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Abstract 

The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well known, however 

the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterized. 

Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in 

patients and differences in the drug combinations used, both of which could have implications on MSC function. 

As drugs are not commonly used as single agents during high dose chemotherapy (HDC) regimens there is a 

lack of data comparing the short or long term effects these drugs have on patients post treatment. To help 

address these problems the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan 

on human bone marrow MSCs were evaluated in-vitro.  Within this study the exposure of MSCs to the 

chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and 

CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration 

and repopulation. These observations therefore implicate potential disadvantages in the use of autologous MSCs 

in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests 

that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use 

cultured MSCs therapeutically to assist or repair the marrow microenvironment after HDC. 
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Introduction 

The biological functions of bone-marrow derived mesenchymal stem cells (MSCs) in vivo include both 

hematopoietic support and tissue maintenance. These functions are achieved through MSCs having a 

multipotent capability to generate progeny that can differentiate down multiple cell lineages to form bone, 

cartilage, fat cells, and bone-marrow stroma [1], in addition to having the apparent ability to support the 

expansion of primitive hematopoietic cells through the expression of a variety of cytokines and the 

reconstruction of the hematopoietic microenvironment [2-4].  

 

Hematopoietic recovery after high dose chemotherapy (HDC) in the treatment of hematological diseases may be 

slow and/or incomplete. This is generally attributed to progressive hematopoietic stem cell failure, although 

defective hematopoiesis may be in part due to poor stromal function. HDC and irradiation used with or without 

hematopoietic stem cell (HSC) rescue in the treatment of hematological malignancies and other cancers may 

cause long lasting damage to bone marrow stromal cells, thus impairing hematopoiesis and may have a possible 

involvement in slow or poor engraftment post HSC transplantation.  

 

Patients who have undergone HDC commonly display disruption of the marrow architecture with hemorrhaging, 

loss of fat, and loss of stromal compartments [5]. Studies have also demonstrated that a recipients stromal cells 

are damaged after bone marrow transplantation [6-8], or even from chemotherapeutic drugs alone [6-15]. We 

have also recently demonstrated a significant reduction in MSC expansion and MSC CD44 expression by MSCs 

derived from patients receiving HDC regimens for hematological malignancies, thus implicating potential 

disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic 

strategies [16]. These effects are relevant not only in patients treated with HDC without allogeneic stem cells 

but also in recipients of allogeneic stem cell transplants in whom bone marrow stroma remains recipient in 

origin after the transplant. [17-19]. If damage caused by chemotherapeutic agents to marrow MSCs is 

substantial, it would be logical to use cultured MSCs therapeutically to assist or repair the marrow 

microenvironment after HDC. Evidence from animal experiments [20-23] and clinical trials [24] suggests that 

co-transplantation of cultured MSCs may have a role in facilitating hematopoietic stem cell engraftment after 

stem cell transplants, although the biological mechanisms involved are unclear.  
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Examining the effects of chemotherapeutic agents on patient MSC in vivo is difficult due to patient variability 

and differences in the drug combinations used, both of which could have implications on MSC function. With 

drugs not being commonly used as single agents during HDC regimens there is also a lack of data comparing the 

short or long term effects that these drugs have on patients post treatment. This in-vitro study was therefore 

designed to help address these problems using the alkylating agents cyclophosphamide and melphalan at 

biologically relevant concentrations to evaluate the effects of chemotherapeutic exposure in-vitro on the 

functional properties of femoral-shaft marrow MSC cultures.  
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Methods 

Femoral shaft bone marrow collection 

Bone marrow samples were obtained by an Orthopaedic surgeon at the Avon Orthopaedic Centre (AOC), 

Southmead Hospital, Bristol, with informed written consent and hospital ethic committee approval. Bone 

marrow was removed from the femoral shaft during surgery for total hip replacement to make space for the 

prosthetic joint and placed into a sterile 50ml tubes containing 1000 I.U heparin. Patients with a history of 

malignancy, immune disorders or rheumatoid arthritis were excluded from the study. Femoral shaft bone 

marrow donors were healthy apart from osteoarthritis, and were not receiving drugs known to be associated with 

myelosuppression or bone marrow failure.  

 

Umbilical cord blood sample collection 

Umbilical cord bloods were obtained by midwives in the Central Delivery Suite, Southmead Hospital, Bristol, 

with maternal written informed consent and local hospital ethic committee approval. Cord blood samples were 

collected by gravity into sterile 50ml tubes containing 1000 I.U heparin after the umbilical cord had been 

clamped and cut. All samples were from normal full-term deliveries, and collection was entirely at the discretion 

of the midwife in charge.  

 

Establishment of mesenchymal culture 

Femoral shaft marrow samples were broken up with a scalpel and washed with DMEM until remaining material 

(bone) looked white at the bottom of the 50ml tube. All washings were pipetted into a new 50ml tube and kept 

for centrifugation. The suspension was centrifuged and re-suspended in DMEM. Marrow aspirates were overlaid 

onto an equal volume of Lymphoprep™ (Axis-Shield, Dundee, UK) (density 1.077+/-0.001g/ml) and 

centrifuged at 600g for 35mins at room temperature to separate the mononuclear cells (MNC) from neutrophils 

and red cells. The mononuclear cell (MNC) layer was harvested and washed twice in Dulbecco’s Modified 

Eagles Medium (DMEM) (Sigma-Aldrich, UK).  

 

MSC culture 
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Isolated MNCs were centrifuged and re-suspended in MSC medium (DMEM with 10% FCS selected for the 

growth of MSCs (StemCell Technologies, London, UK), and 1% Penicillin and Streptomycin (Sigma-Aldrich, 

Gillingham, UK)). Vented flasks (25cm
2
) containing 10ml of MSC medium were seeded with 1x10

7
 nucleated 

cells (seeding density = 400,000 cells/cm
2
) for passage 0. Flasks were incubated at 37ºC in a humidified 

atmosphere containing 5% CO2 and non-adherent hematopoietic cells removed by media exchange after 3-5 

days. Cells were then cultured for two weeks at passage 0 and fed by half medium exchange.  

 

To calculate MSC expansion, the adherent cells were re-suspended using 0.25% trypsin (Sigma-Aldrich, 

Gillingham, UK) and re-seeded at 7.5x10
4
 cells per flask (seeding density = 3000 cells/cm

2
) into passage 1. 

Thereafter, the cells were re-plated at 7.5x10
4
 cells per flask (seeding density = 3000 cells/cm

2
) every 14 days 

for up to 5 passages. During this time cells were fed every week with MSC medium by half medium exchange.  

 

Immunophenotyping MSC cultures 

To ensure a homogenous population of MSCs had been cultured immunophenotyping of surface markers, using 

flow cytometric techniques, was carried out according to previous reports [1, 25-26]. MSCs were examined 

using the fluorescently tagged monoclonal antibodies anti-CD105, -CD45 -CD166, -CD44, -CD29 (BD 

Biosciences, Oxford, UK). For immunophenotypic analysis, MSCs were detached from culture flasks at second 

passage using 0.25% trypsin for 5 min, washed with PBS to remove trypsin, and re-suspended in MSC medium 

at 10
6
 cells/ml. The cell suspension was incubated in the dark at 4°C for 30 minutes with the specific 

monoclonal antibody. Cells were then washed with DMEM, centrifuged at 400g for 5mins, and re-suspended in 

MSC medium for analysis. At least 10,000 events were analyzed on a BD FACS vantage SE and analyzed with 

CellQuest™ software (BD Biosciences, Oxford, UK). Gates were set on the analysis to remove cellular debris. 

 

Differentiation  

Mesenchymal stem cells were induced into adipogenic, osteoblastic and chondrogenic differentiation by 

culturing identical numbers of MSCs, at second passage, in NH Adipodiff medium, NH Osteodiff medium and 

NH Chondrodiff medium (Miltenyi Biotec, Surrey, UK) respectively according to the manufacturer’s 

instructions. Differentiation of MSCs was only performed prior to any in vitro treatment with drugs, as 

differentiation was used solely for the purpose of MSC characterisation. Adipogenic differentiation was 

visualized by the accumulation of lipid-containing vacuoles which stain red with oil red O.  Osteogenic 



7 

 

differentiation was visualized morphologically and also by the presence of high levels of alkaline phosphatase 

stained with NBT. Finally chondrogenic differentiation was characterised by the production of the extracellular 

matrix proteoglycan aggrecan, visualized using immunofluorescent detection by labeling of aggrecan using a 

mouse anti-human aggrecan (4F4) antibody  (Santa Cruz Biotechnology, Heidelberg, Germany).  

 

Chemotherapeutic agents 

The following chemotherapeutic agents were tested: melphalan (50 μmol/L) or cyclophosphamide (500 μmol/L) 

with the addition of S9 extract (0.4mg/ml) (Sigma-Aldrich, UK). Cells prior to each experiment were incubated 

with each treatment for 48 hours in DMEM, 10% FCS. The concentrations used for each chemotherapeutic 

agent used were determined from published data of plasma concentrations from patients undergoing intensive 

high-dose chemotherapy treatment or pre-stem cell transplant conditioning [27-31]. 

S9 extract contains the cytochrome P450 proteins that are an essential group of enzymes involved in the 

metabolism of drugs and chemotherapeutic agents [32]. Most cell cultures contain little, if any, cytochrome 

P450 mixed function oxidase metabolic capability [28], therefore S9 extract was used as a supplement in culture 

as cyclophosphamide requires systematic bioactivation by cytochrome P450 into its active cytotoxic compound 

4-hydroxycyclophosphamide which forms both phosphoramide mustard and acrolein [33].  The effects of S9 

extract alone on experimental conditions was investigated in all cases and not shown to be significantly different 

from control conditions (data not shown).   

 

Cytotoxicity assay 

Cell viability after chemotherapeutic insult was detected using the CellTiter 96® Aqueous Non-Radioactive Cell 

Proliferation Assay (Promega, UK), according to manufacturer’s instructions. Prior to treatment cells were 

plated at 750 MSCs/well in 100μl of MSC media were then dispensed into 96-well plates in triplicate and 

incubated at 37˚C in a humidified atmosphere containing 5% CO2 until cultures had reached confluence.  

 

Immunoblotting for MSC CD44 

At 48 hours post treatment cells were lysed using Beadlyte cell signalling universal lysis buffer (Upstate™, 

UK). The 2-D Quant Kit™ (GE Healthcare) was then used to quantify the concentration of total protein within 

each cell lysate sample according to manufacturer’s instructions to ensure equal loading of cell lysates. Lysates 
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were heated to 95˚C for five minutes with Laemmli 2x sample buffer (Invitrogen, UK) and run on NuPAGE 

Novex 4-12% Bis-Tris Zoom gels
 
(Invitrogen). After transfer to PVDF membrane (Bio-Rad, UK) and blocking 

in 5% w/v powdered milk, membranes were incubated overnight in primary antibody at 4˚C (in Tris-buffered 

saline/5% bovine serum albumin). The antibody used was CD44 antibody (BRIC235 obtained from the IBGRL, 

Bristol) diluted 1:1000 (v/v) in PBS-Tween, 5% BSA. Immunoreactivity was detected using secondary anti-

rabbit horseradish peroxidase conjugated antibodies (Abcam, UK) (in Tris-buffered saline/5% bovine serum 

albumin) and specific protein expression patterns were visualized by chemiluminescence using an Amersham 

ECL Plus™ Western Blotting Detection System (Amersham, UK).  

 

Purification and flow cytometric analysis of CD34
+
 cord blood cells 

CD34
+
 cell isolation was undertaken after MNC separation as previously described in the establishment of MSC 

culture. CD34
+
 cells were isolated from the MNC fraction obtained from cord blood harvests using the 

immunomagnetic MiniMACS (Magnetic-Activated Cell Sorter) CD34 isolation system according to the 

manufacturers instructions (Miltenyi Biotec, UK). The CD34
+
 cells obtained from the MACS positive fraction 

were then assessed by cell counting and flow cytometry as described in the ‘assessment of peripheral blood 

contamination of marrow MNC harvests’ section above, with the exception that cells were assessed for CD34
+
 

content by labelling with anti-CD34 clone HPCA-2 (BD Biosciences, Oxford, UK). Only CD34
+
 events with 

low side scatter were counted as CD34
+
 cells. CD34

+
 cells were cryo-preserved in liquid nitrogen until use in 

long-term culture assay.   

 

Long-term culture of CD34
+
 cells on MSC derived stromal layer 

MSC cultures, at second passage, were plated into 25cm
2
 vented flasks at 7.5x10

4
 cells per flask (seeding 

density = 3000 cells/cm
2
) in 5ml of long-term culture medium (LTCM) (IMDM (Sigma-Aldrich, Gillingham, 

UK) containing 10% FCS (StemCell Technologies, London, UK), 10% horse serum (StemCell Technologies, 

London, UK), hydrocortisone (5x10
-7

M) and 1% Penicillin/Streptomycin.  Cells were fed every week with 

LTCM medium by half medium exchange. After three weeks long-term culture cells were treated with 

chemotherapeutic agents for 48h. Cultures were then washed repeatedly to remove all traces of the 

chemotherapeutic agents and all experiments were seeded with identical cryo-preserved CD34
+
 cell populations 

derived from the same cord blood source (2.5x10
4
 cells/flask (seeding density=1,000 cells/cm

2
)) in LTCM. 

Flasks were incubated at 37˚C and fed weekly with LTCM by half media exchanges. All media removed each 
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week when feeding was assessed for the numbers of supernatant cells present and CFU-GM content using the 

CFU-GM assay described below. 

CD34
+
 cells are unable to produce stroma under the culture conditions used so it can be assumed that stromal 

elements grown in culture were MSC-derived [34].  As flow cytometric analysis indicated that there was no 

significant contamination of MSC cultures with cells of hematopoietic origin, it was decided not to irradiate 

MSC cultures prior to CD34
+
 cell seeding as it was hypothesized that MSCs may have an altered sensitivity to 

radiation and DNA damage post chemotherapy exposure.  

 

CFU-GM assay 

Supernatant cells removed from long-term cultures each week were plated at a concentration of 10
4
 cells/well 

(seeding density = 26316 cells/cm
2
)

 
into 0.25ml of MethoCult® GF H4434 (StemCell Technologies, London, 

UK) in triplicate into 12-well tissue culture plates. The number of hematopoietic colonies, which are derived 

from the CB CD34
+
 cell population, present within each well after two weeks culture at 37˚C in a humidified 

atmosphere containing 5% CO2 was then assessed.   

 

Human Umbilical Vein Endothelial Cell (HUVEC) culture 

The HUVEC cell line was obtained from the European Collection of Cell Cultures (ECACC) and grown in 

75cm
2
 vented fibronectin coated culture flasks. Cells were seeded in fibronectin coated flasks at a concentration 

of 1 x 10
4
 cells per cm

2
 in Endothelial Cell Growth Medium (ECACC) and fed by half medium exchange every 

other day and trypsinised every week.  

 

CD34
+
 cell transmigration assay 

For transmigration experiments 1x10
4
 HUVEC cells were seeded on human fibronectin coated 5μm Millicell-

polyethylene terephthalate membrane hanging inserts for 24-well plates (Milipore®). Inserts were prior 

incubated with 0.01mg of human fibronectin (Millipore) in 0.1ml of DMEM for approximately 1 hour. After 

three days, the monolayers had reached confluence and were suitable for use within the assay.  

 

MSC cultures in 24-well plates were treated with cyclophosphamide or melphalan and incubated for 48 hours. 

Cultures were washed repeatedly to remove all traces of the chemotherapeutic agents and suspended in 600μl of 
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MSC media. The Millicell membrane inserts containing a HUVEC monolayer attached to the membrane surface 

were added to the 24-well plates containing the MSC cultures. A total of 6x10
4
 CD34

+
 cells were added to the 

upper chamber of each well insert placed in the 24-well plate. The transwell set-up thus consisted of an upper 

and lower chamber separated by an endothelial cell layer. After 24 hours, non-adherent CD34
+
 cells from the 

lower chamber were recovered and enumerated using a progenitor cell (CFU-GM) assay, as described above.  

 

Cell cryopreservation and thawing 

Cell counts were obtained and cell density adjusted to <1 × 10
7
 cells/ml with DMEM supplemented with 20% 

FCS, to which an equal volume of DMEM/20%DMSO (Sigma-Aldrich, UK) was added.  The vials were cooled 

until they had reached −80°C using a 5100 Cryo 1°C freezing container (Nalgene, DK). Tubes were then 

transferred to a liquid nitrogen container for permanent storage until use. 

Vials containing cells were thawed in a 37°C water bath with constant agitation. Cells were washed with 

DMEM/20% FCS, centrifuged, and a cell count taken using Trypan blue (Sigma-Aldrich, UK) to determine live 

cell numbers. The cells were then re-suspended in an appropriate pre-warmed medium for use.  

 

Statistics 

All results within this study were expressed as the means +/- one standard error. Statistical comparisons were 

made by the paired t-test, repeated measures ANOVA, or 2-way ANOVA with Bonferroni corrections where 

appropriate. A value of less than p<0.05 was considered as significant. 

 

 

Results 

MSC characterization  

Cells harvested from femoral shaft marrows displayed all the typical characteristics of MSC in culture. At 3
nd

 

passage MSCs were uniformly positive for the mesenchymal markers CD105, CD166, CD44, CD29 but 

negative for CD45, which is consistent with the known MSC phenotype and excludes contamination of cultures 

with hematopoietic cells [26] (figure 1A).  Mesenchymal stem cells were induced into adipogenic, osteoblastic 

and chondrogenic differentiation by culturing MSC, at third passage, in NH Adipodiff medium, NH Osteodiff 

medium and NH Chondrodiff medium (Miltenyi Biotec, UK) respectively according to the manufacturers’ 
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instructions. Adipogenic, osteogenic and chondrogenic differentiation were characterised using the methods 

described (figure 1B).   

 

Morphology of MSCs after exposure to chemotherapeutic agents 

Upon treatment (48h) with cyclophosphamide, or melphalan, significant morphological abnormalities were 

noted within several treated cultures using phase contrast microscopy (figure 2A). Untreated cultures were 

morphologically homogenous and characterized by their fibroblast-like appearance with a highly uniform 

pattern of growth. Cells treated with cyclophosphamide displayed a highly diverse pattern of growth and 

granular appearance within their cytoplasm. Although having a slightly abnormal appearance, MSC cultures 

treated with melphalan displayed lower levels of visual morphological changes.  

 

Cytotoxicity assay 

Chemotherapy induced MSC cytotoxicity was shown using a colorimetric method for determining the number 

of viable cells in culture after treatment. Cell viability was calculated by measuring the absorbant value at 

490nm based on a significant positive linear correlation between the optical density of the culture medium at 

490nm and MSC numbers present (data not shown). When examining the chemosensitivity of MSC cultures, the  

exposure to cyclophosphamide or melphalan did not result in any significant changes in the number of viable 

cells after treatment for 48 hours at biologically relevant concentrations (p>0.1) (figure 2B).  

 

Expansion capacity of treated MSC cultures 

To examine the expansion capacity of MSCs treated in-vitro with cyclophosphamide or melphalan, cells were 

treated and re-plated every 14 days at 7.5x10
4
 cells per flask and the total number of cells harvested at the end of 

each passage was found to calculate the cell population doubling rate (figure 2C). The expansion of untreated 

marrow MSCs, n=6, was 6.74 population doublings (SE=0.24) after 5
th

 passage. The expansion of treated MSCs 

was lower at 5
th

 passage, with a population doubling of 6.01 (SE=0.52) (cyclophosphamide) n=6, and 0.40 

population doublings (SE=0.40) (melphalan) n=6. Differences in the expansion of untreated and melphalan 

treated MSCs were statistically significant (p<0.01). No significant differences in expansion were evident when 

comparing untreated and cyclophosphamide treated MSCs (p>0.05) (figure 2C).   
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CD44 in-vitro drug sensitivity measurements to chemotherapeutic agents 

MSC cultures were treated with chemotherapeutic agents and evaluated for the cell-surface expression of CD44 

using flow cytometry, calculated using mean fluorescence intensity (MFI) values.  Following incubation for 48 

hours with different chemotherapeutic agents, MSCs demonstrated a significant reduction in the CD44 cell 

membrane surface expression after treatment with cyclophosphamide (p<0.01) (figure 3A). A maximal 

reduction of 28% in CD44 levels was seen after treatment with cyclophosphamide.  No significant changes in 

MSC CD44 expression were evident after treatment with melphalan (p>0.28) (figure 3A). To examine the long-

term effects of chemotherapeutic treatment on CD44 expression by MSC, the levels of CD44 after 

cyclophosphamide were determined over an 8 week period. Decreased levels of CD44 expression on MSC were 

evident for up to eight weeks post in-vitro treatment with cyclophosphamide (p<0.05)(figure 3B), with no 

significant recovery in the level of CD44 expression for the entire culture period post treatment. After eight 

weeks MSC cultures were terminated due to cell monolayers lifting from the culture flask surface.  

 

Immunoblotting for MSC CD44 

Western blot analysis was used to show the expression of CD44 on MSCs, and to confirm its reduction in 

expression after treatment with cyclophosphamide. CD44 band intensity was measured using ImageQuant™ 

Version 5.2 software (Molecular Dynamics) and used as a quantitative indicator of protein expression. Detection 

using a BRIC235 antibody revealed a CD44 protein band at approximately 37kDa for both untreated and treated 

cell lysates which corresponds to the expected weight of CD44s [35-39] (figure 3C). The CD44 protein band 

detected by western blot had an estimated weight of 37kDa, which corresponds to the molecular weight of 

CD44s structure predicted by its amino acid sequence [39]. Image analysis using ImageQuant™ software 

calculated that cyclophosphamide resulted in a significant decrease (p<0.01) in expression of the 37kDa band, 

with an approximate 22% decrease in CD44 expression. GAPDH expression was used to ensure equal loading 

of cell lysates. 

 

CD34
+
 cell transmigration assay 

The ability of untreated and cyclophosphamide or melphalan treated MSCs to provide chemotactic signals to 

hematopoietic stem cells to induce migration across an endothelial barrier were investigated using a HSC 

migration assay.  MSCs cultured within a lower chamber were treated with chemotherapeutic agents, and after 

48hours 6x10
4
 CD34

+
 cells were added to the upper chamber of the transmigration system, with the upper and 
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lower chambers being separated by an endothelial cell layer. The number of hematopoietic progenitor cells that 

transmigrated through the endothelial barrier of the upper chamber (figure 4A) into the lower chamber after 24 

hours was then calculated using a CFU-GM assay (figure 4B). The number of CFU that transmigrated towards 

untreated MSCs into the lower chamber was 148 (SE = 6). In contrast the numbers of CFU transmigrated 

towards treated MSCs were 106 (SE = 3) (cyclophosphamide), 121 (SE = 6) (melphalan), and 63 (SE = 7) (no 

MSC).  The presence of untreated or treated MSCs within the lower chamber resulted in significantly higher 

levels of CFU endothelial transmigration into the lower chamber when compared to no MSCs being present 

(p<0.01). The number of CFU that transmigrated into the lower chamber towards cyclophosphamide or 

melphalan treated MSCs was significantly lower than the numbers of CFU that transmigrated into the lower 

chamber towards untreated MSCs (p<0.05). To ensur CD34
+
 cells were not adhering to the MSC and therefore 

not being removed for inclusion within the CFU-GM assay, MSC cultures within the lower chamber were 

trypsinized and put into CFU-GM assay conditions. The presence of CFU-GM were absent from the adherent 

cell populations obtained (data not shown). 

 

Hematopoietic colony-forming assay  

The ability of MSC-derived stromal cells to support hematopoiesis was compared post cyclophosphamide or 

melphalan treatment in long term hematopoietic cell cultures. MSCs from all groups in long-term culture 

conditions developed the same microscopic appearance as stroma derived from fresh marrow buffy coat samples 

as reported by Wexler et al [25]. All adherent MSC-derived stromal cultures were primarily seeded with 

hematopoietic CD34
+
 cells derived from the same cord blood source. Co-culture of MSCs with allogeneic cord 

blood CD34
+
 hematopoietic progenitor cells resulted in the formation of cobblestone areas representative of 

hematopoietic progenitor cell proliferation and differentiation (Fig 5).  Assessing hematopoietic activity, using a 

2-way ANOVA with Bonferroni corrections, tests indicated that over the 6 week culture period there was a 

significant reduction in the numbers of CFU-GM present for up to 3 weeks in cultures seeded onto 

cyclophosphamide and melphalan treated MSC derived stromal cultures, when compared to the numbers of 

CFU-GM supported by untreated MSC derived stromal cultures, (p<0.05), (Fig 5).  
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Discussion 

Chemotherapy and stem cell transplantation are well established treatments of hematological disorders and other 

cancers. The adverse effects of the chemotherapeutic agents used in these treatments on HSCs are well known, 

however the effects on the MSCs residing in the bone marrow are less well characterized. Studies have 

demonstrated that a recipients stromal cells are damaged after bone marrow transplantation [6-8], or even from 

chemotherapeutic drugs alone [6-15]. We have  recently demonstrated a significant reduction in MSC expansion 

and MSC CD44 expression by MSCs derived from patients receiving HDC regimens for hematological 

malignancies [16]. Examining the effects of chemotherapeutic agents on patient MSC in vivo is difficult due to 

variability in patients’ and differences in the drug combinations used, both of which could have implications on 

MSC function. With drugs not being commonly used as single agents during HDC regimens there is a lack of 

data comparing the short or long term effects these drugs have on patients post treatment. To address these 

problems the effects of the commonly used alkylating chemotherapeutic agents cyclophosphamide and 

melphalan on human bone marrow MSC were evaluated in-vitro.   

 

Both cyclophosphamide and melphalan belong to a class of alkylating agents known as nitrogen mustard 

derivatives. They are widely used in high-dose chemotherapeutic treatment of malignant disorders and in the 

preparative bone-marrow conditioning regimens pre-stem cell transplant. These compounds function as 

chemotherapeutic agents by the formation of DNA alkyl adducts and inter-strand DNA-cross links, inducing 

cellular apoptosis [40]. Knowledge of the clinical pharmacokinetics and pharmacodynamics of these agents 

administered in high doses is critical for the safe and efficient use of these regimens [41]. The concentration of 

both cyclophosphamide or melphalan within the bone marrow of patients undergoing high dose chemotherapy 

will be variable even after doses are adjusted for body surface area or weight, as there is considerable 

pharmacokinetic variability among patients receiving chemotherapy [42]. The drug concentrations used to treat 

MSCs in this study were therefore based on the mean peak concentrations of either cyclophosphamide or 

melphalan observed in the plasma of patients undergoing high-dose chemotherapy treatments [27-31]. 

 

Primarily the sensitivity of bone marrow MSCs to cyclophosphamide or melphalan induced cell death was 

investigated. Results indicated that exposure to these drugs did not cause any significant level of cell death to 

MSC cultures after 48 hours at the drug concentrations used. This resistance to apoptosis by cyclophosphamide 

is comparable to results seen by Li et al at identical drug concentrations [28], and may partially explain why 
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MSCs can be harvested from bone-marrow derived from patients who have received prior high dose 

chemotherapy [16, 43]. Although no significant loss of cell viability was observed, when investigating the 

expansion potential of MSCs post treatment, the mean expansion of untreated MSCs was over five times that 

seen of MSCs treated with melphalan after five passages. In contrast, cyclophosphamide treatment did not result 

in any reduction in MSC expansion. The cytotoxic effects of chemotherapeutic drugs, that result in DNA 

adducts, will result in alterations in gene expression and induction of mechanisms by which cells can detect 

DNA damage and control DNA repair. The DNA damage response, involving sensory and effector proteins, is 

strongly tied with cellular proliferation, cell cycle arrest, cellular senescence and apoptosis [42, 44]. Although 

investigating the exact mechanisms by which melphalan causes a decrease in MSC expansion would be 

desirable, it does demonstrate that chemotherapy disrupts the replicating ability of MSC, and corresponds with 

reductions in proliferative capacity of MSC harvested from patients who had received prior chemotherapy 

treatment [16]. This chemotherapy induced defect on proliferation is therefore a great concern as the 

ability/capacity for extensive proliferation and self-renewal is an essential property of a stem cell population. It 

could also explain why low numbers of mesenchymal progenitors are evident in patients after chemotherapy 

exposure [7, 11, 13].    

 

MSCs have distinct structural properties from those of fully differentiated cells. Following exposure of MSC 

cultures to various chemotherapeutic agents structural abnormalities were evident with disruptions to the cell 

membrane morphology.  MSC membrane surface expression of CD44 was also studied in response to the 

exposure of chemotherapeutic agents in-vitro as  low CD44  levels seen on patients MSC after receiving high 

dose chemotherapy for  hematological disorders [16]. CD44 is an adhesion molecule that plays a critical role in 

normal hematopoiesis [45-46], and it is the stromal microenvironment consisting of stromal cells and extra-

cellular matrix that is thought to regulate and support the future fate of stem cells and committed progenitors 

along specific lineages [3-4, 47]. Using both flow cytometry and western blot techniques, the exposure of MSC 

cultures to treatment with cyclophosphamide resulted in a decrease in MSC CD44 expression, with a maximal 

decrease of 28%. Decreased levels of CD44 expression on MSC were evident for prolonged periods post 

treatment showing no sign of recovery.  

 

The homing and engraftment of transplanted HSCs to the bone-marrow stem cell niche is essential for the 

establishment of intact hematopoiesis after high dose chemotherapy and/or total body irradiation in conjunction 
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with stem cell transplantation. It is thought that normal cell migratory processes involve events mediated 

through multiple adhesion/chemokine ligand interactions. Bone marrow cells are thought to secrete 

chemoattractants which facilitate the homing of circulating stem cells to the affected tissue to promote organ 

regeneration or tissue repair. The ability of MSCs to provide support for HSC migration after exposure to 

different chemotherapeutic drugs used in conditioning regimens in largely unknown. Intensive bone marrow 

transplant conditioning regimens, involving exposure to high concentrations of either cyclophosphamide or 

melphalan, create space within the marrow by removing the host’s hematopoietic cells and also malignant cells 

in disease states in which the bone marrow is affected. In addition, chemotherapy agents used can also induce 

changes in vivo known to increase the homing potential of HSCs through disruption of the bone marrow 

endothelium barrier [48], and increased secretion of cytokines and chemokines which have impacts on HSC 

migration and repopulation [49-53].   

 

The in-vitro transmigration model used in this study allows analysis of trans-endothelial migration of 

hematopoietic progenitor cells towards untreated and chemotherapeutically treated MSC layers. Homing is a 

fairly rapid process occurring no longer than 1-2 days [50], thus transmigration was observed during a period of 

24 hours in these experiments. Firstly it was demonstrated that the addition of stromal cells (treated or 

untreated) to the lower chamber of the migration assay set-up resulted in an increased trans-endothelial 

migration of hematopoietic progenitors into the lower chamber when compared to no cells being present. This 

provided evidence that both treated and untreated MSC monolayers were able to produce chemo-attractive 

signals to assist in trans-endothelial passage and facilitate hematopoietic progenitor cell homing into the lower 

chamber. Subsequently it was found that the numbers of hematopoietic progenitors migrating through 

endothelial layers towards MSCs within the lower chamber over a 24 hour period were reduced after exposure 

of the MSCs to either cyclophosphamide or melphalan. As only MSCs were exposed to the cytotoxic drugs, the 

reduction in the rate of hematopoietic cell migration must result from a change in the secretion of a single or 

variety of soluble factors post chemotherapeutic insult. These changes in the expression of soluble factors 

reducing HSC migration are either acting indirectly on the endothelial cells effecting trans-endothelial passage, 

or acting directly on the HSCs affecting their migration potential. Previous data has shown that there is 

increased homing of transplanted progenitor cells in non-irradiated non-ablative mice compared to TBI ablative 

preconditioned mice [54-55]. This inhibitory effect on stem cell homing caused chemotherapy exposure to MSC 

could in part explain the decrease in stem cell homing after ablative conditioning regimens. 
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Engraftment leading to hematopoietic recovery is vital following intensive chemotherapy/radiotherapy 

preparative regimens and stem cell transplantation. This engraftment is initiated by differentiating hematopoietic 

progenitor cells supported by the bone-marrow microenvironment. Engraftment may be slow or even fail 

following transplantation leading to prolonged pancytopenia or even death. This can happen despite an intensive 

preparative regimen, an adequate stem cell dose and complete donor chimerism [56]. It has been suggested that 

this lack of engraftment is due to functional damage caused by chemotherapeutic agents to the marrow 

microenvironment resulting in an inability to support the expansion of infused HSCs [7, 9]. Whether 

chemotherapy exposure affects MSC ability to form functional stroma and/or support hematopoiesis within the 

bone-marrow and has a role in changing hematopoietic engraftment kinetics in transplant patients is unknown. 

In long-term hematopoietic cell cultures the CFU-GM assay is used as an indirect measure of the number of 

primitive hematopoietic cells engrafting on MSC-derived stromal cells. Thus, the CFU-GM readout may be 

used to assess the ability of MSC-derived stromal cells to support hematopoiesis [57-58].  Data in this study 

demonstrate  that MSC-derived stromal cells treated with either cyclophosphamide or melphalan display an 

abnormal stromal function in supporting early hematopoietic progenitor cells, with a reduced  progenitor cell 

support for up to three weeks post treatment in long-term cultures. The role of MSC damage in engraftment 

kinetics is unknown; however it is known that MSCs can produce of a number of early-acting cytokines which 

maintain HSCs in quiescence or promote their self-renewal, and also a variety of interleukins and cytokines 

which act on more mature hematopoietic progenitors [3-4]. Successful hematopoietic engraftment is heralded in 

2-3 weeks by the appearance of donor progenitor cells in the circulation of the recipient [59]. The reduction in 

hematopoietic support by MSC-derived stroma observed within this time period, after cyclophosphamide or 

melphalan treatment, could therefore have large influences on patient engraftment and recovery. 

 

Conclusion 

Disruptions in the ability of MSCs to undertake their normal biological function caused by cytotoxic damage 

during chemotherapy treatment could have huge consequences on hematopoiesis and tissue formation in vivo, as 

the multi-potential ability of MSC allows them to maintain host tissues during normal life and participate in 

tissue regeneration or repair in response to disease or injury [60]. Within this study the exposure of MSCs to the 
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chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and 

CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration 

and repopulation. Differences in cyclophosphamide or melphalan treatment on MSC function were evident. 

However, due to these drugs not being commonly used as single agents during high dose chemotherapy 

regimens there is a lack of data comparing the short or long term effects these drugs have on patients post 

treatment.  

 

Collectively, these observations implicate the potential disadvantages in the use of autologous MSCs in 

chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study lends to the 

hypothesis that if damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be 

logical to use cultured MSCs therapeutically to assist or repair the marrow microenvironment after HDC.  
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Figures and Figure legends 

 

Figure 1. (A) The phenotype of cells within MSC culture at 3rd passage (n=6). Results are expressed as the 

percentage of cells expressing the phenotypic cellular markers CD105, CD166, CD29, CD44 and CD45 in MSC 

culture (+/- SEM). (B) Images depicting MSC cultures, at 3rd passage (a), differentiated down adipogenic (b), 

osteogenic (c) and chondrogenic (d) lineages. Osteogenic differentiation was visualized by the presence of high 

levels of alkaline phosphatase. Adipogenic differentiation was visualized by the accumulation of lipid-

containing vacuoles which stain red with oil red O.  Chondrogenic differentiation was characterized by the 

immunofluorescent detection of aggrecan (green)/ nuclei (blue).   

 

Figure 2. (A) Representative phase contrast images of MSC cultures treated with cyclophosphamide or 

melphalan. Cells treated with chemotherapeutic agents displayed a mixed morphology in culture with high 

levels of granularity present within their cytoplasm. (B) MSC viability after chemotherapeutic treatment. Results 

are expressed as a mean +/- se after treatment of MSC cultures with cyclophosphamide liver (n=6) or melphalan 

(n=6). (no significant differences in cell viability were evident between control and treated cultures, p>0.05). 

(C) Melphalan treatment damages the in-vitro long-term expansion capacity of MSCs. The graph depicts the 

expansion of untreated MSCs (n=6), or MSCs treated with the chemotherapeutics cyclophosphamide (n=6) or 

melphalan (n=6). Results are expressed as the mean +/- (SEM).  (untreated vs melphalan  p<0.01; untreated vs 

cyclophosphamide p>0.05; ANOVA).  

 

 

Figure 3. Cyclophosphamide causes a significant reduction in MSC-CD44 expression. (A) The levels of CD44 

expression, using MFI values, on MSCs exposed to cyclophosphamide or melphalan for 48 hours.  Untreated  

(n=6), cyclophosphamide (n=6) and melphalan (n=6). (B) The levels of CD44 expression, using MFI values, on 

MSCs exposed to cyclophosphamide over an 8 week period post exposure. Results are expressed as the mean 

MFI level (+/- SEM) (untreated vs cyclophosphamide; *p<0.05).  (C) Immunoblotting of CD44 on MSC 



21 

 

samples post exposure to cyclophosphamide for 48 hours (n=4). Upper panels correspond to CD44; lower panel 

corresponds to GAPDH which was used to ensure equal protein loading.   

 

 

 

Figure 4. The chemotactic property of MSC-derived stroma is decreased after exposure to chemotherapeutic 

agents. (A) Phase contrast images of human umbilical vein endothelial cells in culture prior to being used in the 

CD34
+
 cell transmigration assay. Images taken at (a) low and (b) high magnification. (B) The numbers of 

transmigrated CFU-GM present within the lower well after MSC cultures were treated with cyclophosphamide 

or melphalan. Results are expressed as the mean +/- standard error. (*p<0.05 when compared with number of 

CFU-GM values in the untreated control group).  

 

 

Figure 5. (A) MSC-derived stroma treated with melphalan or cyclophosphamide display an abnormal stromal 

function. The graph depicts the number of CFU-GM present in culture after seeding cord blood CD34
+
 cells into 

co-culture with MSC-derived stromal long term cultures exposed to cyclophosphamide or melphalan (n =6). 

Results are expressed as the mean (+/- SEM). (untreated vs cyclophosphamide or melphalan p<0.05 (3wks); 

ANOVA). (B) Phase contrast photomicrographs showing confluent MSC-derived stromal cells supporting the 

growth and differentiation of cord blood CD34
+
 cells when seeded into co-culture. 
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