
1 
 

Investigating and Predicting spatiotemporal variations in 1 

vegetation cover in transitional climate zone: A case study of 2 

Gansu (China) 3 

Qing He1, Kwok Pan Chun1, 2*, Bastien Dieppois3, Liang Chen4, Pingyu Fan1, Emir Toker5, Omer 4 

Yetemen5, Xicai Pan6 5 

1 Department of Geography, Hong Kong Baptist University, Hong Kong, China 6 

2 Department of Geography and Environmental Management, University of the West of England, 7 

Bristol, UK 8 

3 Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Ryton-on-Dunsmore, 9 

UK 10 

4 Key Laboratory of Regional Climate Environment for Temperate East Asia, Institute of 11 

Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 12 

5 Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey 13 

6 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese 14 

Academy of Sciences, Nanjing, China 15 

* Corresponding author:  16 

Dr Kwok Pan Chun, kpchun@hkbu.edu.hk; Tel: +852 3411 6541; Fax: +852 3411 5990; Department 17 

of Geography, Hong Kong Baptist University, Hong Kong, China. 18 

Abstract 19 

Vegetation ecosystems are sensitive to large-scale climate variability in climate transition zones. As a 20 

representative transitional climate zone in Northwest China, Gansu is characterized by a sharp climate 21 

and vegetation gradient. In this study, the spatiotemporal variations of vegetation over Gansu are 22 

characterized using the satellite-based Normalized Difference Vegetation Index (NDVI) observations 23 

during 2000-2020. Results demonstrate that a significant greening trend in vegetation over Gansu is 24 

positively linked with large-scale climate factors through modulating the water and energy dynamics. 25 

As a climate transition zone, the northern water-limited and southern energy-limited regions of Gansu 26 

are affected by water and energy dynamics, differently. In the water-limited region, a weakening 27 

Asian monsoon along with colder Central Pacific (CP) and warmer North Pacific (NP) Oceans 28 

enhance prevailing westerlies which bring more atmospheric moisture. The enhanced atmospheric 29 

moisture and rising temperature promote the local vegetation growth. In contrast, large-scale climate 30 

variations suppress the southwest monsoon moisture fluxes and reduce precipitation in southern 31 
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energy-limited regions. In these energy-limited regions, temperature has more effects on vegetation 32 

growth than precipitation. Therefore, the greenness of vegetation is because of more available energy 33 

from higher temperatures despite overall drying conditions in the region. Based on the above 34 

mechanism, future scenarios based on both Coupled Model Intercomparison Project Phase 5 (CMIP5) 35 

and Coupled Model Intercomparison Project Phase 6 (CMIP6) are developed for vegetation over 36 

Gansu. In the near term (2021-2039), the vegetation is likely to increase due to rising temperature. 37 

However, the vegetation is expected to decrease in a long term (2080-2099) when the energy-limited 38 

regions become water-limited due to increasing regional temperatures and lowering atmospheric 39 

moisture flux. This study reveals an increasing desertification risk over Gansu. Similar investigations 40 

will be valuable in climate transition regions worldwide to explore how large-scale climate variability 41 

affects local ecological services under different future climate scenarios. 42 

Keywords: Vegetation variability; Normalized Difference Vegetation Index (NDVI); climate 43 

variability; water dynamic; energy dynamic; Coupled Model Intercomparison Project Phase 5 44 

(CMIP5); Coupled Model Intercomparison Project Phase 6 (CMIP6) 45 

1. Introduction  46 

Vegetation is a natural interface between soil, hydrology, ecosystem and climate, and it is a sensitive 47 

indicator of regional environmental change (Cui and Shi 2010). Vegetation variability in different 48 

parts of the world varies greatly over the past decades. The vegetation has been increasing in the north 49 

of extratropical latitudes (Mao et al. 2016), and South Asia (Wang et al. 2017b), but there are opposite 50 

trends in boreal Eurasia (Piao et al. 2011) and Inner Asia (Mohammat et al. 2013). Shifts in vegetation 51 

are mainly attributed to global and regional climate changes (Cui and Shi 2010; Li et al. 2015; Xu et 52 

al. 2016), land-use changes (Dirnböck et al. 2003; Fernandes et al. 2011; Tasser and Tappeiner 2002), 53 

and the carbon dioxide fertilization (Los 2013; Schimel et al. 2000; Yang et al. 2016). Among these 54 

factors, climate variability has been recognized as the most direct and important driver for vegetation 55 

variations (Cui and Shi 2010; Yang et al. 2019).  56 

Shifting climate patterns play an important role in vegetation spatiotemporal variability, especially in 57 

climate transition zones (Xia et al. 2019), including Qinling Mountains in China (Xia et al. 2019) and 58 

central Queensland in Australia (Krull et al. 2005). In such climate transition zones, ecosystems are 59 

unstable and highly sensitive to regional climate fluctuations (Hou et al. 2019). As a transitional 60 

climate zone between humid and arid regions in Northwest China, Gansu is characterized by a sharp 61 

climate and vegetation gradient (Wang et al. 2018). Due to global warming, the dry Northwest China 62 

has been transformed into a wet region since the last century (Dai et al. 2011), while Northeast China 63 

became drier (He et al. 2020). The combinations of wetting and drying trends in the different parts of 64 

Gansu make the entire ecosystem more vulnerable. The wetting and drying patterns might be due to 65 

shifting regional precipitation and temperature patterns over the region (Dai et al. 2011; Wang et al. 66 
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2017a). The regional precipitation and temperature distributions are controlled by large-scale climate 67 

variability by modulating regional the water and energy cycles (Ouyang et al. 2014; Xiao et al. 2015). 68 

Therefore, detecting changes in vegetation dynamics and identifying their linkages with regional and 69 

large-scale climate variability is crucial to regional ecological health assessments and regional 70 

economic development coordination under changing climate scenarios. 71 

Over Asian regions, vegetation covers are closely related to the Asian monsoons, i.e. the East Asian 72 

monsoon (EAM; Jiang et al. 2006; Zhao and Yu 2012) and the Indian monsoon (IM; Chen et al. 2014; 73 

Lee et al. 2009). Vegetation dynamics are also related to sea-surface temperature (SST) modes in the 74 

Pacific (Erasmi et al. 2009; Jiang et al. 2011; Lü et al. 2012) and Indian Oceans (Li et al. 2017). For 75 

example, climatological anomalies in vegetation cover over Indonesia were associated with increases 76 

in extreme events (especially droughts) in response to El Nino Southern Oscillation (ENSO; Erasmi et 77 

al. 2009). Similarly, ENSO was demonstrated to affect the vegetation cover in China (Jiang et al. 78 

2011; Lü et al. 2012).  79 

All previous studies suggested that Asian monsoons and SST oscillations affect regional or local 80 

vegetation growths through the modulation of local climate variables. However, the relationships 81 

between vegetation and local climate variables including precipitation, evaporation and temperature 82 

are not consistent in previous studies (Li et al. 2009; Xu et al. 2016; Zhao et al. 2011). When Li et al. 83 

(2009) found that precipitation and temperature are both significantly related to vegetation, Zhao et al. 84 

(2011) suggested that the role of temperature is insignificant. Moreover, Xu et al. (2016) found that 85 

grassland and cropland have different responses to precipitation, evaporation and temperature. In this 86 

study, we establish hydroclimate mechanisms over Gansu based on both water and energy dynamics 87 

to link the large-scale climate variability with local vegetation. Based on this mechanism, we will 88 

produce the future projections of vegetation based on climate model outputs for 2021-2039 and 2080-89 

2099. Overall, this study aims to: i) investigate the spatiotemporal changes in vegetation over Gansu; 90 

ii) establish water and energy mechanisms between climate drivers and vegetation variation; and iii) 91 

develop future scenarios for spatiotemporal changes in vegetation based on climate models outputs. 92 

The paper is structured as follows. In Sections 2 and 3, we introduce the materials and methods. In 93 

Section 4, the spatiotemporal vegetation variations and its linkages with local and large-scale climate 94 

variability over Gansu are investigated. In the final section, the implications and possible future 95 

applications related to desertification risks are summarized and discussed for climate transition zones.   96 

2. Materials 97 

2.1 Study area 98 

In the inner land of Northwest China, Gansu has plateau terrain inclined from South-west to North-99 

east, with an elevation from 598 to 5602 m above the sea level (a.s.l.) (An et al. 2019). It lies between 100 

93°E-110°E and 32°-44°N, with a total area of 455,000 km2 (Figure 1). Based on Zhao (1983), Gansu 101 
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can be divided into three natural geographical regions by 3000 m a.s.l. elevation contour and 400 mm 102 

contour of annual precipitation (Figure 1): the Hexi Corridor arid region (HCAR), the Qinghai-Tibet 103 

alpine region (QTAR), and the Loess Plateau semi-arid region (LPSR). The Gansu region straddles 104 

the alpine, semi-arid and arid climatic zones, which make it vulnerable to climate change (Li et al. 105 

2013). The annual average temperature is around 0-14°C, and it varies greatly from the cold QTAR 106 

(western part) to the warm HCAR and LPSR (eastern part) (Wang et al. 2014b). Annual average 107 

precipitation varies from 50 mm.yr-1 in the northwest to 500 mm.yr-1 in the southeast region (Cheng 108 

and Falkenheim 2016). Over the Gansu region, precipitation concentrates between June and 109 

September during the Asia summer monsoon season, and it shows strong interannual variations (Li et 110 

al. 2013). The main land and vegetation types are deserts, grassland and forest (Wang et al. 2014b). It 111 

has been suggested that intensive climate variations have placed a heavy pressure on the local fragile 112 

ecological and hydroclimate systems and they have impeded the sustainable agricultural and 113 

economic development in the region (Han et al. 2015; Wang et al. 2003). 114 

 115 

Figure 1. The elevation with 16 locations (blue dots) over Gansu. The magenta (elevation contour at 116 

3000 m a.s.l.) and purple line (annual precipitation contour at 400 mm) divide the Gansu into three 117 

graphically regions: the Hexi Corridor arid region (HCAR), the Qinghai-Tibet alpine region (QTAR), 118 

the Loess Plateau semi-arid region (LPSR). 119 

 120 

2.2 Data 121 
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Vegetation indicators are extracted from satellite products, and meteorological variables and climate 122 

indices are derived from reanalysis datasets. The details of the datasets are summarized in Table 1. 123 

Table 1. The information of datasets used in this study. 124 

Datasets Variables  Spatial extent, 

resolution 

Temporal extent, 

resolution 

Reference  

MOD12C2 NDVI Global, 0.05×0.05° 2000/02-present, 

monthly 

Didan (2015) 

ERA5-Land Precipitation, actual 

evapotranspiration 

(AET), temperature, 

potential 

evapotranspiration 

(PET) 

Global, 0.1×0.1° 1981/01-present, 

monthly 

Muñoz (2019) 

ERA5 Wind, specific 

humidity, CAPE 

Global, 0.25×0.25° 1979/01-present, 

monthly 

Hersbach et al. 

(2019) 

ERSST.v5 SST Global, 2×2° 1984/01-present, 

monthly 

Huang et al. 

(2017) 

 125 

2.2.1 Normalized Difference Vegetation Index (NDVI) 126 

Vegetation cover is widely and continuously monitored by satellite remote sensing (Yang et al. 2019). 127 

The Normalized Difference Vegetation Index (NDVI) is one of the most widely used remote sensing 128 

measures, and many NDVI products have continuous records over decades (e.g., Li et al. 2010b; 129 

Mkhabela et al. 2011; Zhang et al. 2003). Here, the NDVI dataset is derived from the Terra Moderate 130 

Resolution Imaging Spectroradiometer (MODIS) product MOD13C2 in a spatial resolution of 131 

0.05×0.05° at a monthly time-step (Didan 2015). The NDVI dataset is extracted from the National 132 

Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center 133 

(LP DAAC; https://e4ftl01.cr.usgs.gov/MOLT/MOD13C2.006/). The MODIS NDVI has been widely 134 

applied in large-scale vegetation studies (e.g., Badreldin et al. 2014; Li et al. 2015; Xu et al. 2016). In 135 

this study, the NDVI is used to explore the spatiotemporal variability in vegetation cover between 136 

February 2000 and January 2020 (total of 20 years), a period that has not been largely explored in 137 

previous studies.  138 

2.2.2 Moisture budgets 139 

https://e4ftl01.cr.usgs.gov/MOLT/MOD13C2.006/
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The vegetation growths are mainly controlled by water and energy balances. To investigate regional 140 

changes in vegetation and their link to water and energy variability, we examine moisture dynamics 141 

that associate with water and energy cycles (Peng and Zhou 2017). The atmospheric moisture 142 

conservation equation in flux form of vertical integration is written as (Trenberth et al. 2011): 143 

𝜕𝑊

𝜕𝑡
= 𝐴𝐸𝑇 − 𝑃 − ∇ ∙ 𝑄 

   (1) 

where 𝑊 is the total column water vapor, AET is the actual evapotranspiration, P is the precipitation, 144 

and ∇ ∙ 𝑄 represents the vertically-integrated atmospheric moisture flux divergence (hereafter called 145 

MFD). The tendency term 
𝜕𝑊

𝜕𝑡
 is small for long-term means. The equation (1) can be written as 146 

                                                        𝑃 + ∇ ∙ 𝑄 ≈ 𝐴𝐸𝑇                                                     (2) 147 

The primary balance of moisture is thus between 𝑃 + ∇ ∙ 𝑄  (gaining moisture) and AET (losing 148 

moisture). For a region, water mainly comes from precipitation brought by horizontal moisture 149 

movements and vertically convective activities. To represent the horizontal water movement, 150 

vertically integrated moisture fluxes and MFD are used. AET is a key factor in the water cycle, but 151 

also an important part in the energy cycle in the form of latent heat (Trenberth et al. 2011). To study 152 

thermally vertical motion, the Convective Available Potential Energy (CAPE), a measure of energy 153 

available for lifting air parcels from the lower to the upper atmosphere, is used. Therefore, both 154 

horizontal and vertical dynamics are used to examine the effects of water and energy on vegetation. 155 

From the above framework, AET acts as a bridge or fluxes between the water and energy cycles. 156 

The precipitation, AET and temperature data are obtained from the ERA5-Land monthly averaged 157 

datasets between 1981 and 2020 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-158 

land-monthly-means?tab=form) (Muñoz 2019). By including improved land surface processes, the 159 

ERA5-Land reanalysis datasets provide higher spatial resolution data (0.1°×0.1°) than its driven 160 

climate reanalysis data (0.25°×0.25°) (Muñoz 2019). Many studies recommended the use of Tropical 161 

Rainfall Measuring Mission (TRMM) data to estimate precipitation over China (e.g., Cao et al. 2018; 162 

Ferreira et al. 2013; He et al. 2020). In Figure A1, ERA5-Land and TRMM precipitation data are very 163 

comparable, with high-correlation levels and high significances. It suggests the reliability of ERA5-164 

Land datasets over Gansu. MFD and CAPE, which are not available in ERA5-Land, are extracted 165 

from ERA5 data over the same period, but with a spatial resolution of 0.25°×0.25° 166 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-167 

means?tab=form) (Hersbach et al. 2019).   168 

2.2.3 Water-limited and energy-limited environments 169 

Vegetation growths are affected by both water and energy factors. In this study, to determine the 170 

dominating factors, we employ the concept of water-limited and energy-limited environments 171 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form
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(Parsons and Abrahams, 1994). Based on the Parsons and Abrahams (1994), a water-limited (energy-172 

limited) environment is defined as the areas having a P.PET-1 ( potential evapotranspiration) ratio 173 

lower (greater) than 0.75. The PET data is also derived from the ERA5-Land dataset. The majority of 174 

the QTAR area is energy-limited because the P and PET ratio is higher than 0.75, while the HCAR is 175 

water-limited with the P and PET ratio lower than 0.75, and the LPSR is a mixed energy- and water-176 

limited region (Figure 2). Therefore, vegetation growth in the HCAR is limited by the availability of 177 

precipitation but not temperature (Javadian et al. 2020; Parsons and Abrahams 1994); whereas, in  the 178 

energy-limited QTAR and some parts of LPSR, the growth of vegetation is mainly restricted by the 179 

temperature (Gokmen et al. 2013; Parsons and Abrahams 1994).  180 

 181 

Figure 2. The distribution of the ratio of precipitation and PET. Warm colour denotes the water-182 

limited regions (i.e., a ratio less than 0.75), while cool colour indicates the energy-limited regions (i.e., 183 

ratio larger than 0.75). The magenta and purple lines divide the Gansu into three graphically regions 184 

(c.f. Figure 1). 185 

2.2.4 Large-scale climate variability 186 

As suggested by previous studies, precipitation and vegetation variability over Asia are controlled by 187 

Asian monsoons (Chen et al. 2014; Jiang et al. 2017; Lee et al. 2009; Zhao and Yu 2012), the tropical 188 

Pacific Ocean temperatures (Erasmi et al. 2009; Jiang et al. 2011; Lü et al. 2012), the North Pacific 189 

SST (Ao and Sun 2016; Li and Li 2000; Zhou and Xia 2012), and the Indian SST variability (Li et al. 190 

2017; Tong et al. 2019). These large-scale ocean oscillations are estimated through SST indices using 191 

the Extended Reconstructed SST version 5 (ERSSTv.5; https://www.ncdc.noaa.gov/data-192 

access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5) (Huang et al. 193 

2017). Derived from the International Comprehensive Ocean-Atmosphere Dataset (ICOADS) Release 194 

3.0., the ERSST.v5 spans between 1854 and 2020 at a 2°× 2° grid resolution. Compared to its 195 

https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5
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previous versions, the ERSST.v5 uses the Empirical Orthogonal Teleconnections (EOTs) to reduce 196 

high-latitude damping, which improves the SST spatial and temporal variability of the product 197 

(Huang et al. 2017). 198 

Among different kinds of Asian monsoons, and the SST indices in the Pacific and Indian Oceans, the 199 

Webster and Yang Monsoon (WYM), the Central Pacific El Nino oscillation (CP) and the North 200 

Pacific SST anomalies (NP) are found to be the more significant contributors to NDVI-based 201 

vegetation variability to Gansu (Figures A2-A3). The WYM is computed using the difference 202 

between zonal winds at 850-hPa and 200-hPa over the Indian region (0-20°N, 40°-110°E; Webster 203 

and Yang 1992). The SST indices for the CP and the NP are respectively calculated according to the 204 

definitions provided in Kao ad Yu (2009) and Mantua (1997). The CP pattern is different from the 205 

eastern type of ENSO (EP; the traditionally defined ENSO type), and these Pacific SST patterns affect 206 

precipitation over China differently (Lv et al. 2019). The western North Pacific subtropical high 207 

(WNPSH) was suggested to be more strongly related to the CP than to the EP (Weng et al. 2011). The 208 

WNPSH plays significant role in regulating the hydroclimate system in China (Gao et al. 2020). 209 

Therefore, the CP is expected to be responsible for vegetation changes through its effects on local 210 

climate systems over China. In addition, the NP has been shown to contribute to precipitation 211 

variability over China (Ao and Sun 2016; Li and Li 2000; Zhou and Xia 2012), and it thus might 212 

affect vegetation growth in the transition regions of China.  213 

2.2.5 Climate Change Scenarios 214 

The Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6) model outputs 215 

have been widely used for evaluating future conditions of vegetation (Zhao et al. 2020; Zhou et al. 216 

2020). Compared to previous phases, CMIP5 models include more carbon processes and feedback 217 

mechanisms of climate systems while CMIP6 have finer resolution with improved dynamical 218 

processes (Eyring et al. 2016; Taylor et al. 2012). In this study, the SST and wind fields from CMIP5 219 

models (Table2) and CMIP6 models (Table 3) are used to derive the atmosphere-ocean oscillation 220 

indices. The CMIP5 models are based on the historical scenarios between 1850 and 2005 and three 221 

future scenarios (RCP 2.6, RCP 4.5 and RCP 8.5) between 2006 and 2100. The RCP 2.6 corresponds 222 

to a strongly declining emission scenario, leading to warming of well below 2°C, which is compatible 223 

with the Paris Agreement. The RCP 4.5 scenario corresponds to an approximate doubling (medium 224 

emission scenario) in carbon dioxide relative to the pre-industrial level, whereas the RCP 8.5 scenario 225 

represents a more than threefold increase (high emission scenario) (Swain and Hayhoe 2015). It is 226 

worth noting that the SST and wind fields data under RCP 2.6 are unavailable for most CIMP5 227 

models in Table 2. Therefore,  only four models are used for RCP 2.6, including bcc-csm1-1-m, IPSL-228 

CM6A-MR, MPI-ESM-LR and NorESM1-M. For CMIP6, similarly, atmosphere-ocean oscillation 229 

indices were estimated based on the historical scenarios (1850-2014) and two Shared Socioeconomic 230 



9 
 

Pathways (SSP), including SSP1-2.6, SSP2-4.5 and SSP5-8.5. For four CMIP6 models, total 51 231 

simulations were used: 10 members (r1i1p1f1 to r1i10p1f1) for ACCESS, 25 members (r1i1p1f1 to 232 

r1i25p1f1) for CanESM5, 6 members for IPSL (i.e., r1i1p1f1, r1i2p1f1, r1i3p1f1, r1i4p1f1, r1i6p1f1 233 

and r1i14p1f1), and 10 members for MIROC (r1i1p1f2 to r1i10p1f2). In this study, two future periods 234 

are used for investigating the transitional changes of vegetation between 2021 and 2099: 2021-2039 235 

(2030s) and 2080-2099 (2090s). 236 

Table 2. Details of 13 CMIP5 climate models used in this study. 237 

Model Institution Lon×Lat 

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 

1.875×1.25° 

ACCESS1-3 Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 

1.875×1.25° 

CESM1-

BGC 

National Center for Atmospheric Research, USA 1.25×0.9375° 

CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen de 

Recherche et For-mation Avanc´ees en Calcul Scientifique, France 

~1.4×1.4° 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (GFDL), New Jersey 2×2.5° 

GFDL-

ESM2M 

Geophysical Fluid Dynamics Laboratory (GFDL), New Jersey  2×2.5° 

HadGEM2-

CC 

Met Office Hadley Centre, UK 1.875×1.25° 

IPSL-CM5A-

LR 

Institut Pierre-Simon Laplace (IPSL), France 3.75×1.875° 

MPI-ESM-

LR 

Max Planck Institute (MPI) for Meteorology, Germany 1.875×1.875° 

NorESM1-M Bjerknes Centre for Climate Research, Norwegian Meteorological 

Institute, Norway 

2.5×1.875° 

NorESM1-

ME 

Bjerknes Centre for Climate Research, Norwegian Meteorological 

Institute, Norway 

2.5×1.875° 

bcc-csm1-1 Beijing Climate Center (bcc), China Meteorological Administration, 

China 

~2.8×2.8° 
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inmcm4 Russian Academy of Sciences, Institute of Numerical Mathematics, 

Russia 

2×1.5° 

 238 

Table 3. Details of 4 CMIP6 climate models used in this study. 239 

CMIP6 Institution Lon×Lat 

ACCESS-ESM1-5 Commonwealth Scientific and Industrial 

Research Organization (CSIRO)-Australia 

Research  Council Centre of Excellence 

for Climate System Science (ARCCSS), 

Australia 

1.25×1.875° 

CanESM5 Canadian Centre for Climate Modelling 

and Analysis, Canada 

2.8×2.8° 

IPSL-CM6A-LR Institute Pierre-Simon Laplace (IPSL), 

France 

1.26×2.5° 

MIROC-ES2L The University of Tokyo, National 

Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science 

and  Technology, Japan 

1.4×1° 

 240 

3. Methods 241 

3.1 Mann-Kendall Test 242 

The Mann-Kendall (MK) test is a nonparametric method to quantify the significance of linear 243 

temporal trends (Kendall 1975; Mann 1945). Previous work argued that the results of the MK trend 244 

test could be misleading if serial correlations and outliers are ignored (Hamed 2008; Hamed and 245 

Ramachandra Rao 1998; Khaliq et al. 2009). In this study, the MK test is modified, according to 246 

Hamed and Ramachandra Rao (1998), to examine the trend significance of NDVI and climate 247 

variability. Trend intensity is estimated based on Thiel-Sen’s slope, which is robust to outliers (Sen 248 

1968). 249 

3.2 Generalised least square (GLS) regression 250 

Vegetation covers over Gansu are hypothesized to be related to monsoons and SST anomalies in 251 

Pacific Oceans. The Generalised least square (GLS) regression models for NDVI values with the 252 

adjustments of serial correlations are expressed as: 253 
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𝑁𝐷𝑉𝐼𝑚 = 𝛽0 + 𝛽𝑊𝑌𝑀𝑊𝑌𝑀 + 𝛽𝐶𝑃𝐶𝑃 + 𝛽𝑁𝑃𝑁𝑃                                        (3) 254 

where 𝑁𝐷𝑉𝐼𝑚 is the modelled NDVI, and  𝛽𝑊𝑌𝑀, 𝛽𝐶𝑃, and 𝛽𝑁𝑃 are the regression coefficients for 255 

their corresponding monsoon and SST indices for the Central and North Pacific Oceans. The GLS 256 

model is only based on large-scale processes, as CMIP5 models are more likely to perform better to 257 

reproduce these processes than local precipitation and temperature (Wang et al. 2014a). In this study, 258 

for future vegetation projection, near-term (2030s: 2021-2039) and long term (2090s: 2080-2099) will 259 

be used. 260 

 3.3 Bias correction 261 

Before developing the empirical regression models, bias-corrections have been applied to winds and 262 

SST model outputs, to reduce differences between climate model outputs and reference data sets 263 

(ERA5 and ERSSTv.5). Based on cumulative distribution function (CDF), a quantile mapping method 264 

by Panofsky and Brier (1958) is used to reduce biases due to scale gaps between the numerical model 265 

grid and the scale of investigated processes. This quantile mapping method has been widely applied in 266 

hydrological impact studies (Boé et al. 2007; Li et al. 2010a; Shukla et al. 2019) and regional climate 267 

change investigations (Fowler et al. 2007; Grillakis et al. 2013; Miao et al. 2016). For a variable 𝑥, the 268 

method can be expressed as:  269 

𝑥𝐵𝐶 = 𝐹𝑟
−1(𝐹𝑚(𝑥𝑚))                                                          (4) 270 

where 𝐹𝑟
−1 is the inverse CDF of the reference data set, i.e. ERA5 and ERSSTv.5, and 𝐹𝑚 is the CDF 271 

of modelled climate indices from CMIP5 and CMIP6. 𝑥𝑚 are the modelled variables and 𝑥𝐵𝐶 are the 272 

bias-corrected outputs.  273 

3.4 Evaluation of GLS model skills and Bias-correction performances 274 

To evaluate the performance of the GLS models for the NDVI estimation and the bias-correction 275 

procedures, the leave-one-out cross-validation method (LOOCV) is used. For each validation, n 276 

samples are randomly divided into a training set with n-1 samples and a test set with one sample. All 277 

the cross-validations are done based on 200-simulation ensembles. The cross-validation error (CVE) 278 

is defined as:  279 

𝐶𝑉𝐸 =
1

𝑝
∑ (𝑓(𝑋(𝑡𝑒𝑠𝑡)) − 𝑌(𝑡𝑒𝑠𝑡))

2
𝑝
𝑖=1                                          (5) 280 

where 𝑓(∙) is the GLS model and bias-correction procedure developed from the training sets using 281 

equation (3) or (4). 𝑋(𝑡𝑒𝑠𝑡) and 𝑌(𝑡𝑒𝑠𝑡) are the corresponding test sets. The value is closer to 0, and 282 

the performances of the GLS model and the bias-correction procedures are better. 283 

We then further examine the GLS model performance in simulating the historical NDVI variability 284 

using the mean square error (MSE) and the ratio of standard deviation (RSD). The MSE, one of the 285 

most common estimates of errors, is written as: 286 
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𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥𝑖 − 𝑥𝑟)

2𝑛
𝑖=1                                                         (6) 287 

where 𝑥𝑟 is the reference climate index of  𝑥𝑖. 288 

The RSD is defined as: 289 

𝑅𝑆𝐷 =
𝜎𝑚

𝜎𝑟
                                                                        (7) 290 

where 𝜎𝑚 and 𝜎𝑟 are the standard deviations of modelled and referenced datasets. 291 

4. Results 292 

4.1 Vegetation patterns 293 

Over the Gansu region, the mean annual NDVI shows a North-South gradient, with more vegetation 294 

in the North than in the South (Figure 3a). In different geographical areas of Gansu, the averaged 295 

NDVI value of the LPSR is the highest (0.2 ≤ NDVI ≤ 0.7), whereas the averaged NDVI value of 296 

QTAR (0 ≤ NDVI ≤ 0.5) is higher than that of the HCAR (0 ≤ NDVI ≤ 0.2; Figure 3a). All three 297 

regions show significant increasing trends in the NDVI (Figure 3b). The increasing trend in the NDVI 298 

is however more pronounced in regions with greater mean vegetation cover (Figure 3a-b): the LPSR 299 

area has the highest increasing NDVI trend, while HCAR has the lowest.  300 

 301 

Figure 3. The mean NDVI (a) and NDVI trend (b) between February 2000 and 2020 January. Black 302 

dots indicate the trends are statistically significant at p<0.1 according to the MK trend test. The 303 

magenta and purple lines divide the Gansu into three graphically regions (c.f. Figure 1). 304 

4.2 Local water and energy patterns and vegetation covers 305 

The spatiotemporal patterns of vegetation growth are related to the variations of local water-energy 306 

dynamics. The local water-energy dynamics are usually represented by variations in local 307 

precipitation, AET and temperature. In Figure 4a, the average annual precipitation amount shows a 308 

similar spatial pattern to the averaged NDVI (Figure 3a): The LPSR and the QTAR receive more than 309 

480 mm.yr-1, but most of the HCAR receive less than 200 mm.yr-1. It suggests that vegetation is 310 
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denser where precipitation is relatively higher. It is also noted that a decreasing trend in precipitation 311 

over the southern regions and an increasing trend in northern regions between 2000 and 2020 (Figure 312 

4b). Regarding AET, mean spatial patterns and trends are consistent with precipitation (Figure 4a-d): i) 313 

AET is very low in the HCAR, as there is little water for local evaporation; ii) higher AET is found in 314 

the LPSR and the QTAR. Consistently with precipitation trend patterns, AET is thus decreasing in 315 

southern regions, but increasing in northern areas (Figure 4d). Therefore, in terms of water dynamics, 316 

AET appears to balance the long-term changes in precipitations. In the southern (northern) region 317 

with less (more) precipitation, the AET is less (more).  Over the QTAR, the average temperature is 318 

below 0°C, while the LPSR and the HCAR have a temperature ranging from 5 to 15°C (Figure 4e). 319 

As shown in previous global study results (Turkington et al. 2019), most of the Gansu region 320 

experiences warming (Figure 4f). Figure 5 shows the regression maps of how the vegetation is related 321 

to local water and energy variations. The precipitation, AET and temperature show significant 322 

positive relationships with vegetation covers (Figure 5). Precipitation and temperature provide the 323 

water and energy to sustain the vegetation growth. More AET suggests more latent heat flux and 324 

water vapor in the atmosphere, helping the formation of precipitation (Yang et al. 2018). Therefore, 325 

AET favours vegetation growth by both providing more energy and promoting the local water cycle. 326 
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 327 

Figure 4. The mean and trend of precipitation (a-b), AET (c-d) and temperature (e-f) between 328 

February 2000 and January 2020 over Gansu. Black dots indicate the trends are statistically 329 

significant at p<0.1 according to the MK trend test. The magenta and purple lines divide the Gansu 330 

into three graphically regions (c.f. Figure 1). 331 
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 332 

Figure 5. The NDVI regressed map with precipitation (a), AET (b) and temperature (c) between 333 

February 2000 and 2020 January. Black dots indicate significant values at the 0.1 significance level 334 

according to the t-test. The magenta and purple lines divide the Gansu into three graphically regions 335 

(c.f. Figure 1). 336 

4.3 Large-scale atmosphere-ocean variability and vegetation covers 337 

Large-scale atmosphere-ocean variability modulates regional energy and water circulations which 338 

affect local vegetation variations. In Section 4.2, the precipitation, AET and temperature show 339 

significant positive relationships with vegetation covers.  Figure 6 shows the impacts of monsoon (i.e., 340 

WYM) and Pacific SST variability (i.e., CP and NP) on regional water, energy and vegetation. The 341 

WYM and CP indices show significantly positive relationships with precipitation, AET and 342 

temperature (Figure 6a-b, d-e, g-h). According to the positive relationships between vegetation and 343 

precipitation, AET and temperature (Figure 5), it is suggested that the WYM and CP could promote 344 

local vegetation growth by providing more water and energy (i.e., more precipitation and AET, and 345 

higher temperature). The positive contributions of WYM and CP to vegetation are also validated in 346 

Figure 6j-k. As opposed to WYM and CP, NP mainly shows negative, but non-significant, 347 

relationships with precipitation, AET and temperature over Gansu (Figure 6c, f, i). Interestingly, the 348 

NP is significantly and positively related to vegetation (Figure 6l), but it has non-significant 349 

relationships (even at p<0.1) with regional water and energy variables over most regions (Figure 6c, f, 350 
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i). Therefore, the accumulated weak energy and water effects of NP appear to have significant impacts 351 

on vegetation growth. 352 

 353 

Figure 6. The precipitation (a-c), AET (d-f), temperature (g-i) and NDVI (j-l) regressed map with 354 

WYM, CP and NP between February 2000 and 2020 January. Black dots indicate significant values at 355 

the 0.1 significance level according to the t-test. The magenta and purple lines divide the Gansu into 356 

three graphically regions (c.f. Figure 1). 357 

To investigate the mechanisms driving these positive relationships between vegetation variations and 358 

large-scale climate variability, horizontal (i.e., MFD) and vertical water and energy dynamics (i.e., 359 

CAPE) are examined in Figures 7 and 8. 360 

Figure 7 shows how the monsoon and the Pacific SST oscillations are related to vertically integrated 361 

horizontal moisture movement. Over Gansu, climatological moisture patterns are controlled by 362 

prevailing westerly and Asian monsoons (Figure 7a; Ren et al. 2016). Prevailing westerly brings 363 
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moisture from Euro-Atlantic regions to the north part of Gansu, while the south-westerly moisture 364 

fluxes from the Indian Ocean and the south-easterly fluxes from the Pacific bring the atmospheric 365 

moisture to South Gansu (Figure 7a). Westerly winds and monsoon moisture fluxes generally 366 

converge in the Gansu midlands (Figure 7a). Both WYM and CP are mainly positively related to 367 

south-westerly moisture fluxes to China, even though the CP pattern would be weaker (Figure 7b-c). 368 

On the contrary, WYM and CP both suppress the westerly moisture fluxes from the Euro-Atlantic 369 

regions (Figure 7a-c). Different from WYM and CP, NP is negatively related to south-westerly 370 

moisture fluxes but positively related to south-easterly fluxes (Figure 7d). This suggests that a warm 371 

North Pacific would lead to less moisture from the Indian Ocean but more water vapour from the 372 

Pacific Ocean to China. Such opposite impacts of NP on the different moisture fluxes contributing to 373 

the Gansu water balance may explain its weak impacts on local water and energy variables (Figure 6c, 374 

f, i). Different circulation effects may interact with each other, thus masking the NP impacts on local 375 

climate variables. 376 

In Figure 8b-d, WYM and CP have significantly positive relationships with CAPE, but NP suppresses 377 

CAPE over Gansu. Generally, CAPE is very small over Gansu (smaller than 200 J kg-1) in Figure 8a. 378 

Low CAPE suggests that the atmosphere is not convective in the region. Moreover, there is no trend 379 

in CAPE during 2000 and 2020 (Figure A4). Therefore, the weak CAPE in the region has a limited 380 

role in local thermodynamic effects on vegetation although large-scale climate variability has impacts 381 

on the CAPE strength.  382 
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 383 

Figure 7. The mean state of the vertical integral of water vapour flux (a), and the regression with the 384 

WYM (b), the CP (c) and the NP (d) during betweenFebruary 2000 and January 2020. The magenta 385 

arrows in (a) are averaged moisture fluxes and shadings are moisture flux divergence. The magenta 386 

and black arrows in (b-c) are significant (p<0.1) and non-significant results at p>0.1, respectively. For 387 

the shaded area, only significant values are presented at the 0.1 significance level according to the t-388 

test.  389 
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390 
Figure 8. The mean state of CAPE (a), and the regression with the WYM (b), the CP (c) and the NP (d) 391 

during February 2000 and January 2020. Black dots indicate significant values at the 0.1 significance 392 

level according to the t-test.  393 

4.4 Impact scenarios for vegetation cover in Gansu 394 

After investigating how WYM, CP and NP are related to vegetation variations over the Gansu region, 395 

CMIP5 and CMIP6 outputs are used to explore how vegetation cover is likely to change over the 21st 396 

century over the Gansu region under different emission scenarios. 397 

4.4.1 Bias-correction and cross-validation 398 

WYM, CP and NP indices are computed for CMIP5 and CMIP6 models, and are bias-corrected, 399 

before developing future scenarios for vegetation covers using the GLS regression models. Figure 9 400 

shows the bias-corrected CDF results of historical simulations from CMIP5 (Figure 9a-c) and CMIP6 401 

(Figure 9d-f) against the original CDFs from the reference datasets. The WYM index derived from the 402 

CMIP5 outputs overestimates the minimums of WYM values (between -20 and -5) and 403 

underestimates the maxima of monsoon values (between -5 and 20; Figure 9a). The CP index derived 404 

from the CMIP5 model overestimates CP-Nina conditions and underestimates CP-Nino conditions 405 

(Figure 9b). The modelled NP values from the CMIP5 outputs are all underestimated (Figure 9c). The 406 

WYM, CP and NP indices from CMIP6 outputs show similar results to CMIP5 (Figure 9d-f). 407 

Specifically, the CP index from CMIP6 matches better with referenced data compared to that from 408 
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CMIP5 (Figure 9b, e). After the bias corrections, the CDFs of the climate indices derived from 409 

CMIP5 and CMIP6 match well with their reference distributions (Figure 9). Between simulated and 410 

referenced climate indices, the MSEs of the WYM, the CP and the NP are reduced by 41% and 40%, 411 

95% (76%) and 96% (97%) for CMIP5 (CMIP6) outputs, respectively. For the cross-validation results 412 

of bias-correction procedures, the CVE values are 0.537 and 0.385 for WYM, 0.045 and 0.052 for CP 413 

and 0.004 and 0.003 for NP from CMIP5 and CMIP6, respectively, and they are in the same 414 

magnitude as the MSE. Before projecting NDVI, the GLS model is also cross-validated (Figure 10). 415 

The CVE values of the NDVI over Gansu are lower than 0.01, which is in the order magnitude of the 416 

MODIS NDVI accuracy, suggesting that the GLS regression model performs adequately for 417 

predicting NDVI variations over the study period (Figure 10). 418 

 419 

Figure 9. The comparison of the empirical CDFs of referenced (i.e., ERA5 and ERSSTv.5 datasets, here 420 

called observation for simplicity), modelled and BC-modelled WYM (a), CP (b) and NP (c) during the 421 

historical period from CMIP5. The (d-f) is the same as (a-c) but for the CMIP6. 422 

 423 
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 424 

Figure 10. The CVE for the estimated NDVI between February 2000 and January 2020 is based on 425 

the GLS models using the LOOCV method. The magenta and purple lines divide the Gansu into three 426 

graphically regions (c.f. Figure 1). 427 

4.4.2 NDVI future scenarios  428 

Using cross-validated GLS regression models, the bias-corrected WYM, CP and NP indices are used 429 

to project NDVI values for three RCP scenarios (RCP 2.6, RCP 4.5 and RCP 8.5) and three SSP 430 

pathways (SSP1-2.6, SSP2-4.5 and SSP5-8.5). For 16 locations (cf. Figure 1), the performances of 431 

simulated NDVI over the historical period (from January 2000 to February 2020) are evaluated for 13 432 

CMIP5 (4 models for RCP 2.6) and four CMIP6 climate models using the MSE and the RSD. The 433 

MSE values are generally smaller than 0.01 and the RSD values are between 0.77 and 1.1 (close to 1) 434 

for all models from CMIP5 and CMIP6, all locations and all scenarios (Figure 11). These results 435 

indicate the GLS regression models have an adequate accuracy for reconstructing NDVI variations 436 

based on large-scale climate indices.  437 

Figure 12 shows the median changes in the NDVI after 2020, based on 13 CMIP5 (4 models for RCP 438 

2.6) and four CMIP6 models. For CMIP5, in the 2030s, and NDVI values increase for all locations 439 

under RCP 2.6 (Figure 12a). NDVI values increase in south locations but decrease in north locations 440 

for both the RCP4.5 and RCP 8.5 scenarios (Figure 12c, e). Moreover, under the RCP8.5 scenario, 441 

there are fewer locations where NDVI values increase, compared to the RCP4.5 scenario (Figure 442 

12c,e). It suggests that excess greenhouse gas (GHG) emissions may harm the vegetation growth even 443 

though the GHG like CO2 is beneficial for the vegetation growth. Turning to the 2090s, almost all 444 

locations of the Gansu region show a decrease in the NDVI for three scenarios (Figure 12b, d, f). For 445 

CMIP6, the NDVI values in the 2030s increase compared to the study period (i.e., 2000-2020) for 446 

almost locations under three SSPs, and the increase rate is larger over southeast locations (Figure 10g, 447 
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I, k). In the 2090s, the NDVI values still increase for most locations under SSP1-2.6 (Figure 12h), 448 

while NDVI values decrease for almost all locations under SSP2-4.5 (Figure 12j). Under SSP5-8.5,   449 

NDVI values decrease compared to 2030s for north locations but increase for south locations over 450 

Gansu (Figure 12l).  451 

Generally, both CMIP5 and CMIP6 show the tendency for vegetation to increase in the near future 452 

(2030s). For the long-term future (2090s), except for under SSP1-2.6,  CMIP5 and CMIP6 models 453 

show decreased tendency of vegetation under most scenarios. The projection results suggest that 454 

current climate patterns will promote the vegetation growth over Gansu in the 2030s, but will 455 

eventually lead to the overall vegetation reduction in the 2090s. Moreover, the increasing vegetation 456 

under SSP1-2.6 suggest that declining emissions can help to alleviate the vegetation reduction in the 457 

future. 458 
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 460 

Figure 11. The MSE (a) and RSD (b) between satellite-based and the modelled NDVI from the 461 

CMIP5 models under RCP 2.6. The (c-d) and (e-f) are the same as the (a-b) but for RCP 4.5 and RCP 462 

8.5, respectively. The MSE (g) and RSD (h) between satellite-based and the modelled NDVI from the 463 

CMIP6 models under SSP1-2.6. The (i-j) and (k-l) are the same as the (g-h) but for SSP2-4.5 and 464 

SSP5-8.5, respectively. 465 
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 467 

Figure 12. The median NDVI difference between the 2030s and study period (SP), and between 2090s 468 

and 2030s across all models from CMIP5 under RCP2.6 (a-b). The (c-d) and (e-f) are the same as the 469 

(a-b) but for RCP 4.5 and RCP 8.5, respectively. The median NDVI difference between the 2030s and 470 

study period (SP), and between 2090s and 2030s across all models from CMIP6 under SSP1-2.6 (g-h). 471 

The (i-j) and (k-l) are the same as the (g-h) but for SSP2-4.5 and SSP5-8.5, respectively. the the The 472 

green and red dots represent positive and negative changes, respectively. The magenta and purple 473 

lines divide the Gansu into three graphically regions (c.f. Figure 1). 474 

5. Discussion and Conclusion 475 

This study investigates spatiotemporal changes in vegetation cover over the transition zone of Gansu 476 

between 2000 and 2020, using a satellite-based NDVI product. Since 2000, Gansu has been 477 

increasingly greener, especially in the southern regions. Such vegetation recovery could be explained 478 

through the combined impacts of local water and energy dynamics associated with weakening WYM 479 
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strength, a colder central Pacific Ocean, and a warmer North Pacific Ocean (Figure A5). The local 480 

water and energy budgets are controlled by horizontal and vertical dynamics. The vertical 481 

thermodynamic (i.e., unchanged CAPE values over the period; Figure A4) is found to have limited 482 

impacts on water and energy budgets over the Gansu region (Figure 13). Therefore, the horizontal 483 

atmospheric dynamics play a major role in local vegetation variations of Gansu.  484 

As a climate transition region, the water balance in Gansu is controlled by both Asian monsoons and 485 

prevailing westerly (Ren et al. 2016). The prevailing westerly brings moisture into North Gansu, 486 

which is mainly a water-limited region (Figure 2). Asian monsoons carry moisture into South Gansu, 487 

which is mainly an energy-limited region (Figure 2). Then, the mechanisms of large-scale climate 488 

variability through horizontal atmospheric dynamics on vegetation are separated into two types: 489 

energy-limited regions for South Gansu and water-limited regions for North Gansu (Figure 13).  490 

For energy-limited regions, the weakening WYM, cold phase of CP and warm phase of NP (Figure 491 

A5) weaken the monsoon moisture fluxes to inland China, leading to lower precipitation than normal 492 

conditions (Figure 13). Less precipitation means less water would be evaporated, thus lower AET in 493 

the region (Figure 13). Due to an increasing global temperature trend, the rising local temperature 494 

would continue to promote vegetation growths in the energy-limited region, despite locally drying 495 

conditions.  In the water-limited region, the weakening WYM, cold phase of CP and warm phase of 496 

NP (Figure A5) enhance the prevailing westerly through weakening the southwest monsoon moisture 497 

fluxes (Figure 13). Westerly and monsoon winds converge in the middle part of Gansu. When the 498 

monsoon becomes weaker, prevailing westerly becomes stronger and brings more moisture fluxes to 499 

North Gansu (Figure A6). More moisture fluxes over northwest China brought by prevailing westerly 500 

are consistent with previous studies (Peng and Zhou 2017; Ren et al. 2016). The warmer temperature 501 

and more precipitation promote AET. The increasing water and energy promote vegetation growth in 502 

the water-limited region.  503 

 504 
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Figure 13. The mechanisms of climate variability effects vegetation. The line arrows represent the 505 

linkages between variables, and bold arrows are the trends of variations between February 2000 and 506 

January 2020. The blue symbols are for positive or increasing relationships, and the red symbols are 507 

for negative or decreasing variations. The dotted box indicates no much changes for the variables (i.e., 508 

CAPE). 509 

In addition to climate effects, human activities also affect local vegetation variations. Figure A7 510 

shows possible human effects based on the NDVI residuals, which are the differences between the 511 

observed and the GLS modelled NDVI. Both annual variations and residuals of NDVI between 2000 512 

and 2020 can roughly be divided into three stages (Figure A7): Stage 1 is a steady increasing period 513 

between 2000 and 2013; Stage 2 is a plateau condition between 2014 and 2016, and Stage 3 is another 514 

NDVI increasing period after 2016. The three-stage patterns of the residuals may indicate that the 515 

vegetation variations of the 2010s could partly be related to human activities. Gansu is one of the 516 

earliest pilot provinces which implement the Grain to Green Program (GTGP) (Li et al. 2015). In the 517 

last two decades, Gansu had two rounds of the program. The first round of the GTGP was between 518 

1999 and 2013 and the second round started in 2014 (Gansu Forestry and Grassland Bureau, 2020; 519 

available in http://lycy.gansu.gov.cn/contents/79149.html). The increase in the NDVI values during 520 

2000-2013 and after 2016 could thus be partly related to the first and second rounds of GTGP (Li et 521 

al., 2015). Between 2014 and 2016, the central government stopped the original GTGP subsidy which 522 

may be related to a break in the vegetation increasing trend in Stage 2 of Figure A7.  523 

For future vegetation projection, various studies have used the downscaling methods (Maraun et al. 524 

2010; Sunyer et al. 2015; Thomas et al. 2007). These studies used local climate variables (i.e, 525 

precipitation) which are closely related to the topography impacts, and the downscaling processes 526 

improved the model results. However, in this study, the NDVI values are estimated based on climate 527 

teleconnections, which are not likely to be affected by local topography. Therefore, the downscaling 528 

for GCM results will not be included in this manuscript. 529 

Based on the GLS model projections driven by large-scale climate modes of variability derived from 530 

CMIP5 and CMIP6 models, the vegetation in Gansu, especially in the southern energy-limited regions 531 

will keep increasing in the 2030s, as a response to climate variability and change. However, in the 532 

2090s, Gansu be more likely to experience a decline in vegetation cover based on most of the CMIP5 533 

and CMIP6 projections. The continuous decreases in precipitation will thus lead to a transition from 534 

energy-limited regions toward more water-limited regions. Therefore, an increasing desertification 535 

risk should be considered for regional development planning and management, and more novel 536 

afforestation strategies based on changing monsoons and the Pacific SST conditions needed to be 537 

proposed. Overall, this study provides a framework to study possible increasing desertification risk, 538 

using climate scenarios from climate models, for the water- and energy- limited transition regions in 539 

the world.  540 

http://lycy.gansu.gov.cn/contents/79149.html
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Figure A1. The correlation between ERA5 and TRMM derived precipitation at significance level of p 820 

< 0.05. 821 

 822 

Figure A2. The correlation between NDVI and Asian monsoons, including IM (a), WNPM (b) and 823 

WYM (c). 824 

 825 

Figure A3. The correlation between NDVI and SST indices in Pacific (a-e) and Indian Ocean (f-g). 826 
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 827 

Figure A4. The CAPE trend map between February 2000 and 2020 January. Black dots indicate 828 

significant values at 0.1 significance level according to the MK-test.  829 

 830 

Figure A5. The time series (blue) with trend line (red) of WYM, CP and NP. 831 
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 832 

Figure A6. The trend of vertical integrated moisture flux divergence during February 2000 and 833 

January 2020. Black dots indicate significant values at 0.1 significance level.  834 

 835 

Figure A7. The annual averaged of NDVI and residual NDVI over the whole Gansu during 2000 and 836 

2019.  837 


