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Abstract
Due to the existence of system noise and unknown state variables, it is difficult to realize unbiased estimation with minimum
variance for the parameter estimation of canonical state space model. This paper presents a new least squares estimator based
on bias compensation principle to solve this problem, transforms canonical state space into the form suitable for the least
square algorithm, introduces an augmented parameter vector and an auxiliary variable, derives parameter estimation formula
based on noise compensation, realizes the unbiased estimation, and gives the specific algorithm. A simulation example is
provided to verify the effectiveness of the estimator.
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Introduction

State space model is an effective tool to describe systems.
Due to its simplicity of equations and ease of understanding,
state space model has been widely used in modeling and
forecasting in economic, control, biological, and other fields.
However, the state space model contains both unknown state
vectors and unknown parameter vectors, and the nonlinear
product relationship between parameter vectors and state
vectors, which makes the identification of the model very
complicated.1 Therefore, the parameter estimation of the state
space model has always been a research hotspot in control
field. At present, the main methods to estimate the parameters
of state space are subspace method,2 Kalman filter method,3,4

gradient search method,5,6 least squares method,7,8 etc.

Literature review

Least squares (LS) estimator is a mathematical optimization
technique. The minimum variance of least squares estimator
explained by Gauss Markov theorem shows that the effect of
ordinary LS estimator is the best one compared with any
other linear unbiased estimators. Therefore, the LS method
has been widely used. However, the LS method can only use
part of observed data, so it depends on the distribution of
noise and the statistical properties of missing data, and it is
difficult to realize unbiased estimation of parameters. An LS

algorithm based on bias compensated principle (BCP) was
proposed in this paper9 in view of the limitations of LS
algorithm, which achieved the goal that online estimation can
be realized when the order and variance of noise are un-
known, and this method was widely used in parameter es-
timation of control systems.10–12 Kenji Ikeda et al. analyzed
the asymptotic bias of recursive least squares (RLS) esti-
mation under closed-loop conditions, and presented com-
pensation method under the assumption that the noise is
white noise.13 Wang et al. proposed a parameter and state
estimation algorithm based on bias compensation for
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observable canonical state space systems with colored noise,
which can generate unbiased parameter estimation by the bias
correction term.14 For Hammerstein autoregressive moving
average (ARMAX) systems with autoregressive variables,
Zhang et al. proposed an RLS identification method based on
the BCP.15Wu et al. combined bias compensation technology
with LS estimation algorithm with forgetting factor to esti-
mate parameters of output error model with moving average
noise,16 then, proposed an LS algorithm based on BCP for
parameter estimation of MISO system under white noise.17

Mu et al. proposed a globally convergent identification al-
gorithm, modified BCP, and gave a consistent estimation of
noise variance rather than introducing auxiliary vectors.18 Jia
et al. presented a unified framework based on the BCP, which
introduces a nonsingular matrix and a noise-independent
auxiliary vector to identify the system affected by corre-
lated noise. Due to the rich possibility of selecting matrix and
auxiliary vector, the framework has great flexibility.19

In the numerous literature studies on system parameter
identification, there are not many cases of parameter identifi-
cation for canonical state space model. By using hierarchical
identification principle, Zhuang et al. proposed a new parameter
and state estimation algorithm for canonical state space model
by replacing noise term with estimation residual in an infor-
mation vector and achieved good results.20 However, even if the
estimated residuals take the place of the noise item, the other
items of algorithm in Ref. 20 still require system noise to be
known. In actual systems, the noise is usually random noise,
which is very difficult to be observed. When the noise is un-
known, it is difficult to estimate parameters unbiased. In this
paper, LS based on BCP is used to estimate parameters of
canonical state space model, so that model transformation, bias
analysis, and bias compensation are carried out to obtain un-
biased estimation of system parameters.

Least squares algorithm based on bias
compensated principle

Parameter estimation of canonical state space model
based on least squares

By LS method, unknown data can be easily obtained, and
square sum of errors between obtained data and actual data is
the minimum (the least variance). In this section, LS method
is applied to estimate parameters of canonical state space
model, and state space model in the form of equation (1) is
transformed into vector functions suitable for LS method.

Consider this state space equation (1)

(
xðt þ 1Þ ¼ AxðtÞ þ buðtÞ

yðtÞ ¼ cxðtÞ þ vðtÞ (1)

where, A ¼

0 1 0 / 0
0 0 1 / 0
« « « 1 «
0 0 0 / 1

�an �an�1 �an�2 / �a1

2
66664

3
77775
2Rn×n is

companion matrix b ¼
b1
b2
«
bn

2
664

3
7752Rn, c ¼ ½ 1 0 0 …0� 2

R1×n and yðtÞ 2R are input and output of the system,
respectively, xðtÞ 2Rn is the unobservable state vector, and
vðtÞ 2R is an uncorrelated random white noise with zero
mean. Assume that the order n is known, uðtÞ ¼ 0, yðtÞ ¼ 0
and vðtÞ ¼ 0 when t ≤ 0. A,b is the system parameter matrix
and parameter vector to be identified, respectively.

Since A is a companion matrix and c has a standard
structure, that is, the first element of c is 1 and the other
elements are zeros, it can be seen that the model is observable
canonical state space model, that is, parameters of observable
canonical model are estimated.

Transform the form of equation (1). The equation of vector
Yðt þ nÞ can be obtained by deducing yðtÞ ¼ cxðtÞ þ vðtÞ
in equations (1) [20]:

yðtþ1Þ¼ cxðtþ1Þþ vðtþ1Þ
¼ cðAxðtÞþbuðtÞÞþ vðtþ1Þ
¼ cAxðtÞþ cbuðtÞþ vðtþ1Þ,

yðtþ2Þ¼ cAxðtþ1Þþ cbuðtþ1Þþ vðtþ2Þ
¼ cA½AxðtÞþbuðtÞ�þ cbuðtþ1Þþ vðtþ2Þ
¼ cA2xðtÞþ cAbuðtÞþ cbuðtþ1Þþ vðtþ2Þ,

/

yðtþn�1Þ¼ cAn�1xðtÞþ cAn�2buðtÞþ cAn�3buðtþ1Þ
þ/þ cbuðtþn�2Þþ vðtþn�1Þ,

We have

yðtÞ ¼ cxðtÞ þ vðtÞ
yðt þ 1Þ ¼ cAxðtÞ þ cbuðtÞ þ vðt þ 1Þ
yðt þ 2Þ ¼ cA2xðtÞ þ cAbuðtÞ þ cbuðt þ 1Þ þ vðt þ 2Þ

/

yðt þ n� 1Þ ¼ cAn�1xðtÞ þ cAn�2buðtÞ
þcAn�3buðt þ 1Þ þ…

þcbuðt þ n� 2Þ þ vðt þ n� 1Þ
yðt þ nÞ ¼ cAnxðtÞ þ cAn�1buðtÞ þ cAn�2buðt þ 1Þ þ…

þcbuðt þ n� 1Þ þ vðt þ nÞ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(2)

Define

Yðt þ nÞ ¼
yðtÞ

yðt þ 1Þ
«

yðt þ n� 1Þ

2
6664

3
77752Rn (3)

Uðt þ nÞ ¼
uðtÞ

uðt þ 1Þ
«

uðt þ n� 1Þ

2
6664

3
77752Rn (4)
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Vðt þ nÞ ¼
vðtÞ

vðt þ 1Þ
«

vðt þ n� 1Þ

2
664

3
7752Rn (5)

M ¼

0 0 / 0 0
cb 0 / 0 0
cAb cb / 0 0
« « 1 « «

cAn�2b cAn�3b / cb 0

2
66664

3
77775
2Rn×n (6)

Q0 ¼
c
cA
«

cAn�1

2
664

3
7752Rn×n (7)

Due to the special structures of c andA, we have Q0 ¼ In,
which is an unit matrix. The first nequations of equation (2)
can be rewritten as (8)

Y ðt þ nÞ ¼ Q0xðtÞ þMUðt þ nÞ þ V ðt þ nÞ
¼ xðtÞ þMUðt þ nÞ þ V ðt þ nÞ (8)

Transform (8) to get (9)

xðtÞ ¼ Yðt þ nÞ �MUðt þ nÞ � Vðt þ nÞ (9)

Substituting (9) into equation (2) gives (10)

yðt þ nÞ
¼ cAnxðtÞ þ cAn�1buðtÞ þ cAn�2buðt þ 1Þ þ/

þ cbuðt þ n� 1Þ þ vðt þ nÞ
¼ cAn½Y ðt þ nÞ �MUðt þ nÞ � Vðt þ nÞ� þ cAn�1buðtÞ

þ cAn�2buðt þ 1Þ þ/þ cbuðt þ n� 1Þ þ vðt þ nÞ
¼ cAn½Y ðt þ nÞ � Vðt þ nÞ� � cAnMUðt þ nÞ þ cAn�1b

uðtÞ þ cAn�2buðt þ 1Þ þ/þ cbuðt þ n� 1Þ þ vðt þ nÞ
¼ cAn½Y ðt þ nÞ � Vðt þ nÞ� � cAnMUðt þ nÞ

þ �cAn�1b,cAn�2b,/,cb
�

uðtÞ
uðt þ 1Þ

«

uðt þ n� 1Þ

2
6664

3
7775þ vðt þ nÞ

¼ �Y T ðt þ nÞ � V T ðt þ nÞ�ðcAnÞT � UTðt þ nÞðcAnMÞT

þ �cAn�1b,cAn�2b,/,cb
�

uðtÞ
uðt þ 1Þ

«

uðt þ n� 1Þ

2
6664

3
7775þ vðt þ nÞ

¼ �Y T ðt þ nÞ � V T ðt þ nÞ�ðcAnÞT � UTðt þ nÞðcAnMÞT

þ UT ðtþnÞ
cAn�1b

«

cb

2
64

3
75þ vðtþnÞ

¼ �Y T ðt þ nÞ,UT ðtþnÞ�
2
4 ðcAnÞT��cAnMþ�cAn�1b,/,cb

��T

3
5

� V T ðtþnÞðcAnÞTþvðtþnÞ:
(10)

Define

fðt þ nÞ ¼
"
Y ðt þ nÞ
Uðt þ nÞ

#
2R2n×1 (11)

θ1 ¼ ½cAn�T (12)

θ2 ¼
��cAnM þ �cAn�1b,/,cb

��T
(13)

~vðt þ nÞ ¼ vðt þ nÞ �V T ðt þ nÞðcAnÞT (14)

Obtain

fT ðt þ nÞ ¼ �Y T ðt þ nÞ,UT ðt þ nÞ � (15)

~V ðt þ nÞ ¼
~vðtÞ

~vðt þ 1Þ
«

~vðt þ n� 1Þ

2
664

3
7752Rn (16)

So, equation (10) can be written as equation (17)

yðt þ nÞ ¼ fT ðt þ nÞ
"
θ1
θ2

#
þ ~vðt þ nÞ

¼ fT ðt þ nÞθ þ ~vðt þ nÞ
(17)

Replacing t in equation (17) with t � n yields equation (18)

yðtÞ ¼ fT ðtÞθ þ ~vðtÞ (18)

Define

Φðt þ nÞ ¼

2
664

fT ðtÞ
/

fT ðt þ n� 1Þ

3
775 (19)

So, the vector function form suitable for LS method is
obtained

Y ðt þ nÞ ¼ Φðt þ nÞθ þ ~V ðt þ nÞ (20)

Replacing t in equation (20) with t � n yields equation (21)

YðtÞ ¼ ΦðtÞθ þ ~V ðtÞ (21)

According to the principle of LS, the loss function can be
defined as (22)

JðθÞ ¼
Xt

i¼1

~v2ðiÞ ¼
Xt

i�1

�
yðiÞ �fT ðiÞθ�2 (22)

LS estimation can be obtained by solving the minimi-
zation of loss function

bθLS ¼ �ΦTðtÞΦðtÞ��1
ΦTðtÞYðtÞ (23)

If the above equations are used to estimate bθLS directly,
and then A and b are deduced, parameter estimation of
equation (1) can be achieved. However, it can be seen from
equation (14) that noise ~vðt þ nÞ may no longer be random
white noise with zero mean, so that estimation of parameters
by LS method may not be the least variance, that is, unbiased
estimation of parameters may not be possible. Therefore, bias

Liu et al. 3
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compensation method will be used to eliminate the bias; the
above LS estimator will be modified in order to achieve
unbiased estimation.

Least squares estimator based on bias
compensated principle

In this section, equation (21) is continuously to be deduced
by LS gives (24)

bθLSðnÞ ¼
�
1

n
ΦTðtÞΦðtÞ

��11

n
ΦTðtÞYðtÞ

¼

0
BBB@
1

n
ðfðt � nÞ/fðt � 1ÞÞ

0
BBB@

fT ðt � nÞ
«

fT ðt � 1Þ

1
CCCA

1
CCCA

�1

0
BBB@
1

n
ðfðt � nÞ/fðt � 1ÞÞ

0
BBB@

yðt � nÞ
«

yðt � 1Þ

1
CCCA

1
CCCA

¼
 
1

n

Xt�1

i¼t�n

�
fðiÞfT ðiÞ�

!�1 
1

n

Xt�1

i¼t�n

ðfðiÞyðiÞÞ
!

¼ bR�1

ffðnÞbRfyðnÞ:

(24)

where bR�1

ffðnÞ ¼
 

1
n

Pt�1

i¼t�n
ðfðiÞfT ðiÞÞ

!�1

, bRfyðnÞ ¼
 

1
n

Pt�1

i¼t�n
ðfðiÞyðiÞÞ

!
.

Substituting yðtÞ ¼ fT ðiÞθ þ ~vðtÞ into (24) gives

bθLSðnÞ¼
 �

1

n

�Xt�1

i¼t�n

�
fðiÞfT ðiÞ�

!�1

 �
1

n

�Xt�1

i¼t�n

�
fðiÞ

�
fT ðiÞθþ~vðtÞ

��!

¼
 �

1

n

�Xt�1

i¼t�n

�
fðiÞfT ðiÞ�

!�1

 
θ

�
1

n

�Xt�1

i¼t�n

�
fðiÞfT ðiÞ�þ

�
1

n

�Xt�1

i¼t�n

�
fðiÞ~vðtÞ

�!

¼θ

 �
1

n

�Xt�1

i¼t�n

�
fðiÞfTðiÞ�

!�1 �
1

n

�Xt�1

i¼t�n

�
fðiÞfT ðiÞ�

!

þ
 �

1

n

�Xt�1

i¼t�n

�
fðiÞfT ðiÞ�

!�1 �
1

n

�Xt�1

i¼t�n

�
fðiÞ~vðtÞ

�!

¼θþ
 �

1

n

�Xt�1

i¼t�n

�
fðiÞfT ðiÞ�

!�1 
1

n

Xt�1

i¼t�n

�
fðiÞ~vðtÞ

�!

¼θþbR�1

ffðnÞbrfvðnÞ:
(25)

Taking probability limit of (25) yields

plimn→∞
bθLSðnÞ ¼ θ þ plimn→∞

bR�1

ffðnÞbrfvðnÞ
¼ θ þ R�1

ffrfv

(26)

where

Rff ¼ plimn→∞
bRffðnÞ ¼ plimn→∞

Xt�1

i¼t�n

�
fðiÞfT ðiÞ� (27)

rfv ¼ plimn→∞brfvðnÞ ¼ plimn→∞

Xt�1

i¼t�n

fðiÞ~vðiÞð Þ (28)

It can be seen from equation (26) that LS estimator is
biased, and bias term is R�1

ffrfv caused by noise. In order to
eliminate the influence of bias term, equation (29) is obtained

bθðnÞ ¼ bθLSðnÞ � bR�1

ffðnÞbrfvðnÞ (29)

In order to obtain an unbiased estimate of bθ, a constant is
needed to replace brfvðnÞ to compensate for the influence of
bias. Assuming that system operates in an open-loop mode, it
means that inputs uðiÞ and vðiÞ are not statistically relevant,
then equation (28) can be rewritten as equation (30)

rfv ¼ plimn→∞
1

n

Xt�1

i¼t�n

 
YðiÞ
UðiÞ

!
~vðiÞ

¼ plimn→∞
1

n

Xt�1

i¼t�n

Y ðiÞ~vðiÞ
UðiÞ~vðiÞ

� �

¼
"
In
0n

#
plimn→∞

1

n

Xt�1

i¼t�n

YðiÞ~vðiÞð Þ ¼
"
In
0n

#
ryv

(30)

where, bryvðnÞ ¼ 1
n

Pt�1

i¼t�n
ðY ðiÞ~vðiÞÞ, ryv ¼ plimn→∞

1
n

Pt�1

i¼t�n

ðYðiÞ~vðiÞÞ:
Equation (29) can be written as equation (31)

bθðnÞ ¼ bθLSðnÞ � bR�1

ffðnÞ
"
In
0n

#
bryvðnÞ (31)

It can be seen from (31) that the key is to find bryvðnÞ, so
augmented regression vector ψðiÞ and augmented parameter

vector θ are introduced to satisfy ψT ðiÞθ ¼ bfT ðiÞθ, which is
commonly used in BCP. It is worth noting that no matter how
different the structures of θ and ψðiÞ are, the calculation of
bryvðnÞ is similar.19 Therefore, the method described below is
universal.

Introduce an auxiliary vector ξðiÞ 2Rmðm ≥ nÞ which
satisfies equation (32) and a nonsingular matrix
F 2Rð2nþmÞ×ð2nþmÞ

plimn→∞
1

n

Xt�1

i¼t�n

�
ξðiÞ~vðiÞ

�
¼ 0 (32)

Construct an augmented regression vector ψðiÞ and an
augmented parameter vector θ by introducing auxiliary
vector ξðiÞ and nonsingular matrix F , this step is the most
important step, the selection of ψðiÞ and θ makes calculation
of bryv becomes possible

4 Measurement and Control 0(0)
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ψðiÞ ¼ F
"
fðiÞ
ξðiÞ

#
2Rð2nþmÞ (33)

θ ¼ �F�1
�T
"
θ
0

#
2Rð2nþmÞ (34)

The θ and ψðiÞ satisfy equation (35)

ψT ðiÞθ ¼ fT ðiÞθ (35)

Rewrite yðtÞ ¼ fT ðiÞθ þ ~vðtÞ as yðtÞ ¼ ψT ðtÞθ þ ~vðtÞ: It
is easy to yield equation (36) from equation (34)

F Tθ ¼
"
θ
0

#
(36)

Let

F ¼ ½F 1 F 2 Z� ¼ ½F 0 Z� (37)

where F 1,F 2 2Rð2nþmÞ×n,F 0 2Rð2nþmÞ×2n, Z 2Rð2nþmÞ×m:
Equation (38) can be obtained

ZTθ ¼ 0 (38)

Similar to equations (24) and (26), equations (39) and (40)
can be obtained in the same way

bθLSðnÞ ¼ bR�1

ψψðnÞbrψyðnÞ (39)

plimn→∞
bθLSðnÞ ¼ θ þ

�
plimn→∞

bR�1

ψψ

�
F 1ryv (40)

where

bRψψðnÞ ¼ 1

n

Xt�1

i¼t�n

ψðiÞψT ðiÞ (41)

brψyðnÞ ¼ 1

n

Xt�1

i¼t�n

ψðiÞyðiÞ (42)

Pre-multiplying ZT on both sides of equation (40) and
using (38) yield

ZTplimn→∞
bθLSðnÞ ¼ ZTθ þ ZT

�
plimn→∞

bR�1

ψψðnÞ
�
F 1ryv

¼ ZTplimn→∞
bR�1

ψψðnÞF 1ryv

(43)

Define

bD ¼ ZT bR�1

ψψðnÞF 1 2Rm×n (44)

Thus, the estimation of ryv can be determined by the
weighted LS as equation (45)

bryvðnÞ ¼
�
bDT

WLS
bD
��1

bDT
WLSZ

TbθLSðnÞ (45)

where WLS is a positive definite weighting matrix. The choice of
WLS does not affect the consistency properties ofbryvðnÞ, but may
have a considerable impact on the statistical accuracy of bryvðnÞ.

One simple choice isWLS ¼ I .19 In the case of m ¼ n, if bD
is non-singular, bryvðnÞ simply becomes as equation (46)

bryvðnÞ ¼ bD�1
ZTbθLSðnÞ (46)

Similar to equations (24) and (26), equation (47) can be
obtained from (40) in the same way

bθðnÞ ¼ bθLSðnÞ � bR�1

ψψðnÞF 1bryvðnÞ (47)

By substituting (45) into (47), consistent estimation of the
augmented parameter vector θ can be obtained, finally, the
global consistent estimation of original parameter θ can be
obtained by equation (36) and rewritten as equation (48)

bθðnÞ ¼ F T
0
bθðnÞ (48)

Above is the unified BCP method. Through choosing ap-
propriately ξðiÞ and F , various BCP-based methods can be
obtained to achieve a global consistent estimation of parameters.

Parameter estimation of canonical state space model
based on BCP-LS

For canonical state space model, this section uses the method
introduced in 2.2 to derive a specific parameter estimation
algorithm.

Choose

F ¼ I3n, ξðiÞ ¼ UðiÞ 2Rn (49)

whereUðiÞ ¼
uðt � 2nÞ

uðt � 2nþ 1Þ
«

uðt � n� 1Þ

2
664

3
775, we obtain θ ¼

θ1
θ2
0

2
4
3
52R3n,

ψðiÞ ¼
YðiÞ
UðiÞ
UðiÞ

2
4

3
52R3n:

Then, bryv can be obtained according to equation (45), and
the global unbiased estimate of the parameter θ can be ob-
tained by equations (47) and (48). Furthermore, parameters of
the system can be estimated by input and output data. Since
the relationship between parameter vector θ and parameters
A, b, c has been established in parameter estimation of ca-
nonical state space model based on least squares, the algo-
rithm can be directly derived from algebraic operations.

Post-multiplying Q0 ¼
c
cA
«

cAn�1

2
664

3
775 ¼ In by b gives

cb
cAb
«

cAn�1b

2
664

3
775 ¼ b: Observing the structure of vector b to get

equation (50)

cAk�1b ¼ bk , k ¼ 1; 2,…,n (50)

The matrix M in parameter estimation of canonical state
space model based on least squares can be simplified by (50) as
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M ¼

0 0 / 0 0

b1 0 / 0 0

b2 b1 1 « «

« « 1 0 0

bn�1 bn�2 / b1 0

2
666664

3
777775

(51)

Post-multiplying

c
cA
«

cAn�1

2
664

3
775 ¼ In by A gives

cA

cA2

«

cAn

2
6664

3
7775 ¼ A (52)

Post-multiplying cAn ¼ ½�an,� an�1,/,� a1� by M
gives

cAnM ¼

�ðb1an�1 þ b2an�2 þ/þ bn�1a1Þ
�ðb1an�2 þ b2an�3 þ/þ bn�2a1Þ

«

�b1a1
0

2
666664

3
777775

T

(53)

Equation (54) can be obtained according to equations (52)
and (12)

θ1 ¼ ½cAn�T ¼
�an
�an�1

«
�a1

2
664

3
775 (54)

Equation (55) can be obtained according to equations (53)
and (13)

θ2 ¼
��cAnM þ �cAn�1b,/,cb

��T

¼

b1an�1 þ b2an�2 þ/þ bn�1a1 þ bn

b1an�2 þb2an�3 þ/þ bn�2a1 þ bn�1

«

b1a1 þ b2

b1

2
66666664

3
77777775

¼

an�1 an�2 / a1 1

an�2 an�3 / 1 0

« « 1 « «

a1 1 / 0 0

1 0 / 0 0

2
66666664

3
77777775

b1

b2

«

bn�1

bn

2
6666664

3
7777775

(55)

Since the estimated value bθðnÞ of θ ¼ θ1
θ2

� �
has been

obtained previously, the estimated value of ai has been obtained,

that is, the estimated value bA of A can be obtained. Then
equation (56) can be obtained due to the expression of θ2

bb ¼

bb1
bb2
«
bbn�1

bbn

2
666664

3
777775
¼

ban�1 ban�2 / ba1 1

ban�2 ban�3 / 1 0

« « 1 « «

ba1 1 / 0 0

1 0 / 0 0

2
666664

3
777775

�1

bθ2

(56)

A consistent estimated value bb of b can be obtained
from (56). Now we have realized the global consistent
unbiased estimation of parameters of canonical state space
model (1).

The specific algorithm is summarized as follows:

1) Transform equation (1) into the form of
YðtÞ ¼ ΦðtÞθ þ ~VðtÞ according to equations (2)–
(21);

2) collect the input/output data of fuðtÞ,yðtÞg;
3) introduce auxiliary vector ξ and matrix F , then

construct ψ and θ according to equations (33) and
(34);

4) calculate bRψψ by equation (41);
5) calculate brψy by equation (42);

6) calculate bθLS by equation (39);

7) calculate bD by equation (44);
8) define WLS ¼ I , calculate bryv by equation (45);

9) calculate bθðnÞ by equation (47);
10) calculate bθðnÞ by equation (48), then the global

consistent least squares estimation of θ is obtained;
11) calculate bA,bb by equations (54) and (56), algorithm

is end.

Simulation research

In this section, several examples of a canonical state space
model are used to verify performance of presented estimator.

Example 1

For equation (57), fuðtÞg is taken as an independent random
signal sequence with zero mean and unit variance, and fvðtÞg
as a white noise sequence with zero mean and variances σ21 ¼
0:12 and σ22 ¼ 1:02, respectively. Time is represented as t and
parameter estimation error is calculated by ε ¼ bθ � θ2, which
is similar to the example in Ref. 20

xðt þ 1Þ ¼ 0 1

�0:8 1:6

" #
xðtÞ þ 1

�1

" #
uðtÞ

yðtÞ ¼ ½1 0 �xðtÞ þ vðtÞ:

8><
>:

(57)

First, true value of θ is calculated:
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θ ¼
"
θ1

θ2

#
¼

�0:8
1:6

�2:6
1

2
664

3
775,

Let

θ11
θ12
θ21
θ22

2
664

3
775 ¼

�0:8
1:6

�2:6
1

2
664

3
775:

Then algorithm in 2.3 is used to estimate parameters.
When t = 3500, the estimated value and error of θ are shown
in Table 1:

After obtaining estimated value of θ, the estimated
values of parameters A and b are obtained, as shown in
Table 2.

The curve of parameter θ estimation error ε with time t is
shown in Figure 1.

Example 2

For equations (58), in the same way, fuðtÞg is taken as an
independent random signal sequence with zero mean and unit
variance, and fvðtÞg as a white noise sequence with zero
mean and variances σ21 ¼ 0:12 and σ22 ¼ 1:02, respectively.
Time is represented as t, and parameter estimation error is
calculated by ε ¼ bθ � θ2:

8>>><
>>>:

xðt þ 1Þ ¼ 0 1

�1:2 0:6

� �
xðtÞ þ 1

�1

� �
uðtÞ

yðtÞ ¼ ½1 0 �xðtÞ þ vðtÞ
(58)

First, true value of θ is calculated.

θ ¼
"
θ1
θ2

#
¼

�1:2
0:6

�1:6
1

2
664

3
775,

Let

θ11
θ12
θ21
θ22

2
664

3
775 ¼

�1:2
0:6

�1:6
1

2
664

3
775.

Then algorithm in 2.3 is used to estimate parameters.
When t = 3500, the estimated value and error of θ are shown
in Table 3:

After obtaining estimated value of θ, the estimated values
of parameters A and b are obtained, as shown in Table 4.

The curve of parameter θ estimation error ε with time t is
shown in Figure 2.

Example 3

For equation (59), in the same way, fuðtÞg is taken as an
independent random signal sequence with zero mean and unit

Table 1. Estimated value and error of parameter θ.

θ11 θ12 θ21 θ22 ε

True value �0.80000 1.60000 �2.60000 1.00000
Estimated value (σ1) �0.80039 1.59986 �2.60101 1.00049 0.0011966
Estimated value (σ2) �0.80079 1.60029 �2.60211 1.00149 0.0027167

Table 2. Estimated values and true values of parameters A and b.

A b

True value
"

0 1
�0:80000 1:60000

# "
1

�1

#

Estimated value (σ1)
"

0 1
�0:80039 1:59986

# "
1:00049

�1:00037

#

Estimated value (σ2)
"

0 1
�0:80079 1:60029

# "
1:00149

�0:99944

#

Figure 1. Parameter estimation error ε with time t.
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variance, and fvðtÞg as a white noise sequence with zero
mean and variances σ21 ¼ 0:12 and σ22 ¼ 1:02, respectively.
Time is represented as t, and parameter estimation error is
calculated by ε ¼ bθ � θ2:.

xðt þ 1Þ ¼
0 1 0

0 0 1

�1 0:2 0:8

2
64

3
75xðtÞ þ

1

1

�1

2
64

3
75uðtÞ

yðtÞ ¼ ½ 1 0 0 �xðtÞ þ vðtÞ

8>>><
>>>:

(59)

First, true value of θ is calculated.

θ ¼ θ1
θ2

� �
¼

�1
0:2
0:8
�2
0:2
1

2
6666664

3
7777775
,

Let

θ11
θ12
θ13
θ21
θ22
θ23

2
6666664

3
7777775
¼

�1
0:2
0:8
�2
0:2
1

2
6666664

3
7777775
.

Then algorithm in 2.3 is used to estimate parameters.When t =
3500, the estimated value and error of θ are shown in Table 5.

After obtaining estimated value of θ, the estimated values
of parameters A and b are obtained, as shown in Table 6.

The curve of parameter θ estimation error ε with time t is
shown in Figure 3.

It can be seen from the three examples and Tables 1, 2, 3,
4, 5, and 6 that estimation error of parameters increases with
the increase of noise, but it is still acceptable, so that the
accuracy of estimator is relatively high. It is easy to see from
Figures 1, 2, and 3 that the estimation error of parameter θ
decreases with the increase of time, and the smaller the
noise variance σ is, the faster the convergence speed of error
curve is. The error ε will fluctuate greatly when noise

Table 4. Estimated values and true values of parameters A and b.

A b

True value
"

0 1
�1:20000 0:60000

# "
1

�1

#

Estimated value (σ1)
"

0 1
�1:20041 0:59787

# "
1:00042

�1:00031

#

Estimated value (σ2)
"

0 1
�1:20088 0:60129

# "
1:00138

�0:99896

#

Table 3. Estimated value and error of parameter θ.

θ11 θ12 θ21 θ22 ε

True value �1.20000 0.60000 �1.60000 1.00000
Estimated value (σ1) �1.20041 0.59787 �1.60103 1.00037 0.0024296
Estimated value (σ2) �1.20088 0.60129 �1.60215 1.00109 0.0028721

Figure 2. Parameter estimation error ε with time t.
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variance σ2 ¼ 1:02 and t < 500, but with the increase of time
t, it will show a downward trend, and finally achieve sat-
isfactory results.

Conclusion

In this paper, an LS algorithm based on BCP is presented for
parameter estimation of canonical state space model and a
satisfactory result is achieved. The canonical state space
model is transformed into vector function form suitable for
LS algorithm, and then, augmented vector and auxiliary
variable are introduced to realize unbiased estimation based
on noise compensation; finally, the effectiveness of the es-
timator is verified by an example. This method of parameter
estimation is universally useful, which can be extended to
parameter estimation of other systems with noise, for example,

parameter estimation of closed-loop system can be realized by
selecting different augmented vectors, this is also our future
research work. Therefore, themethod presented in our paper has
widespread application and practical significance.
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