can rely on the test
producing the same trace and outcome when repeated. This
ensures that software bugs can be found and fixed efficiently,
and that simulation results are trustworthy.

Non-deterministic simulation may have non-zero variance
in, for example, actor positions, which may render the outcome
unstable producing incorrect results potentially leading false
confidence in the system under test. When used for gaming,
game engines do not need to be deterministic nor do they
have any requirements on the limits of permissible variance;
there are no safety implications from non-determinism in this
domain, nor is finding and fixing all the bugs a high priority
for games developers. It could even be argued that simulation
variance is a feature that enhances gaming and improves the
user experience. However, the situation is very different for AV
development and testing. Thus, our main research questions
are: How can one assess whether a simulation environment
is deterministic? and How can one determine and control the
simulation variance?

III. BACKGROUND

There are numerous game engines with their associated
development environments that could be considered suit-
able for AV development, e.g. Unreal Engine, Unity2 and
CryEngine.3 Specific autonomous driving research tools have
been created to abstract and simplify the development envi-
ronment, some of which are based on existing game engines,
e.g. CARLA [11], AirSim,4 Apollo,5 and some have been
developed for cloud-based simulation, e.g. Nvidia Drive
Constellation.6

Investigating the determinism of game engines has not
attracted much research interest to date since performance is
more critical for game developers than accurate and repeat-
able execution. Ensuring software operates deterministically
is a non-trivial task. Catching intermittent failures, or flaky
tests [51], in a test suite that cannot be replayed makes the
debugging process equally difficult [49]. This section gives an
overview of the internal structure of a game engine and what
sources or settings may affect simulation variance.

Central to a game engine are the main game logic, the arti-
ficial intelligence (AI) component, the audio engine, and the
physics and rendering engines. For AV simulation, we focus on
the latter two. The game loop is responsible for the interaction
between the physics and rendering engines. Fig. 2 depicts a
simplified representation of the process flow in a game engine
loop, where initialisation, game logic and decommissioning
have been removed.7 A game loop is broken up into three
distinct phases: processing the inputs, updating the game world
(Physics Engine), and generating outputs (Rendering) [17].

2https://unity.com/
3https://www.cryengine.com/
4https://microsoft.github.io/AirSim/
5http://apollo.auto/
6https://www.nvidia.com/en-gb/self-driving-cars/drive-constellation/
7https://docs.unity3d.com/Manual/ExecutionOrder.html

CHANCE et al.: ON DETERMINISM OF GAME ENGINES USED FOR SIMULATION-BASED AUTONOMOUS VEHICLE VERIFICATION 20541

Fig. 2. Game engine loop block diagram [39].

The game loop cycle starts with initialising the scene and
actors. Input events from the User or AI are then processed
followed by a physics cycle which may repeat more than once
per rendered frame if the physics time step, dt , is less than the
render update rate. This is illustrated by the loop in the physics
update in Fig. 2. The render update will process frames as fast
as the computational processing will allow up to the maximum
monitor refresh rate [29]. When the frame is rendered the game
loop cycle returns to processing inputs. For an intuitive and
more detailed description of the interplay between the physics
and render cycles see [2].

The physics engine operates according to a time step, dt .
The shorter this time step is, the smoother the interpretation
of the physical dynamics will be. To use a fixed physics time
step, the user’s display refresh rate needs to be known in
advance. This requires an update loop to take less than one
render tick (one frame of real world time). Given the range of
different hardware capabilities, a variable delta time is often
implemented for game playing, taking the previous frame time
as the next dt . However, variable dt can lead to different
outcomes in repeated tests and in some cases unrealistic phys-
ical representations.8 Semi-fixed or limited frame rates ensure
dt does not exceed some user-defined limit to meet a mini-
mum standard of physical representation but allow computa-
tional headroom for slower hardware. Some engines provide
sub-stepping which processes multiple physics calculations
per frame at a greater CPU cost, e.g. Unreal Engine [52].
If the engine tries to render between physics updates, residual
lag can occur, which may result in frames arriving with a
delay to the simulated physics. Thus, extrapolation between
frames may need to be performed to smooth transition between
scenes. Note that both residual lag and extrapolation could
affect perception stack testing. In exceptional cases, where
computational resources are scarce, the fixed time step can be
greater than the time between render ticks and the simulation
will exhibit lag between input commands and rendered states,
resulting in unsynchronised and unrealistic behaviour as can
be experienced when games are executed on platforms not
intended for gaming.

Considering the objectives for gaming and comparing them
to those for AV development and testing, there are funda-
mental differences. Providing game players with a responsive
real-time experience is often achieved at the cost of simulation
accuracy and precision. The gamer neither needs a faithful
representation of reality (i.e. gamer accepts low accuracy)
nor requires repeated actions to result in the same outcome
(i.e. gamer accepts low precision). In contrast, high accuracy

8https://gafferongames.com/post/fix_your_timestep/

and precision are necessary for AV development, testing and
verification.

IV. POTENTIAL SOURCES OF NON-DETERMINISM

The following review discusses the potential sources of
non-determinism that were found in the literature or found
as part of our investigation into game engines. We have
examined hardware- as well as software-borne sources of
non-determinism that occur at different layers of abstrac-
tion. A good analysis of potential sources is given by
Strandberg et al. [51], although the AV simulation domain
introduces its own unique challenges that were not considered
in that paper.

A. Floating-Point Arithmetic

It is a common misconception to attribute non-deterministic
computational execution with the use of floating-point number
representation, which necessitates rounding due to a fixed bit
width [16], [33]. As a consequence, floating-point arithmetic
is not associative [24] and results may differ depending on
execution order. In the context of AV simulation, this could
result in accuracy issues of, for example, actor positions.
While some authors suggest avoiding floating-point repre-
sentation entirely [28], we argue that the precision issues
related to floating-point operations are better described as
incorrectness that is in fact repeatable; they do not cause
non-determinism per se. So, even if the result of a mathemati-
cal operation is incorrect due to floating-point rounding errors,
it should always be equally incorrect when repeated for imple-
mentations that meet the IEEE floating-point standard [19].
However, different compiler configurations, aggressive opti-
misations [36], parallelisation within the runtime environment
or at the hardware level and performing the execution on
a GPU rather than a CPU9 may all affect the execution
order. In conclusion, floating-point arithmetic does not cause
non-zero simulation variance for repeated simulation runs
when using the same executable, hardware, configuration and
execution order.

B. Scheduling, Concurrency and Parallelisation

Runtime scheduling is a resource management method for
sharing computational resources between tasks of different or
equal priority depending on the operating system’s scheduler
policy. A scheduler policy may be optimised in many ways
such as for task throughput, deadline delivery or minimum
latency [27]. In principle, changing the scheduling policy and
thread priorities may increase simulation variance. It would
therefore be important to ensure these remain stable between
repeated runs. However, if some aspects of the game loop are
multi-threaded10 or if the scheduler simply randomly selects
from a set of threads with equal priority, this may alter an
otherwise deterministic sequence of events.

Similar to thread scheduling, scheduling at the hardware
level on a multi-core system determines on which proces-
sor core to execute processes. This may be decided based

9CPU and GPU processors may have different register widths [58].
10https://docs.unity3d.com/Manual/JobSystemMultithreading.html

20542 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

on factors such as throughput, latency or CPU utilisation.
Scheduling multiple processes across several processing cores,
where the number of cores is smaller than the number of
processes can result in variation of the execution order and
cause simulation variance unless explicitly constrained or
statically allocated prior to execution. Indeed, the developers
of the debugging program rr [44] took significant steps to
ensure deterministic behaviour of their program by executing
or context-switching all processes to a single core, which
avoids data races as single threads cannot concurrently access
shared memory. This allowed control over the scheduling
and execution order of threads, thus promoting deterministic
behaviour by design [49]. Likewise, simulation variance may
be observed for game engines that use GPU parallelisation
by offloading time-critical calculations to several dedicated
cores simultaneously. While this would be faster than a serial
execution, the order of execution arising from program-level
concurrency cannot, in general, be guaranteed.

Overall, scheduling, concurrency and parallelisation may be
reasons for simulation variance.

C. Non-Uniform Memory Access (NUMA)

For a repeated test that operates over a number of cores
based on a CPU scheduling policy, memory access time may
vary depending on the physical memory location relative to the
processor. Typically a core can access its own memory with
lower latency than that of another core resulting in lower inter-
processor data transfer cost [35]. Changes in latency between
repeated tests may, in the worst case, cause the game engine
to operate non-deterministically if tasks are processed out of
sequence using equal priority scheduling, or, perhaps, simply
with an increased data transfer cost, i.e. slower. By binding a
process to a specific core for the duration of its execution, the
variations in data transfer time can be minimised.

D. Error Correcting Code (ECC) Memory

ECC Memory is used ubiquitously in commercial simu-
lation facilities and servers to detect and correct single bit
errors in DRAM memory [8]. Single bit errors may occur due
to malfunctioning hardware, ionising radiation (background
cosmic or environmental sources) or from electromagnetic
radiation [9]. If single bit errors go uncorrected then subse-
quent computational processing will produce incorrect results,
potentially giving rise to non-determinism due to the proba-
bilistic nature of such errors occurring. Estimating the rate of
error is difficult and dependent on hardware, environment and
computer cycles [31].

Any simulation hardware not using ECC memory that runs
for 1000’s of hours, typical in AV verification, is likely
to incur significant CPU hours and is therefore subject to
increased exposure to these errors. To counter this, com-
mercial HPC and simulation facilities typically employ ECC
memory as standard.

E. Game Engine Setup

The type and version of the engine code executed should be
considered, paying attention to the control of pseudo-random

numbers, fixed physics calculation steps, (dt), fixed actor
navigation mesh, deterministic ego vehicle controllers and
engine texture loading rates especially for perception stack
testing. For example, in Unreal Editor the unit [50] command
can be used to monitor performance metrics such as Frame
which reports the total time spent generating one frame, Game
for game loop execution time and Draw for render thread time.
With respect to perception stack testing, weather and lighting
conditions in the game engine should be controlled as well
as any other dynamic elements to the simulation environment,
e.g. reflections from surface water, ensuring textures are not
randomly generated.

F. Actor Navigation

The A* algorithm is commonly used for actor navigation in
game engines. A* explores a search graph through a series of
node-selection-and-expansion steps that continue until a goal
node is found. A heuristic is used at each step to select the
most promising node for expansion from a set of candidate
nodes called the frontier. The heuristic is not required to
guarantee a uniquely preferred node in the frontier, so ties may
be found during selection and then broken arbitrarily, meaning
that an implementation of A* can be non-deterministic.

For reasons of efficiency, A* represents the frontier as a
priority queue with nodes prioritised by the heuristic. Selection
then reduces to a dequeue operation on the frontier. How to
break ties in priority queues is related to a broader question
of sorting stability [47] where a priority queue is stable if it
breaks ties based on insertion order, and is unstable otherwise.
Typically unstable priority queues are more computationally
efficient than stable priority queues and the most common
method (using a binary heap) [3], [41] is unstable, breaking
ties based on internal heap order rather than insertion order.
While this priority queue is unstable, it is still deterministic,
since it always breaks ties in the same way (based on heap
order). An example of an unstable priority queue that is
non-deterministic is one that breaks ties at random. An imple-
mentation of A* is deterministic if it uses either a stable
priority queue or an unstable but deterministic priority queue.

The Unreal documentation and source code suggest that
CARLA uses a priority queue based on a binary heap
[12]–[14]. Theoretically this means that use of A* in CARLA
will be deterministic as long as the heap is always constructed
in the same way. However, if some unknown change causes
the heap to be constructed in a different way, then the use
of A* may appear non-deterministic. This can be a complex
problem in practice. For example, suppose A* iterates over
actions in order of hash value, but between runs there is some
untracked change to the hardware/software stack that alters
the hash function, then this may change insertion order of
nodes to the frontier, which could eventually lead to a different
binary heap and thus a different optimal solution found by
A*. This suggests that while a simulated environment may
behave deterministically, factors outside the simulator may
cause changes to the operation of an A* implementation,
which would then materialise as non-deterministic runs in
the simulator. The difference between use of a stable priority

CHANCE et al.: ON DETERMINISM OF GAME ENGINES USED FOR SIMULATION-BASED AUTONOMOUS VEHICLE VERIFICATION 20543

queue and an unstable but deterministic priority is simply that
it may be easier to detect such changes under the former
because insertion order is typically more meaningful with
respect to the actual implementation of A*.

G. Summary

We have investigated the potential sources of
non-determinism affecting game engines and explored
the impact they may have on simulation variance. Memory
checking not withstanding, errors associated with the lack
of ECC are likely to be minimal unless there is significant
background radiation or 1000’s of hours of computation
are expected. To ensure precise simulation outcomes, the
physics setting, dt , must be fixed, along with any actor
navigation meshes, seeds for random number generation,
game engine setup and simulation specific parameters.
Any implementation of the A* search algorithm for actor
navigation must use a stable priority queue to ensure
deterministic results. Non-uniform memory access (NUMA)
should only affect interprocessor data transfer cost and,
without control measures, will only make the computation
cycle longer. Relative access times between different caches
are likely to be small although may have a more pronounced
impact on high throughput systems, e.g. HPC. If this
change in computational cycle gives opportunity for the
execution order to be changed then this situation may lead to
non-determinism.

Basic thread scheduling should not affect the simulation’s
determinism unless changing scheduling policy, operating sys-
tem or migrating between machines with different setups.
However, should new and unexpected threads start during
the simulation, then the interruption to execution order or
additional resource demand may affect timing of subsequent
steps, thus reducing the number of physics updates within
a game loop. Likewise, uncontrolled allocation of hardware
resources such as CPUs or GPUs can potentially give rise to
non-determinism.

V. CASE STUDY OF SIMULATION VARIANCE

We present an empirical investigation into using game
engines for simulation-based verification of autonomous vehi-
cles with a focus on characterising sources of non-determinism
in order to understand the impact they have on simulation
variance. Gao et al. [15] took a similar approach investigating
Java applications, where a set of sources of non-determinism
(termed factors) were shown to impact on repeatability of
testing. Ultimately, our objective is to control non-determinism
to minimise simulation variance.

We first describe the context, scene and scenario of inter-
est before discussing and defining a tolerance for what is
considered an acceptable simulation variance in this context.
A discussion on the internal and external settings of the
simulation is included, along with system configuration and
pre-screening sections.

A. Context, Scene and Scenario

This case study draws on a setup used to verify an urban
mobility and transport solution, where the primary verification

Fig. 3. Schematic of test scenarios for (a) Tests 1-2, (b) Tests 3-4,
(c) Tests 5-6. Descriptions are given in Table I.

objective is to test the behaviour of an ego vehicle in an urban
environment at a T-junction in response to pedestrians and
other vehicles. Thus, the scene for our investigation is the
T-junction with the scenarios as shown in Figure 3.

This scene was used to create a number of scenarios
involving pedestrians and vehicles in order to identify any
changes in the actor paths over repeated tests executed under a
variety of systematically designed conditions and hence study
any simulation variance. The vehicles and pedestrians were
given trajectories, via pre-defined waypoints, that would result
in either colliding with or avoiding other actors.

B. Tolerable Simulation Variance

To achieve stable verification results over repeated test
runs, the simulated actor states must be precise to a spe-
cific tolerance. Deterministic behaviour would result in zero
variance of the simulated actor states but if this cannot be
achieved then what is permissible? The tolerance must be
appropriate to allow accurate assertion checking and coverage
collection in the simulation environment, but not so small such
that assertion checking would fail with minor computational
perturbations. Thus, a tolerance must be defined to reflect
the precision at which repeatability of simulation execution
is required.

For this case study a tolerance on actor position of 1m would
be insufficient when considering the spacial resolution required
to distinguish between a collision and a near-miss event.
A very small value, e.g. 1 × 10−12m, may be overly-sensitive
to minor computational perturbations and generate false posi-
tives. Therefore, for this case study a tolerance of 1cm has
been selected and thus any variance of less than 1cm is
permissible. To put this another way, we can accept a precision

20544 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

with a tolerance of ≤±1cm. In practice, this tolerance may
need to be chosen for each specific verification case and the
speed of the vehicles within the environment [22].

In the following, case study results are shown in terms of
the maximum deviation, max σ , from the mean actor path over
the entire simulation history where any value higher than the
specified tolerance is considered non-permissible.

C. Actor Collisions

Previous investigations into the Unreal Engine indicated that
collisions between actors and solid objects, termed blocking
physics bodies in Unreal Engine documentation [6], can lead
to high simulation variance [20]. Collisions and the subse-
quent physics calculations that are processed, termed event hit
callback in Unreal Engine, were identified as potentially key
aspects to the investigation into simulation variance.

The tests used for the case study are listed in Table I. They
cover a range of interactions between actor types. The map
size for the simulation test environment was 354m × 170m.
The range of movement of the actors within the environment
was up to 70m for vehicles and up to 25m for pedestrians.
Tests 1 & 2 involve two vehicles meeting at a junction where
they either do not collide (Test 1) and where they do collide
(Test 2), thereby triggering an event hit callback in the game
engine. In both cases the trajectories of the vehicles are
hard-coded to follow a set of waypoints spaced at 0.1m
intervals using a PID controller. In Test 3 a mixture of different
actor types is introduced where two vehicles drive without
collision and a pedestrian walks across the road at a crossing
point.

Similar to vehicles, pedestrian actors navigate via a set of
regularly spaced waypoints at 0.1m intervals using the A*
search algorithm which is the default method to find optimal
paths for the CARLA pedestrian actors [34]. There is evidence
to suggest that this actor navigation in CARLA could be a
source of non-deterministic simulation behaviour [5]. This
behaviour is explored in Test 4 where a pedestrian collides
with one of the vehicles at the crossing, triggering an event
hit callback, see Fig 3a.

Tests 5 & 6 involve only pedestrians that either, do not
collide (Test 5) and that do collide (Test 6), see Fig. 3b.

D. Evaluation Metric

For each test the position of each actor is logged at 0.1s
intervals providing a trace of that actor’s path with respect to
simulation time. The logs from repeated tests are sourced to
establish a value for the variance associated with each actor,
a, at each time point t , giving a variance function over time
for each actor, σ 2

a (t).
Instead of using variance, herein the results are given in

terms of the deviation, σa(t), which indicates the dispersion
of the actor path relative to the mean and is helpfully in
the same units as actor position, i.e. metres (m), for ease of
interpretation. The maximum variance (�) over the entire set
of n repeated simulations, i.e. the overall observed worst case,
is defined as the largest variance of any actor at any time in

any of the simulation runs, as given in Equation 1.

� = max
a,t

σ 2
a (t) (1)

The maximum deviation is the absolute value of the square
root of the maximum variance and herein referred to as max σ
for brevity.

The maximum deviation, max σ , can be analysed for the
different scenarios and settings that were identified as potential
sources of non-determinism, and compared against the limit of
permissible variance to indicate if the simulation is sufficiently
accurate for verification purposes.

E. Simulator Settings

Within Unreal Engine there are numerous internal set-
tings relating to the movement and interaction of physical
bodies in the simulation. Settings can be adjusted to alter
how actors interact and path plan via the navigation mesh
of the environment, e.g. Contact Offset and Navmesh Voxel
Size, or can be changed to improve the fidelity of physics
calculations between game update steps, e.g. Physics Sub-
Stepping and Max Physics Delta Time. Other options such as
Enable Enhanced Determinism were investigated along with
running the engine from the command line with options for
more deterministic behaviour -deterministic, floating-
point control /fp:strict and headless mode -nullrhi
along with running the test as a packaged release by building
and cooking [42]. An initial study into the Unreal Engine
using a pedestrian and a moving block was used to inves-
tigate simulation variance against these settings. The results
were compared to a baseline of the default engine settings.
However, none of these options improved simulation variance
significantly and all internal setting were set restored to the
default values. Details on this previous investigation can be
found on the Trustworthy Systems github [20].

F. External Settings

Executing physics calculations during simulation may con-
sume a significant proportion of system resources (e.g. CPU
and GPU processors). This suggests that as resource utilisation
of the simulation increases, so does the simulation variance
which was corroborated with some initial investigations [20]
and explored more fully in this work using CARLA.

To replicate in a controlled manner the high computational
loads that may be anticipated for high performance simu-
lations, software that artificially utilises resources on both
the CPU and GPU were executed alongside the simulation.
Resource utilisation was artificially increased for both CPU
and GPU devices to include a range of values from 0 to 95%
(see Section VII) using reported values of the system monitors
htop and nvidia-smi respectively. Resource utilisation
figures reported here should be considered approximate values.
Resource utilisation was capped to 75% in some parts of the
results and referred to as restricted. This was done to limit the
load on the test system and hence limiting simulation variance.
The term unrestricted places no such limit on the system load.

Practitioners should also be aware that many libraries for
calculating variance itself may require attention to get precise

CHANCE et al.: ON DETERMINISM OF GAME ENGINES USED FOR SIMULATION-BASED AUTONOMOUS VEHICLE VERIFICATION 20545

TABLE I

A DESCRIPTION OF THE TEST SCENARIOS SHOWING THE TEST NUMBER, THE ACTORS INCLUDED, WHETHER A COLLISION OCCURRED AND IF SO
THEN BETWEEN WHICH ACTORS. n, THE NUMBER OF REPEATS IS SET TO 1000 AND max σ IS THE MAXIMUM SIMULATION DEVIATION. THE

TERM unrestricted REFERS TO AN UNRESTRICTED ACCOUNT OF THE RESULTS INCLUDING RESULTS OF ANY RESOURCE UTILISATION.
TO UNDERSTAND THE IMPACT OF COLLISIONS AND HIGH RESOURCE UTILISATION, THE restricted COLUMN SHOWS A SUBSET OF

THE RESULTS WHERE POST-COLLISION DATA AND EXPERIMENTS ABOVE 75% RESOURCE UTILISATION
HAVE BEEN REMOVED

Fig. 4. Actor path plot in X–Y plane for Test 4 with 95% resource utilisation.

results. For example the numpy method of variance is sensi-
tive to the input precision and will return an incorrect answer if
the wrong parameters are set [38]. In matlab, the calculation
of variance may switch from single thread to a multi-threaded
execution not obviously apparent to the user when the input
data size becomes large enough, opening up the potential for
concurrency-induced imprecision [10].

VI. RESULTS AND DISCUSSION

A. Experimental System Configuration and Pre-Screening

The experiments were carried out on an Alienware
Area 51 R5 with an i9 9960X processor with 64GB non-
ECC DDR4 RAM at 2933MHz with an NVIDIA GeForce
RTX 2080 GPU with 8GB GDDR6 RAM at 1515 MHz. The
operating systems was Linux Ubuntu 18.04.4 LTS. Tests were
carried out in CARLA (v0.9.6 and Unreal Engine v4.22) using
synchronous mode with a fixed dt of 0.05s.

Initial testing [20] indicated an actor path deviation of 1 ×
10−13cm for 997 out of 1000 tests, with three tests reporting
a deviation of over ∼10cm. While executing 100 repeats may
seem sufficient, this sample size may fail to observe events
that occur with low probability, giving false confidence in
the results. Therefore each test was repeated 1000 times to
provide a sufficient sample size. Due to the low probability of
a simulation trace exceeding the permissible variance, using an
average would ‘hide’ these errors; hence this is the reason for
using maximum variance and not an average. A detailed guide

Fig. 5. Summary of results showing maximum deviation for each scenario
against different resource utilisation levels. Tests 5 and 6 overlap having
almost identical results. Note that the lines between data points are only a
guide.

for reproducing the experiments along with the scripts used
are provided on github.11 To eliminate some of the potential
sources of non-determinism outlined in Section IV a series of
screening tests and analyses were performed on our system.
These were:

• System memory: memtest86 [30] full suite of tests ran,
all passed.

• Graphical memory: cuda_memtest [7], no failures on
all 11 tests [48].

A summary of the main results is shown in Table I.
In the column max σ (unrestricted) the value reported is the
maximum deviation across all resource utilisation levels, i.e.
the worst case for a given scenario. From these results it is
clear that scenarios with only pedestrian actors (Tests 5 & 6)
display results within tolerance over all resource utilisation
levels with or without a collision where max σ is 5.6 ×
10−13 or 0.56 pm. However, all other scenarios involving
vehicles or a mixture of actor types do not meet the required

11https://github.com/TSL-UOB/CAV-Determinism/tree/master/CARLA
_Tests_setup_guide

20546 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Fig. 6. Vehicle to vehicle collision (Test 2) showing (a) maximum deviation against simulation time for 25% resource utilisation and (b) maximum deviation
pre- and post-collision against resource utilisation. The simulation noise floor is shown in (a) which is the empirical lower limit of deviation for the hardware
reported in this study.

Fig. 7. Vehicle to pedestrian collision (Test 4) showing (a) maximum deviation against simulation time for 25% resource utilisation and (b) maximum
deviation pre- and post-collision for different resource utilisation levels.

tolerance, with some deviation in actor path as large as
59cm. A plot of actor position in the X–Y plane (plan view,
units m) is shown in Fig.4, where the inset clearly shows the
divergence of the path of vehicle 2 post-collision with the
pedestrian. Clearly, such a large deviation cannot be accept-
able for simulation to be considered a credible verification
tool.

Resource utilisation was found to have a significant impact
on simulation variance. Figure 5 shows max σ against the
artificially increased resource utilisation level, where the
x-axis indicates the approximate percentage of resource util-
isation (for CPU & GPU). In this figure, any max σ above
the 1cm level (indicated by a dashed line) is considered

non-permissible according to our specified tolerance. Note that
the non-permissible results in Figure 5 (all those above the
dashed line) are the worst case account of the situation, as per
Equation 1, as the maximum variance is taken over the entire
simulation period.

A general pattern in the results indicates that some scenarios
consistently fail to produce results within tolerance, irrespec-
tive of resource utilisation (cf. Fig. 5 Test 2 & 4 are above the
dashed 1cm line), while some are consistently within tolerance
(cf. Fig. 5 Test 5 & 6 both are with pedestrians only), and some
cases only fail to meet the tolerance requirement at higher
resource utilisation levels, i.e. above 75% resource utilisation
(cf. Fig. 5 Test 1 & 3).

CHANCE et al.: ON DETERMINISM OF GAME ENGINES USED FOR SIMULATION-BASED AUTONOMOUS VEHICLE VERIFICATION 20547

Examining specifically the results from Tests 2 & 4 as a
function of simulation time reveals further information about
the simulation variance before and after an actor collision.
Fig. 6a shows this examination for vehicle to vehicle collisions
(Test 2), where max σ switches from permissible prior to the
vehicle collision to non-permissible post collision. The pattern
of permissible results prior to collision and non-permissible
post collision is maintained up to a resource utilisation level of
approximately 75%, see Fig. 6b. This time series examination
was repeated for vehicle to pedestrian collisions (Test 4) and
the results are shown in Fig. 7a. Similarly to vehicle-to-vehicle
collisions, the variation of max σ for vehicle to pedestrian
collisions indicates permissible pre-collision behaviour with
up to 75% resource utilisation, see Fig. 7b. This is a key
finding; it suggests that verification engineers should consider
terminating tests at the point of a collision, as any post-
collision results will be non-permissible.

The second key finding of this work is illustrated in Fig. 7a.
In this scenario (Test 4), there is a collision between a vehicle
(Car ID 2, solid line) and a pedestrian (Ped ID 3, dot dash
line) which occurs at a simulation time of approximately 6s
and a second vehicle actor (Car ID 1, dashed line), which
is not involved in the collision. There are three observations;
firstly that the vehicle directly involved in the collision (Car
ID 2) displays high simulation variance immediately after
the collision. Secondly, that the maximum deviation of the
pedestrian involved in the collision (Ped ID 3) is at a tolerable
level throughout the test.12 Thirdly, we observed a delayed
effect on Car ID 1 showing high simulation variance with
a 5s delay even though this vehicle was not involved in the
collision. This final point should be of particular concern to
verification engineers, developers and researchers in the field
as it implies that any collision between actors can affect the
simulation variance of the entire actor population and could
potentially result in erroneous simulation results.

To conclude, the main findings of this case study suggest
a working practice that would minimise the factors that
give rise to the non-deterministic effects observed in this
investigation. By limiting simulation results to pre-collision
data and ensuring resource utilisation levels do not exceed
75%, the permissible variance of 1cm is achievable as shown
in the restricted column in Table I. By applying this set
of restrictions upon the simulation the maximum observed
deviation across all experiments was 0.98cm which is within
the target tolerance we set out to achieve. Practitioners may
wish to set a stricter resource utilisation level, such as less
than 50% to further reduce the potential dispersion of results
if this is required for their chosen application.

A correlation between resource utilisation and simulation
variance has been observed in these results which may be
due to process scheduling. Rather than limiting utilisation of
the whole system, another approach may be to promote the
scheduling priority of the simulation process which is explored
in Section VI-B. Furthermore, we were keen to investigate the

12However, please note that in CARLA the pedestrian object is destroyed
post-collision hence the flat line from t = 6s onwards.

Fig. 8. Variance range of three NICE priority settings for additional CPU
& GPU resource utilisation of 0% and 75%.

impact of memory access and include a brief investigation of
this in Section VI-C.

B. Process Scheduling Priority

An investigation into the impact of process scheduling on
the simulation variance was undertaken following the observa-
tions of increased simulation variance with increased resource
utilisation. The experiment was repeated (n = 1000) using
Test 1 but altering the process scheduling priority using the
program NICE.13 Setting a higher priority for the simulator
process with respect to the resource utilisation processes,
it was possible to determine if scheduling could account for the
increased simulation variance when the system is under high
resource utilisation. To give a process a high priority a negative
NICE value is set with the lowest being -20. To decrease the
priority a positive value is set, up to +19. The default NICE
value is 0.

The results are presented in Fig. 8 where the box denotes
the inter-quartile range of deviation, non-outlier limits by the
whiskers and a horizontal bar for the median. The figure
shows that decreasing the priority of the simulator process
(right hand side of the plot) has little effect on simulation
variance when compared to a default NICE value of 0 (central
bars in the plot). Increasing priority (left hand side of the
plot) significantly reduced the variance for the 75% resource
utilisation experiment, but this does not account for all the
difference in the observed results. This can be seen in the
maximum priority setting where the bars in the plot are
not equal, indicating an additional contribution to variance
not accounted for by the NICE scheduling. The remaining
difference in the variance between the two resource utilisation
levels may be due to the lack of absolute control that NICE
has over process scheduling.14

13http://manpages.ubuntu.com/manpages/bionic/man1/nice.1.html
14https://askubuntu.com/questions/656771/process-niceness-vs-priority

20548 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Fig. 9. Stages of the method proposed to determine the variance of a simulation.

C. Non-Uniform Memory Access (NUMA)

An additional investigation into memory access was under-
taken given the potential impact that data transfer cost
and execution order may have on simulation variance, see
Section IV-C. The program numactl [37] allows a process
to run with a specified memory placement policy, essen-
tially allowing the process to be bound to a particular CPU
core. numactl was used to fix the simulator and test
script to single cores, and a (2%) improvement in simu-
lation variance was observed. This was considered minor
comparative to the changes in simulation variance observed
in other aspects of the case study, for example the pre- and
post-collision between a vehicle and pedestrian saw a change
of 1014. Therefore numactl was not used for subsequent
testing.

However, practitioners that are aiming to minimise simula-
tion variance should use a technique such as this to minimise
data transfer cost and potentially minimise any potential effect
on process execution order that may lead to increased simu-
lation variance.

D. Investigation Summary

These empirical investigations have highlighted the short-
comings of using a games engine for simulation based
verification and suggests advice for best working practice.
It was observed that resource utilisation positively corre-
lates with simulation variance and that specific simula-
tion events, such as vehicle collisions, can also lead to
a breach in permissible tolerance. The investigation found
that the effect of higher simulation variance as a result of
increased resource utilisation can be reduced, but not omitted
entirely, by controlling the scheduling policy. The investi-
gation into specifying memory placement on the simulation
process did improve simulation variance but only by a minor
amount of 2%.

However, these results are specific to the hardware and
software used in the study and may not be transferable to
other systems directly. Therefore we have derived a general
methodology that practitioners can follow to find the oper-
ational domains of permissible variance for a game-engine-
based simulation environment. This methodology is presented
in the next section.

VII. METHOD TO DETERMINE THE VARIANCE OF A

SIMULATION

In this section a method for determining the simula-
tion variance of actor paths and resolving the operational
domains of permissible variance is presented here as a work
flow, see Fig. 9. In addition, recommendations and best
practice guidelines for minimising simulation variance are
suggested.

The method consists of a sequence of five stages; experi-
mental design, simulator settings, external settings, execution
and analysis. In the following, each stage is described in detail
with reference to the items listed for each stage in Fig. 9.

A. Experimental Design

The experiment design is based around a series of carefully
selected tests that varies one of the sources of non-determinism
whilst keeping all other parameters constant. Each test is
repeated n times and the analysis of the results provide a
confidence with a degree of statistical certainty. By varying
a single parameter and controlling all others, the simulation
variance associated with each source of non-determinism can
be found and addressed.

1) Actors: All actors that could be included in the simula-
tion should be tested, including any non-standard CARLA or
bespoke actors including the ego vehicle, see Section VII-C.

2) Trajectories and Collisions: Actor paths, or the sequence
of actions required to generate paths, should be hard-coded
to ensure repeatability. These paths should include collisions
between actors and potentially collisions between actors and
static scenery if this is likely to occur in the simulation or as
part of the verification process. Actor paths without collision
are also important to include as these will serve as a baseline
to the other tests; to see if deviations between runs in actor
paths increases with collisions.

3) Permissible Variance: The verification engineer should
set the permissible variance, also termed tolerance. The tol-
erance depends on the objectives of the simulation and the
granularity at which the simulation environment operates. For
example, this tolerance must be sufficiently small to enable
accurate assertion checking and coverage collection, but not
so small for assertion results to differ for repeated runs.
In Section V-B a tolerance of 1cm was considered sufficient

CHANCE et al.: ON DETERMINISM OF GAME ENGINES USED FOR SIMULATION-BASED AUTONOMOUS VEHICLE VERIFICATION 20549

for urban scenario assertion checking. In practice, it may be
necessary to determine this tolerance experimentally.

4) Simulation Time: The simulation time will depend on
the actor paths and terminating conditions. The simulation
time should be sufficient to record interactions between actors
but not so long that the testing takes an inconvenient time
to complete. In our empirical investigation a simulation time
of 10 − 20s was sufficient to monitor the distinct change in
events such as the pre- and post-collision including the delayed
effect seen by other actors, shown in Fig. 7a in Section VI.
The termination conditions of the simulation can be set by, for
example, actors reaching their final trajectory waypoints.

B. Simulator Settings

The settings internal to the game engine or other simulation
environment should be set to ensure a fixed physics time
step, dt . If using CARLA, a small fixed value, say 0.05s,
can be set by using setting.fixed_delta_seconds =
0.05. In Unity, the default fixed time step is set to 0.02s [32].

In CARLA, synchronous mode must be used to allow
communication to external controllers which ensures no sen-
sor data are passed out of order to the simulator which is
particularly important if a complex ego controller is used [4].

The use of random numbers must be controlled through
fixed seeds, resulting in pseudo-randomness. Random numbers
might be used in the simulation environment to control varia-
tions of background effects, e.g. weather patterns, or the navi-
gation of random pedestrian actors, external vehicle controllers
or other clients connected to the simulation environment.
Actors that navigate through the environment should use a
fixed navigation mesh. The version number of the CARLA
and Unreal environment has also be shown to affect results,
see [20]. Therefore, ensuring a consistent version number
throughout testing is also important.

C. External Settings

1) Resource Utilisation: The resources available to the
simulator have been shown to have a significant effect on
the variance of the path of simulated vehicles. Thus, it is
important to understand at what level of resource utilisation
the system running the simulation becomes susceptible to
simulation variance.

CPU utilisation software, such as the linux workload gen-
erator stress, can be used to spawn workers on any
number of cores or virtual threads on a system. This can
be used to artificially increase the load on the system. For
GPU utilisation, gpu-burn can be employed using the fur
test. Different resolutions and multiple instances can be used
to tune graphical utilisation levels [54]. Reported values of
resource utilisation can be obtained using the system monitors
htop and nvidia-smi for CPU and GPU, respectively.
These values should be added to the data logs. Alternatively,
in place of artificial resource utilisation, multiple instances of
the simulation could be executed simultaneously. However, the
granularity of control with this approach may be reduced.

2) Memory Testing: Prior to experimental execution the
system hardware should be tested for memory conformity and

to ensure no single bit errors are occurring, see Section VI-A.
For mainboard memory memtest86 can be used on most
platforms to run a series of pre-defined memory test patterns.
This memory testing software can also be used for ECC
enabled hardware. Similarly, to test memory on Nvidia based
graphical adaptors cuda_memtest can be used to ensure no
memory errors exist.

3) Scheduling: We hypothesise that thread scheduling may
be a major contributor to the non-deterministic results of
the empirical study. However, gaining fine control over
the scheduling policy and thread execution order is non-
trivial [49]. The operating system schedules threads according
to a specified scheduling policy, potentially based on equal
thread priority. Thus, in such a case, all tasks non-essential
to the simulator should be terminated to prevent interfer-
ence with the simulation. Assigning a higher priority to
the simulator process may help to alleviate conflicting task
scheduling which can be achieved by using, for example
TaskSettings.Priority in Windows15 or NICE in
Linux.16

4) NUMA Control: Control over a Non-Uniform Memory
Access policy can be achieved using numactl for multi-core
processors with shared memory. This control allows the sim-
ulator process to be fixed on a single core, reducing and
unifying memory access time. Investigations in tests performed
with NUMA control resulted in only minor improvements in
simulation variance, see Section VI-A. Using a fixed memory
placement policy may assist if simulation variance is border-
line to the tolerance but only of the order of a few percent
from our observations.

5) Ego Vehicle Controller: An ego vehicle was not used in
this study, but the impact of introducing this to the simulator
can be considered here. The ego vehicle is seen as another
actor in the simulation but care must be taken to ensure
that any control algorithms, machine learning modules and
processing pipelines are deterministic. We recommended that
this be treated as a separate source of non-determinism and
handled accordingly.

D. Execution

1) Sample Size: It is recommended that the chosen sample
size, i.e. the number of repeated tests, is determined empiri-
cally. We recommend monitoring variance while increasing the
sample size in orders of magnitude until there is confidence
that max σ will not exceed the permissible variance for the
verification process. Note that we suggest monitoring the
maximum value of σ , not the average, because if even a single
simulation run is outside of the permissible variance it would
be critically important to detect this. Using an average may
lead to false confidence in the verification result.

2) Data Logging: Unique identifiers should be assigned to
each experiment, each repeat and each individual actor. The
time-stamped actor positions should then be recorded at fixed
time intervals throughout the simulation in order to determine
the variance in actor path. Additional information should also

15https://docs.microsoft.com/en-us/windows/win32/taskschd/tasksettings-
priority

16https://linux.die.net/man/1/nice

20550 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

be logged such as the CPU and GPU utilisation levels and
engine specific metrics such as game loop latency.

E. Analysis

For each experiment, the maximum value of actor path
deviation over all time samples and actors, max σ , should
be analysed to identify which of the candidate sources of
non-determinism require restriction or control to reach the
domain of permissible variance within the simulation envi-
ronment.

VIII. CONCLUSION & FUTURE WORK

Game engines offer simulation environments that are used
for the development and verification of autonomous driving
functions. Determinism of a simulator is required to achieve
repeatability, which is essential to find and fix software bugs
efficiently, and to ensure simulation results are trustworthy.
If a simulator is non-deterministic then practitioners should
at least be aware of, and know how to find, the operational
domains where simulation variance is tolerable.

An investigation into the CARLA simulator revealed
a significant simulation variance for repeated tests with
the same initial conditions and event history, indicating
non-determinism of the simulation. We then researched, iden-
tified and discussed potential sources for non-determinism in
this context. In particular, actor collisions and system-level
resource utilisation were identified as key contributors to
increased simulation variance when using CARLA and we
recommend monitoring these during simulation. Alternatively
some commercial driving simulators claim to be fully deter-
ministic, for instance RFpro [43]. These may be more suitable
if using a game engine does not provide a simulation variance
sufficient for the verification requirements.

A general method to assess the actor path variance of
a game-engine-based simulation environment was then pro-
posed. The method can be used to find the domains of
permissible variance of a simulation environment for a given
system configuration. This can give AV developers and verifi-
cation engineers increased confidence in the simulation results
and reduce debug time. As future work, the method can be
extended to other simulation platforms and to criteria other
than the actor path, e.g. actor orientation and any status
indicators that may be of interest, also including actions,
sequences and timings that may be useful for verification
purposes.

An ambitious avenue for future work is the development
of a deterministic simulator for AV development and ver-
ification. This requires controlling all potential sources of
non-determinism, including randomness and scheduling, very
similar to the development of the record-and-reply debugger
rr [44], originally developed to catch low-frequency non-
deterministically failing tests at Mozilla [49].

ACKNOWLEDGMENT

The authors would like to thank David May, Roger Shep-
herd, CFMS, Auroch Digital, and Fortelix for productive
discussions and support.

REFERENCES

[1] T. Atkins and M. Escudier, A Dictionary of Mechanical Engineering.
Oxford, U.K.: Oxford Univ. Press, 2013.

[2] J. Austin. Fix Your Unity Timestep. Accessed: Mar. 4, 2020. [Online].
Available: https://johnaustin.io/articles/2019/fix-your-unity-timestep

[3] Boost C++ Libraries, Basic Priority Queue Interface.
Accessed: Apr. 14, 2021. [Online]. Available: https://www.boost.
org/doc/libs/1_50_0/doc/html/heap/concepts.html

[4] CARLA: Configuring the Simulation. Accessed: Mar. 4, 2020. [Online].
Available: https://carla.readthedocs.io/en/0.8.4/configuring_the_simulation

[5] F. Codevilla. CARLA 0.8.2 Driving Benchmark. Accessed:
Mar. 16, 2019. [Online]. Available: http://carla.org/2018/04/23/release-
0.8.2/

[6] Collision Overview—Unreal Engine 4. Accessed: Nov. 13, 2020.
[Online]. Available: https://docs.unrealengine.com/en-U.S./Engine/
Physics/Collision/Overview/index.html

[7] Cuda Memtest—Tests GPU Memory for Hardware Errors and Soft
Errors Using Cuda. Accessed: Nov. 13, 2020. [Online]. Available:
https://github.com/ComputationalRadiationPhysics/cuda_memtest

[8] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC
server main memory,” IBM Microelectron. Division, vo. 11, nos. 1–23,
pp. 5–7, 1997.

[9] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of
single-event upset in digital microelectronics,” IEEE Trans. Nucl. Sci.,
vol. 50, no. 3, pp. 583–602, Jun. 2003.

[10] Does MATLAB Use All Cores by Default When Running a Program?—
MATLAB Answers. Accessed: Nov. 13, 2020. [Online]. Avail-
able: https://U.K..mathworks.com/matlabcentral/answers/317128-does-
MATLAB-use-a ll-cores-by-default-when-running-a-program

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. 1st Annu. Conf.
Robot Learn. (CoRL), 2017, pp. 1–16.

[12] U. Engine. Fgraphastar, Generic Graph a* Implementation. Accessed:
Apr. 14, 2021. [Online]. Available: https://docs.unrealengine.com/en-
U.S./API/Runtime/AIModule/FGraphAStar/index.html

[13] Github Graphastar.H. Accessed: Apr. 14, 2021. [Online]. Available:
https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/
Runtime/AIModule/Public/GraphAStar.h

[14] Tarray: Arrays in Unreal Engine. Accessed:
Apr. 14, 2021. [Online]. Available: https://docs.unrealengine.
com/en-U.S./ProgrammingAndScripting/ProgrammingWithCPP/
UnrealArchitecture/TArrays/index.html

[15] Z. Gao, “Making system user interactive tests repeatable: When and what
should we control?” in Proc. IEEE Int. Conf. Softw. Test., Verification
Validation (ICST), Apr. 2016, pp. 55–65.

[16] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comput. Surv., vol. 23, no. 1, pp. 5–48,
Mar. 1991.

[17] J. Gregory, Game Engine Architecture, 2nd ed. Boca Raton, FL, USA:
CRC Press, 2017.

[18] C. Hutchison et al., “Robustness testing of autonomy software,” in Proc.
40th Int. Conf. Softw. Eng., Softw. Eng. Pract., May 2018, pp. 276–285.

[19] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2019
(Revision Standard 754-2008), Jul. 2019, pp. 1–84.

[20] Investigating Unreal Engine for Deterministic Behaviour. Accessed:
Mar. 6, 2020. [Online]. Available: https://github.com/TSL-UOB/CAV-
Determinism/tree/master/UnrealEngineTests

[21] A. Y. Javaid, W. Sun, and M. Alam, “UAVSim: A simulation testbed
for unmanned aerial vehicle network cyber security analysis,” in Proc.
IEEE Globecom Workshops (GC Wkshps), Dec. 2013, pp. 1432–1436.

[22] X. Jiang, W. Wang, and K. Bengler, “Intercultural analyses of time-
to-collision in vehicle–pedestrian conflict on an urban midblock cross-
walk,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 1048–1053,
Apr. 2015.

[23] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transp. Res. A, Policy Pract., vol. 94, pp. 182–193, Dec. 2016.

[24] N. Kapre and A. DeHon, “Optimistic parallelization of floating-point
accumulation,” in Proc. 18th IEEE Symp. Comput. Arithmetic (ARITH
), Jun. 2007, pp. 205–213.

[25] P. Koopman and M. Wagner, “Toward a framework for highly automated
vehicle safety validation,” SAE Tech. Paper 2018-01-1071, vol. 1, 2018,
pp. 1–13.

CHANCE et al.: ON DETERMINISM OF GAME ENGINES USED FOR SIMULATION-BASED AUTONOMOUS VEHICLE VERIFICATION 20551

[26] K. Korosec. (2019). Waymo’s Self Driving Cars Hit 10
Million Miles. Accessed: Nov. 26, 2019. [Online]. Available:
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-
million-miles

[27] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, Jan. 1973.

[28] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw.
Eng., New York, NY, USA, Nov. 2014, pp. 643–653.

[29] T. D. Margerie. Precise Frame Rates in Unity. Accessed: Jun. 24, 2020.
[Online]. Available: https://blogs.unity3d.com/2019/06/03/precise-
framerates-in-unity/

[30] Memtest86—The Standard for Memory Diagnostics. Accessed:
Nov. 13, 2020. [Online]. Available: https://www.memtest86.com/

[31] N. Mielke et al., “Bit error rate in NAND flash memories,” in Proc.
IEEE Int. Rel. Phys. Symp., Apr. 2008, pp. 9–19.

[32] Monobehaviour—Unity Game Engine. Accessed: Nov. 13, 2020.
[Online]. Available: https://docs.unity3d.com/ScriptReference/
MonoBehaviour.FixedUpdate.html

[33] J.-M. Müller et al., Handbook Floating-Point Arithmetic, 2nd ed.
Birkhauser, Boston, 2018.

[34] P. L. Newton and J. Feng, Unreal Engine 4 AI Program-
ming Essentials. Sebastopol, CA, USA: O’Reilly Media, 2016.
[Online]. Available: https://www.oreilly.com/library/view/unreal-engine-
4/9781784393120/ch04s03.html

[35] J. Nieplocha, R. Harrison, and R. Littlefield, “Global arrays: A nonuni-
form memory access programming model for high-performance com-
puters,” J. Supercomput., vol. 10, no. 2, pp. 169–189, 1996.

[36] A. Nötzli and F. Brown, “LifeJacket: Verifying precise floating-point
optimizations in LLVM,” in Proc. 5th ACM SIGPLAN Int. Workshop
State Art Program Anal., New York, NY, USA, Jun. 2016, pp. 24–29.

[37] Numactl—Control Numa Policy for Processes or Shared
Memory. Accessed: Nov. 13, 2020. [Online]. Available:
https://linux.die.net/man/8/numactl

[38] (2020). Numpy Variance. Accessed: Sep. 3, 2020. [Online]. Available:
https://numpy.org/doc/stable/reference/generated/numpy.var.html

[39] R. Nystrom, Game Programming Patterns, 1st ed. Genever Benning,
2011.

[40] Preliminary Report Highway HWY18MH010, National Transportation
Safety Board, Washington, DC, USA, 2018.

[41] Priorityqueue (JAVA SE 11 and JDK 11). Accessed:
Apr. 15, 2021. [Online]. Available: https://docs.oracle.com/en/java/
javase/11/docs/api/java.base/java/util/PriorityQueue.html

[42] Releasing Your Project—Unreal Engine 4. Accessed:
Nov. 13, 2020. [Online]. Available: https://docs.unrealengine.com/en-
U.S./Engine/Deployment/Releasing/

[43] rFpro. Add Traffic and Pedestrians to Your Testing. Accessed:
Apr. 20, 2021. [Online]. Available: https://www.rfpro.com/driving-
simulation/traffic-and-pedestrians/

[44] RR Lightweight Tool for Recording. Accessed: Nov. 13, 2020. [Online].
Available: https://github.com/mozilla/rr

[45] Z. Saigol and A. Peters, “Verifying automated driving systems in
simulation framework and challenges,” in Proc. 25th ITS World Congr.,
Copenhagen, Denmark, 2018.

[46] J. Schumann, P. Gupta, and Y. Lui, “Application of neural networks
in high assurance systems: A survey,” in Applications of Neural Net-
works in High Assurance Systems. Berlin, Germany: Springer, 2010,
pp. 1–19.

[47] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Reading, MA, USA:
Addison-Wesley, 2011.

[48] G. Shi, J. Enos, M. Showerman, and V. Kindratenko, “On testing GPU
memory for hard and soft errors,” in Proc. Symp. Appl. Accel. High-
Perform. Comput., vol. 107, 2009, pp. 1–3.

[49] C. Staff, “To catch a failure: The record-and-replay approach to debug-
ging,” Commun. ACM, vol. 63, no. 8, pp. 34–40, Jul. 2020.

[50] Stat Commands. Accessed: Nov. 13, 2020. [Online].
Available: https://docs.unrealengine.com/en-U.S./Engine/Performance/
StatCommands/

[51] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and D. Sund-
mark, “Intermittently failing tests in the embedded systems domain,” in
Proc. 29th ACM SIGSOFT Int. Symp. Softw. Test. Anal., New York, NY,
USA, Jul. 2020, pp. 337–348.

[52] Substepping UE4. Accessed: Nov. 13, 2020. [Online]. Available:
https://docs.unrealengine.com/en-U.S./Engine/Physics/Substepping/

[53] (2015). The Highway Code. Accessed: Nov. 25, 2019. [Online]. Avail-
able: https://www.gov.U.K./guidance/the-highway-code

[54] V. Timonen. GPU Burn. Accessed: Dec. 17, 2019. [Online]. Available:
https://github.com/wilicc/gpu-burn

[55] U.K. Road Traffic Act 1988. Accessed: Oct. 3, 2019. [Online]. Available:
http://www.legislation.gov.U.K./ukpga/1988/52/contents

[56] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defining
and substantiating the terms scene, situation, and scenario for automated
driving,” in Proc. IEEE 18th Int. Conf. Intell. Transp. Syst., Sep. 2015,
pp. 982–988.

[57] Vienna Convention on Road Traffic. Accessed: Oct. 3, 2019. [Online].
Available: https://treaties.un.org

[58] N. Whitehead and A. Fit-Florea. (2011). Precision & Performance:
Floating Point and IEEE 754 Compliance for NVIDIA GPUs. [Online].
Available: https://developer.nvidia.com

Greg Chance received the B.Sc. and Ph.D. degrees
(Hons.) in physics from the University of Bath,
Bath, U.K., in 2001 and 2005, respectively. He was
previously at the Bristol Robotics Laboratory. He is
currently a Senior Research Associate with the
Trustworthy Systems Laboratory, University of Bris-
tol. He has ten years of industrial experience
researching at Oxford Instruments and BAE Sys-
tems. He holds a patent for a novel plasma con-
trol method. His current research interests include
simulation-based verification for autonomous sys-

tems and cybersecurity. He is a Chartered Engineer and a member of the
Institute of Physics.

Abanoub Ghobrial received the M.Eng. degree
in mechanical engineering from the University of
Bristol, Bristol, U.K., in 2018, where he is cur-
rently pursuing the Ph.D. degree in computer sci-
ence. He is also a part-time Research Associate
with the Trustworthy Systems Laboratory, Univer-
sity of Bristol, where he was a full-time Research
Associate, from 2018 to 2020. His current research
interests include techniques to allow self-managing
of autonomous safety-critical systems via continual
learning during operation and the development of

simulation-based verification techniques for autonomous systems.

Kevin McAreavey received the B.Sc. degree
(Hons.) in computer science and the Ph.D. degree in
AI from Queen’s University Belfast (QUB), Belfast,
U.K., in 2010 and 2014, respectively. He is currently
a Senior Research Associate with the Intelligent
Systems Laboratory, University of Bristol (UOB),
working on explainable AI for AI-enabled domestic
life. Previously, he worked with the Trustworthy
Systems Laboratory, UOB, and a Research Fellow
at QUB. His research interests include knowledge
representation and reasoning, agents and multi-agent

systems, and automated planning.

20552 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Séverin Lemaignan received the joint Ph.D. degree
in cognitive robotics from the CNRS/LAAS, France,
and the Technical University of Munich, Germany,
in 2012. Then, he joined the EPFL, Switzerland,
and Plymouth University, U.K., as Post-Doctoral
Researcher, then a Lecturer in robotics until 2018,
when he joined the Bristol Robotics Laboratory.
He is currently an Associate Professor in social
robotics and AI at the Bristol Robotics Labora-
tory, University of the West of England, Bristol.
He has been focusing his recent experimental work

on child–robot interaction and human-in-the-loop machine learning for social
robots. He has been involved in several European projects related to social
and cognitive robotics (CHRIS, DREAM, and L2TOR). He was awarded a
EU H2020 Marie Skłodowska-Curie Individual Fellowship for his project
on robots and theory of mind in 2015. His research interest includes
socio-cognitive aspects of human–robot interaction.

Tony Pipe received the B.Sc. degree (Hons.) in
electronic engineering from the University of War-
wick in 1979 and the Ph.D. degree in robotics from
the University of the West of England (UWE) in
1997. After an eight-year period in industry that
included running a small company, he went to study
his Ph.D. degree. He was a Founding Member of
the Bristol Robotics Laboratory (BRL), and acted
as one of its two deputy directors from its incep-
tion from 2006 to 2020. Since 2010, he has been
a Professor of robotics and autonomous systems

at UWE. He has coauthored over 200 international refereed publications,
supervised 35 Ph.D. students, and created a BRL income of £10 million since
2013. Since 2015, he has been involved with the Connected Autonomous
Vehicle Research and Development via the Innovate UK/CCAV funded
projects VENTURER, FLOURISH, MultiCAV, CAPRI, ROBOPILOT, and
CAV-Forth. His research interests include safe and correct operation whilst in
close-proximity to human beings.

Kerstin Eder received the M.Eng. degree in infor-
matics from the Technical University Dresden,
Germany, and the M.Sc. degree in artificial intel-
ligence and the Ph.D. degree in computational logic
from the University of Bristol, U.K. She is currently
a Professor of computer science and the Head of
the Trustworthy Systems Laboratory, University of
Bristol, U.K. She also leads the verification and
validation for safety in robots research theme at
the Bristol Robotics Laboratory. Her most recent
contributions include agent-based testing, how to use

assertions and theorem proving to verify control system designs as well as
novel energy modeling and static resource analysis techniques to predict
energy consumption of software. In 2007, she was awarded an “Excellence
in Engineering” Prize from the Royal Academy of Engineering, U.K.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

