
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

A Genetic Approach to Statistical Disclosure

Control
J.E. Smith, A.R. Clark, A.T. Staggemeier and M.C. Serpell

Abstract—Statistical Disclosure Control is the collective

name for a range of tools used by data providers such

as government departments to protect the confidentiality

of individuals or organizations. When the published ta-

bles contain magnitude data such as turnover or health

statistics, the preferred method is to suppress the values

of certain cells. Assigning a cost to the information lost by

suppressing any given cell creates the “Cell Suppression

Problem”. This consists of finding the minimum cost

solution which meets the confidentiality constraints. Solving

this problem simultaneously for all of the sensitive cells in

a table is NP-hard and not possible for medium to large

sized tables. In this paper, we describe the development of

a heuristic tool for this problem which hybridizes linear

programming (to solve a relaxed version for a single

sensitive cell) with a genetic algorithm (to seek an order

for considering the sensitive cells which minimizes the final

cost). Considering a range of real-world and representative

Manuscript received September 17, 2010; revised January 10, 2011.

This work was funded by EPSRC and the Office of National Statistics.

J.E. Smith is with the Department of Computer Science, University

of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK,

e-mail: james.smith@uwe.ac.uk

A.R. Clark is with the Department of Mathematics and Statistics,

University of the West of England, Coldharbour Lane, Bristol, BS16

1QY, UK, e-mail: alistair.clark@uwe.ac.uk

A.T. Staggemeier is with the Centre for Statistical and Analytic

Intelligence, Office for National Statistics, Newport, NP10 8XG, UK,

e-mail: Andrea.Staggemeier@ons.gsi.gov.uk

M.C. Serpell is with the Department of Computer Science, Univer-

sity of the West of England, Coldharbour Lane, Bristol, BS16 1QY,

UK, e-mail: martin2.serpell@uwe.ac.uk

“artificial” datasets, we show that the method is able to

provide relatively low cost solutions for far larger tables

than is possible for the optimal approach to tackle. We show

that our genetic approach is able to significantly improve

on the initial solutions provided by existing heuristics for

cell ordering, and outperforms local search. This approach

is then extended and applied to large statistical tables with

over 200,000 cells.

Index Terms—Statistical Disclosure Control.

I. INTRODUCTION

In today’s “Knowledge Economy” many organisations

hold large amounts of data gathered from a variety of

sources, some of which they wish to publish, sell, or

otherwise exploit and disseminate, whilst respecting the

privacy of individual sources. As for their counterparts

in most countries, the UK’s Office for National Statis-

tics (ONS) has a duty to protect the confidentiality of

“sensitive” data in published tables, achieving this via a

number of approaches collectively known as Statistical

Disclosure Control (SDC) [26]. These approaches either

change the values of the cells in the tables (perturba-

tive) or do not (non-perturbative). Perturbation methods

tend to be less computationally expensive than non-

perturbation methods and therefore can be applied to

larger tables. The methods known as rounding and con-

trolled rounding [9] either lose the additivity of the table

and/or modify the margin totals reducing the usefulness

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

of the table to the end user. To reduce this problem

Castro [5] has developed a new minimum-L2-distance

perturbation method which maintains both additivity and

the margin totals and has been shown to protect three-

dimensional tables with up to 1,000,000 cells. The main

non-perturbation method is known as cell suppression

which, when done optimally or near optimally, can

only be applied to smaller tables than the perturbation

methods as it involves solving a difficult combinatorial

optimisation. It is the objective of this paper to extend

cell suppression, which preserves more of the original

cell values than perturbation methods, so that it can be

applied to larger tables. Cell suppression suppresses not

only the values of the sensitive cells in a published

table, but also those of some additional “secondary”

cells. These are chosen to prevent the calculation of the

sensitive cells’ values while keeping information loss to

a minimum. To use an analogy, the problem is similar to

that of creating a Sudoko problem where it is impossible

to assign a value to one or more specified cells. The

equivalent optimization task would be to find a version of

the Sudoko table in which as many cells as possible have

their values published (or can be calculated), while still

meeting the “impossibility” constraint. In practice, an at-

tacker can identify the minimum and maximum possible

values of the suppressed cells by solving two similar

linear programs (LPs) per cell. The table is considered

“protected” if an attacker is unable to estimate the

sensitive cells’ values within specified limits. Fischetti &

Salazar [10],[11] have formulated this “cell-suppression”

problem as a complex Mixed Integer Program (MIP)

and optimally solve it (for small tables) using Benders

decomposition and branch-and-cut with valid inequal-

ities. Integral to their approach is the construction of

approximate bounds via an efficient LP-based heuristic

procedure from [15],[17]. This constructs a solution by

processing a specified sequence of the sensitive cells,

gradually building up a secondary suppression pattern so

as to meet the protection constraints, while minimising

information loss.

This MIP approach has been incorporated into widely

used tools such as τ -Argus [18],[25], along with a

range of existing heuristic approaches. However, the

current tools leave much to be desired. As currently

implemented, the output from the LP heuristic is not

available to the user, and because of the large numbers

of constraints and variables, the “optimal” approach is

only possible for tables with a few hundreds (or at best

very few thousands) of cells. Compared to the size of

tables that ONS and other national statistics agencies

wish to publish, these are tiny. To give an example, an

analysis of industrial activity broken down by region and

activity type might have millions of cells and several

dimensions, each with different levels of hierarchy. For

two-dimensional non-hierarchical tables optimal meth-

ods based on a “network flow” formulation are possible

for larger tables [10] [4], and recently a hybrid genetic

approach has been proposed to extend the scalability

of this approach [1]. However these are not applicable

to multi-dimensional or hierarchical tables. Alternative

heuristic approaches such as the Hypercube method [25]

can be used to protect larger tables, but it is well known

that even on smaller tables they significantly “over-

protect” - causing significantly greater than necessary

information loss [14].

In this paper we describe the development and anal-

ysis of a heuristic method for solving larger tables.

The approach adopted uses a genetic algorithm (GA)

to optimize the sequence in which the sensitive cells

are fed into the linear program (incremental attacker

heuristic) from [11], to build up a suppression pattern.

We compare our approach with several fixed heuristics

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

for ordering the sensitive cells, and to the use of local

search methods. We also compare the effects of different

mutation operators (equivalently search neighborhoods)

for the genetic algorithm (respectively local search).

As the decision as to what values to assign to the

parameters that control a GA have a great impact on its

performance we introduce self-adaption of the mutation

operator and probability. The self-adaption of mutation

parameters has been proved successful in the continuous

domain [3] [19] and for binary combinatorial problems

[2] [12] [16], but here we use it for a permutation

problem. The rest of this paper proceeds as follows.

Section II provides a mathematical formulation of the

cell suppression problem and of the linear programs

used to solve the relaxed incremental version. Section III

describes our experimental framework and the data sets

used for this study. Section IV describes the results

from experiments comparing local and genetic algorithm

searches. Section V looks at ways to reduce the cost

of the fitness function. Section VI describes the results

from experiments comparing the performance of the

genetic algorithm with that of the models in τ -Argus.

Section VII considers ways in which the incremental

attacker heuristic can be modified to protect larger sta-

tistical tables. In Section VIII we draw conclusions and

suggest future work.

II. BACKGROUND

A. 2.1 A Model of the Cell Suppression Problem

Fischetti & Salazar [[11], p1010] give the following

formal definition of the Cell Suppression Problem (CSP):

A table is a data vector a = [a1, ..., an]

whose entries satisfy a given set of linear

constraints known to a possible attacker,

My = b

lbi ≤ yi ≤ ubi ∀i = 1, ..., n


 (1)

In other words, (1) models the whole a priori

information on the table known to an attacker.

Typically, each equation in (1) corresponds

to a marginal entry, whereas inequalities en-

force the “external bounds” known to the at-

tacker. In the case of k-dimensional tables with

marginals, each equation in (1) is of the type
∑

j∈Qi
yj −yi = 0, where index i corresponds

to a marginal entry and index set Qi to the

associated internal table entries. Therefore, in

this case M is a {0,±1} matrix and b = 0.

The attacker can deduce a value yi for cell i, whereas

its actual value is ai. Note that an attacker is assumed to

know the values lbi and ubi of the lower and upper “ex-

ternal bounds”. This may not be a realistic assumption.

They go on to state:

Given a nominal table a, let PS =

{i1, ..., ip} be the set of sensitive cells to be

protected, as identified by the statistical office

according to some criteria. For each sensitive

cell ik(k = 1, ..., p), the statistical office pro-

vides three nonnegative values: LPLk , UPLk ,

and SPLk , the lower protection level, upper

protection level, and sliding protection level,

...

A suppression pattern is a subset of cells

SUP ⊆ {1, ..., n} corresponding to the unpub-

lished cells. A consistent table with respect to a

given suppression pattern SUP and to a given

nominal table a is a vector y = [y1, ..., yn]

satisfying

My = b

lbi ≤ yi ≤ ubi ∀i ∈ SUP

yi = ai ∀i /∈ SUP




(2)

where the latter equations impose that the com-

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

ponents of y associated with the published en-

tries coincide with the nominal ones. In other

words, any consistent table gives a feasible

way the attacker can fill the missing entries

of the published table.

A suppression pattern is considered fea-

sible by the statistical office if it guarantees

the required protection intervals against an at-

tacker, in the sense that, for each sensitive cell

ik(k = 1, ..., p) there exist two feasible tables,

say fk and gk, such that: f k
ik

≤ aik
− LPLk ,

gk
ik

≥ aik
+ UPLk and gk

ik
− fk

ik
≥ SPLk .

In fact for the purposes of this research “less/more

than or equal to” inequalities in expressions above are

replaced by “strictly less/more than” inequalities to be

consistent with ONS’ understanding of protection limits.

This is not a trivial distinction given that table data values

and protection limit values tend to be integer and often

small. The result is usually a distinctly larger set of

suppressed cells when the table has many integer values,

i.e. frequency tables and certain magnitude tables.

Knowing the external bounds lbi and ubi for all cells

i = 1, ..., n and which cells have been suppressed in

the published table, an attacker will try to discover the

minimum and maximum possible values, of each cell.

For a given sensitive cell ik, solving an LP to minimize

(maximize) yik
subject to constraints (2) provides the

minimum (maximum) possible values f k
ik

(gk
ik

).

To conform to the ONS understanding of sufficient

protection, we apply a modified version of the standard

model which states that the sensitive cell ik is suffi-

ciently protected if the solutions to these LPs satisfy

min(yik
) < LPLk and UPLk < max(yik

). It has been

asserted that if this condition is satisfied for all sensitive

cells ik. then the whole table is feasible, i.e., sufficiently

protected [ibid]. However, given that the attacker will

not know which of the suppressed cells are the sensitive

ones, this condition should really be satisfied not just

for each sensitive cell ik, but also for each secondarily

suppressed cell within the set SUP. If not, then the values

of certain secondarily suppressed cells might be guessed,

subverting the protection of the sensitive cell.

1 2 3 4 5 Total

1 4 4 4 4 4 20

2 4 4 4 4 4 20

3 4 4 121 4 4 137

4 4 4 4 4 4 20

5 4 4 4 4 4 20

Total 20 20 137 20 20 217

TABLE I

EXAMPLE OF AN OPTIMAL SUPPRESSION PATTERN. CELL (3,3) -

DARK SHADED, IS SENSITIVE. SECONDARY SUPPRESSED CELLS

ARE SHOWN IN A LIGHTER SHADE. SUB-OPTIMAL METHODS

WOULD SUPPRESS MORE CELLS OR MORE INFORMATIVE ONES

SUCH AS ROW/COLUMN TOTALS.

B. The Incremental Attacker

Fischetti & Salazar [11] state that their branch-and-

cut (BC) approach finds an optimal set of secondarily

suppressed cells that guarantees protection for all sensi-

tive cells in a table. The approach is sophisticated, time-

consuming and identifies optimal solutions only for mod-

erately sized tables. However, the authors do make use of

a fast heuristic to find incumbent solutions at each node

of the BC tree, based on a heuristic procedure from Kelly

et al. [15] and Robertson [17]. The heuristic starts by

taking as input the set of sensitive cells P = {i1, ..., ip}
and the sequence in which to protect them. The set SUP

of suppressed cells is initially set equal to the set of

sensitive cells. For each sensitive cell in turn, the set SUP

is then augmented by solving two LPs. These use the cell

weights, consistency equations, upper and lower bounds,

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

and upper and lower protection limits provided by τ -

Argus to determine what extra cells must be suppressed

to satisfy the protection requirements. These are added to

SUP and the process iterates to protect the next sensitive

cell in the sequence.

The sequence used is heuristically determined accord-

ing to decreasing weight in [11], but our preliminary

experimentation confirmed that even for a table with

only 70 cells, the ordering can make as much as 30%

difference to the total cost. Thus, in our method the

permutation is the key decision, as it defines the solution

space in our Evolutionary Algorithm.

The first LP, known as the UPL incremental attacker

problem, identifies which cells need to be added to the

set SUP so as to guarantee that a given sensitive cell

ik is protected with respect to its upper protection limit

UPLk . For a given ik, the LP is:

minimise
∑n

i=1 ci(y+
i + y−

i) (3)

such that M(y+ − y−) = b (4)

0 ≤ y+
i ≤ UBi ∀i = 1, ..., n (5)

0 ≤ y−
i ≤ LBi ∀i = 1, ..., n (6)

y−
ik

= 0 and y+
ik

= UPLik (7)

where

• yi = ai + y+
i − y−

i is the attacker’s estimate of the

value of a cell i ∈ {1, ..., n} so that the non-negative

decision variables y+
i and y−

i are respectively the

deviations above and below of yi from the cell value

ai.

• y+
ik

and y−
ik

are y+
i and y−

i for a given sensitive cell

ik.

• UBi = ubi − ai ≥ 0 is the relative external upper

bound on y+
ik

.

• LBi = ai − lbi ≥ 0 is the relative external lower

bound on y−
ik

.

• The objective function coefficient ci = 0 for all

i ∈ SUP and ci = cell weight wi for all i /∈ SUP .

After solving this LP, the set SUP is augmented with

all cells i /∈ SUP for which y+
i + y−

i > 0 in the optimal

solution. After setting ci = 0 for the set SUP’s newly

added cells i resulting from this solution, the second

LP similarly identifies which cells need to be added to

SUP so that sensitive cell ik is protected with respect

to its lower protection limit LPLk by replacing the last

constraint line with: y+
ik

= 0 and y−
ik

= LPLk. As noted

above, the working definitions of protection used at ONS

are stricter than those used in the formal model, and

experimentation has revealed other subtle problems.

III. METHODOLOGY

A. DataSets

Thirty eight data sets were provided by ONS in the

“.jj” format as output by Tau Argus. Of these four

were real world tables (two non-hierarchical and two

hierarchical.). Another four were hierarchical data tables

from the τ -Argus distribution. The remaining thirty non-

hierarchical magnitude datasets were created with ONS’s

randomised data set generator, a sophisticated tool which

can be tuned to replicate the distribution of values

typically found in different types of tables. There were

5 randomly created instances for each of the following

classes:

B. Algorithms

The algorithms devised and implemented in this pa-

per use different search techniques to find the ‘best’

sequence in which to protect sensitive cells using the

linear programming (incremental attacker) heuristic. The

combination of local search or genetic algorithms with

the linear programming heuristic was first reported in

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

Rows Columns % sensitive cells % cells with value 0

200 5 10 25

200 5 2 5

200 50 10 25

200 50 2 5

4000 10 10 25

4000 10 2 5

TABLE II

FACTORS USED TO CREATE THE RANDOMLY GENERATED TABLES.

[23]. Here we expand on those results and present

improvements to two of the major issues cited: the need

for automatic selection of mutation operators, and the

need for a more effective linear programming model.

The hybrid techniques developed are also compared with

existing algorithms. The algorithms were implemented

in the C++ language using the open source COIN-

OR framework - in particular the OSI framework for

defining LP problems and the CLP solver [7]. Initial

experimentation showed that the code ran approximately

five times faster when using a commercial LP solver such

as CPLex [6]. However using the public domain CLP

solver, facilitated the running the experiments in parallel

which more than compensated for its slower speed.

The experiments were designed to determine whether

there was any benefit to the use of a population-based

approach as opposed to a simple local search method.

A second goal was to determine the effect of changing

the way in which solutions are perturbed by mutation (in

the GA) or in the Local Search routine. This was then

extended to see if the selection of the mutation operator

and probability could be left to the GA itself.

In order to explain the results better we begin by

describing the working of the genetic algorithm used:

1) An initial population of potential solutions (i.e.

orderings of the sensitive cells) is created using

the following heuristics:

• Ordered by weight (cost) of the cells as per

[11].

• Using random permutations

2) Each solution in this population is evaluated by

creating the suppression set and counting its total

cost.

3) Two parents are selected by tournament and an off-

spring produced by recombination, then mutation.

4) The new offspring is evaluated and compared to

the member of the population with the highest cost,

replacing it if the offspring’s cost is lower.

5) If the criteria for ending the run has been met, the

process stops, otherwise it returns to step 3.

This framework was explicitly designed to be flexible

and allow the use of different mutation operators to

perturb existing solutions. For Local Search the popula-

tion size is simply set to one. Preliminary work showed

population sizes of fifty to be too large, since on the

bigger tables the time-allowance was used before the

initial population had been evaluated - i.e. before the

processes of simulated evolution had time to create and

select new lower-cost solutions. In the light of this

experience it was necessary to use a smaller population

size. Given the existence of two heuristics (increasing

weight and decreasing weight) for creating solutions with

which to “innoculate” the search (see below), and the

findings in [24] that these should not represent the major

part of the initial population, we used a population size

of ten for the genetic algorithm. Thus the choice of

population size is driven by the desire to solve bigger

tables, where in general it takes longer to solve each LP,

rather than by specific characteristics of any particular

data. Given the small population size, and the use of

heuristics to innoculate the initial population, it was

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

important to avoid the risks of premature convergence.

Therefore, rather than using fitness-proportionate selec-

tion, we used rank-based binary tournaments, always

selecting the fittest candidate.

The recombination operator used was Davis’ “Order-

based” crossover, a permutation-specific operator [8].

This was chosen as it was specifically designed to mix

the absolute order in which items (in our case primary

cells) occur on the two parents whilst also preserving that

information that is common to both parents, i.e. that has

been “learnt” by the algorithm. Order-based crossover

copies a segment, between two random crossover points,

from one parent to the offspring. Then starting from the

second crossover point and wrapping around at the end

of the list copies the remaining unused numbers from

the other parent to the offspring. A fixed rate of 0.7 was

taken as standard from the literature.

Three different neighbourhood generation operators

were used for the Local Search/Mutation steps, namely:

• Insertion: pick two random values in the permu-

tation, and move the second to just behind the

first, moving the intermediate elements along to

accommodate the change.

• Swap: swap the position of two randomly chosen

elements.

• Inversion: reverse the order of a randomly selected

sub-string.

These combinations of operators and parameters pro-

duced three local search algorithms (LS-Swap, LS-Insert

and LS-Invert) and three genetic algorithms (GA-Swap,

GA-Insert and GA-Invert), initially using a fixed mu-

tation probability of 1/len where len is the length of

the sequence to be optimised and again this is taken as

standard from the literature.

The fitness cost used by the GA is
∑n

i=1 ziwi where

zi = 1 if cell i is suppressed and 0 if it is not suppressed.

wi is the weighting given to the information loss should

cell i be suppressed. Which cells are suppressed is

determined using the linear programming (incremental

attacker) heuristic which as Equation 3 shows necessarily

works by minimising a partial fraction (y+ and y−

are continuous variables) rather than the full amount

since that would present a non-linear problem. Therefore

the fitness function for the GA is the combination of

the linear programming (incremental attacker) heuristic

followed by the summation of the full cost of every

suppressed cell.

C. Presentation of Results

Initial inspection of the data showed that even for

the same table size, the differences in the values of the

results obtained depended far more on the contents of the

table, (i.e. on the value used to seed the randomised table

creation process) than on the approach taken. Naturally

the size of the table was also a major contributing factor,

since bigger tables with more primary cells almost in-

evitably had higher cost solutions associated with them.

While the analysis of the strength of different effects has

to be treated with caution, a highly significant finding

was that in all cases the result obtained was better than

or equal to that produced by any of the original heuris-

tics. In this light, it was decided to undertake a further

analysis where the results on each table are normalized

relative to the cost of the equivalent order-by-weight

solution. This metric indicates the relative magnitude

of the improvement found over current methods, and

partially alleviates the strength of the table as factor. It is

this metric that is presented for comparison in Table III.

D. Analysis

The results from each run were analysed using the sta-

tistical package SPSS. To see if there was any significant

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

difference in the performance of the different algorithms

we used the non-parametric Friedman’s ANOVA test.

This uses rank ordering of the suppression pattern costs

generated by the different algorithms for each of the

statistical tables in turn it is not effected by the different

table properties like size or number of primary cells.

Wilcoxon’s Signed Rank test has been used when a com-

parison of the performance of just two of the algorithms

was required.

IV. COMPARING LOCAL AGAINST GENETIC

ALGORITHM SEARCH

A. Procedure

In this section we compare the performance of local

and genetic algorithm searches when applied to finding

the lowest cost suppression patterns used to protect

statistical tables. For each of the six algorithms (LS-

Swap, LS-Insert, LS-Invert, GA-Swap, GA-Insert and

GA-Invert) five runs were made on each of the thirty

eight tables provided. All runs used the following termi-

nation criteria, stopping whichever occurred first:

• 3 hours of computer time were used up

• 10000 evaluations were used

• 1000 evaluations had passed since the last improve-

ment

• The population mean cost was within 1% of the

best cost for 100 successive iterations (not used for

local search).

For each run we recorded the cost of the best solution

found, the number of evaluations after which it was

found, and the suppression set. The final suppression set

was then fed back in to the maximum and minimum

attacker programs to confirm that it provided adequate

protection for the statistical table. The averaged nor-

malised results are presented in Table III.

B. Analysis

Of the thirty eight statistical tables thirteen were best

(or equally best) protected by GA-Invert, ten by GA-

Swap, seven by GA-Insert, six by LS-Swap, four by LS-

Invert and none by LS-Insert. Thirty of the statistical

tables were best (or equally best) protected by the

genetic algorithms and ten by the local searches, as

shown in Table III. Table IV shows how the Friedman’s

ANOVA test ranked the three local search and three

genetic algorithms for the thirty eight statistical tables.

Further analysis using the Wilcoxon’s Signed Rank test

indicated that with over 99.9% confidence the GA using

the mutation operator Invert (GA-Invert) outperformed

the equivalent local search, that with 99.9% confidence

the GA using the mutation operator Swap (GA-Swap)

outperformed the equivalent local search and that with

97.6% confidence the GA using the mutation operator

Insert (GA-Insert) outperformed the equivalent local

search. The Wilcoxon’s Signed Rank test did not find a

significant difference between the average performances

of GA-Swap, GA-Insert and GA-Invert.

The percentage improvements shown in Table III indi-

cate that the best improvements occurred for the smallest

statistical tables. An analysis of the number of calls to

the fitness function made by the genetic algorithms by

the table size showed, with over 99.9% confidence, that

the number of calls to the fitness function decreases

as the size of the statistical table increases, see Fig. 1.

This clearly shows that when protecting statistical tables

with 40,000 cells that in the three hours allowed for the

genetic algorithms to run they could do little more than

initialise their parent pools. This is because as the table

size grows, so does the time taken in the fitness function,

which involves solving 2 · |P | linear programs to identify

the suppression pattern. For the smaller statistical tables

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

we can see that there is a wide range of calls to the

fitness function and this has three possible explanations.

The first is that it is due to the different values and

locations of the primary cells in each of the tables, the

second is that the genetic algorithms are getting stuck

in a local optima, and the third is that it may indicate

early termination due to the population mean cost being

within 99% of the best cost for 100 successive iterations.

Fig. 1. The number of calls to the Fitness Function made by the

Genetic Algorithms by Table Size.

C. Conclusions

The results presented in Table III clearly indicate that

the use of a meta-heuristic search strategy is beneficial.

Solutions to the Cell Suppression Problem are found

with lower information loss than are achieved via the

current “order-by-weight” heuristics. In cases where the

heuristic are able to run for a significant number of

iterations, the suppression pattern cost is reduced on

average by 25.7% of the original cost. As expected,

the results demonstrate that the total numbers of cells,

rows and columns are major factors in determining

the magnitude of the improvements attainable. Since

these factors directly affect the number of constraints

which must be dealt with by the linear programs, they

directly relate to the run-time needed to evaluate the

partial solution for each primary cell. For the same

reasons the proportion of sensitive cells to be protected

is also a factor. Since most runs terminate due to the

time criteria, it is reasonable to expect that a faster

LP implementation would permit greater numbers of

iterations and hence better results. The time allowed is

dictated by the practical constraints of the workplace.

For more subtle reasons, the specific cell contents can

have a major effect. Thus if one respondent is much the

biggest, then the corresponding cell will dominate the

marginal totals in which they participate, and so it may

be necessary to suppress many other cells, regardless of

the order in which the primaries are considered.

As the number of evaluations is limited by time the

size of the initial population was successfully reduced to

ten allowing more time to search the fitness landscape.

This is probably as small as it can go without risking

a serious loss of diversity which could adversely affect

evolvability, especially given that the initial population

is not purely random, but includes results from existing

heuristics.

The analysis of the results presented in Table III

have clearly shown that in this case using a genetic

algorithm outperforms using local search. The analysis

of the number of calls to the fitness function has shown

that the genetic algorithms require longer than the three

hours that they have been given to search the fitness

landscape. To allow this for the larger statistical tables

the time limit is increased in all later tests, and the

termination criteria that the population mean cost being

within 1% of the best cost for 100 successive iterations

is removed.

On individual statistical tables there are significant

differences between fixed operator combinations. In [21]

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

we showed that similar behavior was shown for the Trav-

eling Salesman Problem (TSP) and that self-adaption

avoided the possible pitfalls of choosing the wrong

operator. The use of self-adaption in this case was tested

experimentally and shown to perform at least as well as

the use of fixed operators, the results are not shown to

save space. Therefore all future genetic algorithms in

this paper will use self-adaption to select the mutation

operator and mutation probability, These are encoded

in two extra genes with a 0.1 probability of randomly

changing for each iteration of the genetic algorithm [21].

V. REDUCING THE COST OF THE FITNESS

FUNCTION

A. Procedure

To protect a statistical table using this approach re-

quires that two linear programs are run for each primary

suppressed cell in the statistical table. As the size of

the statistical table that is being protected increases so

does the average number of primary suppressed cells

that need to be protected and therefore the number of

linear programs that need to be run. Simultaneously

the time taken to run each linear program increases.

The combination of these two affects the size of the

statistical table that can be protected using a particular

mathematical solver when protecting statistical tables

one cell at a time. We have found that using the CLP

solver to implement this LP restricts us to protecting

statistical tables with less than or equal to 40,000 cells.

In order to allow us to protect larger tables the LP has

been modified to reduce the number of linear programs

that are required to be run. The following modifications

to the LP have been made to allow it to protect larger

statistical tables.

• A preprocessing optimization is used to identify a

subset of the primary suppressed cells (P) called

the candidate initially exposed primary suppressed

cells (K). The LP has been modified to only protect

members of K as protecting this subset still guar-

antees to protect all of the primary suppressed cells

in the statistical table [20].

• Protecting the primary suppressed cells in groups as

opposed to individually also decreases the number

of linear programs that are required to be run.

Therefore a further modification to the LP has been

made to protect primary suppressed cells in groups.

The performance of these modifications to the LP

were compared by using them to protect the thirty

eight statistical tables described in Section III-A. Three

algorithms were compared, all were self-adaptive GAs

that invoked the LP as their fitness function. These

algorithms were allowed to run for up to twelve hours.

The algorithms protect all primary cells (P) one at a time

(GA-one-P), protect candidate initially exposed primary

suppressed cells (K) one at a time (GA-one-K) and

protect candidate initially exposed primary suppressed

cells (K) in 40 groups (GA-group-K).

B. Analysis

Of the thirty eight tables that were protected twenty

two were best or equally best protected by GA-group-

K, twelve by GA-one-K and seven by GA-one-P. The

Wilcoxon’s Signed Ranks test indicated, with 98.2%

confidence, that on average GA-one-K produced lower

cost suppression patterns than GA-one-P. It also in-

dicated, with 96.8% confidence, that on average GA-

group-K produced lower cost suppression patterns than

GA-one-P. There was no significant difference in the

performance of GA-one-K and GA-group-K.

Of the ten tables with 40,000 cells eight were best

protected by GA-group-K, one by GA-one-K and one

by GA-one-P. When considering only these tables the

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

mean rankings given by Friedman’s ANOVA of the cost

(information loss) were 1.22 (GA-group-K), 2.22 (GA-

one-K) and 2.56 (GA-one-P). The Wilcoxon’s Signed

Ranks test indicated that on average GA-group-K was

better than GA-one-K (98.7% confidence) and GA-one-

P (99.3% confidence).

Protecting only the candidate initially exposed primary

cells (K) instead of all the primary cells (P) improves the

performance of the self-adaptive GA because

1) only the initially exposed primary cells (I) need

to be protected and I is a subset of the candidate

initially exposed primary cells (K). Protecting all

the primary cells (P) may needlessly run LPs to

protect consequentially exposed primary cells (C)

which may lead to overprotection and they are

guaranteed to be protected anyway if the initially

exposed primary cells (I) are protected.

2) less LPs are needed to be run to find the fitness

of each permutation of cells as K is a subset of

P. Hence finding the fitness of each permutation is

quicker and so in a given time more calls to the

fitness function can be made which in turn leads

to a greater search of the fitness landscape.

For the smaller statistical tables (< 30, 000 cells)

grouping the cells in K prior to protecting them may not

lead to lower cost suppression patterns as it reduces the

number of points on the fitness landscape. However for

the larger statistical tables grouping the cells in K prior

to protecting them is better than protecting them one at

a time as grouping limits the number of LPs required. A

fixed number of groups means a fixed number of LPs to

find the fitness of each permutation. Which again means

more permutations can be examined in a given time (i.e.

more searching of the fitness landscape).

It is the ability to search more of the fitness landscape

that gives grouping the advantage for statistical tables

with more than 30,000 cells. This can be clearly seen

if we plot the suppression pattern cost by the CPU

time required (Fig. 2) and by the number of calls to

the fitness function (Fig. 3) for one of the 40,000 cell

statistical tables. All three algorithms were still actively

searching their fitness landscape when they terminated

after their twelve hour time limit. Fig 2 shows that the

algorithms that protected primary suppressed cells one at

a time were only able to find one better solution in the

time given whereas the algorithm that protected primary

suppressed cells in groups found many better solutions.

Fig. 3 shows why this is the case. The algorithms that

Fig. 2. The Suppression Pattern Cost by CPU Time (seconds) for the

three algorithms.

protected primary suppressed cells one at a time made

less than 150 calls to the fitness function in the allotted

time whereas the algorithm that protected primary sup-

pressed cells in groups made approximately 2000 calls

to the fitness function in the allotted time.

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

Fig. 3. The Suppression Pattern Cost by the number of calls to the

Fitness Function for the three algorithms.

C. Conclusions

The grouping of candidate primary suppressed cells

prior to protecting them significantly reduces the time

taken to execute the fitness function. This in turn al-

lows the genetic algorithm to better search it’s fitness

landscape which in turn, on average, leads to lower cost

suppression patterns. This has been found to be true for

statistical tables with more than 30,000 cells.

VI. COMPARING THE GENETIC ALGORITHM

SEARCH AGAINST OTHER ALGORITHMS

A. Procedure

In this section we compare the performance of GA-

group-K against that of the existing methods provided

by the statistical disclosure control tool, τ -Argus. The

version of τ -Argus used, for this comparison, was 3.2.0

build 6 (2004). This is the version of τ -Argus that

was available at ONS, where there was a compatible

mathematical solver, when the comparison was carried

out. Later versions of τ -Argus have various improve-

ments but these have not affected the cell suppression

heuristics [13]. τ -Argus was used to protect the thirty

non-hierarchical magnitude statistical tables that were

created using the randomised data generator as the

microdata files, required by τ -Argus for input, were

not available to us for the other eight statistical tables.

τ -Argus provides the algorithms Hypercube, Modular,

Network, Optimal and Marginal for cell suppression.

Each of these algorithms was used to protect the thirty

statistical tables. As the Network algorithm failed to pro-

tect any of the statistical tables it has not been included

in the results table. GA-group-K was allowed up to 12

hours to execute, Modular and Optimal algorithms took

between 5 minutes and 24 hours to execute. Hypercube

and Marginal took less than 5 minutes to execute. The

costs (information loss) of suppressing the secondary

cells are presented in Table V.

B. Analysis

The number of statistical tables protected by each

algorithm, by table size, is shown in Table VI. This

shows that the only algorithms to protect all thirty

statistical tables were the GA-group-K and Marginal.

However Marginal is the method of last resort as it works

by suppressing margin (row and column) totals and this

removes a much larger amount of information from

the table than would suppressing non-totals. Hypercube

protected all of the 200x5 statistical tables, but failed

to protect the 200x50 and 4000x10 statistical tables.

The Hypercube algorithm can theoretically handle much

larger statistical tables than 200x5 and the limitation

here is put down to this being an early implementation

of the algorithm. Modular protected 60% of the 200x5

and 200x50 statistical tables but none of the 4000x10

statistical tables. This is expected as Modular partitions

statistical tables prior to using the Optimal algorithm

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

to protect them. The Optimal algorithm should find the

optimal suppression pattern as it is an implementation of

the Fischetti & Salazar [10],[11] Mixed Integer Program

(MIP), however this is limited in the size of statistical

table that can be protected as the optimal solution is NP-

hard to find. Unfortunately the Network algorithm failed

to protect any of the thirty statistical tables. The Network

algorithm is however limited to finding suppression

patterns for two-dimensional statistical tables only.

Of the thirty tables used in this comparison twenty one

were best protected by GA-group-K, eight by Modular

and one by Optimal. Of the twenty tables with less than

or equal to 10,000 cells eleven were best protected by

GA-group-K, eight by Modular and one by Optimal. The

difference between the costs obtained by GA-group-K

and Modular was not statistically significant. For the ten

statistical tables that were protected by both Hypercube

and GA-group-K, GA-group-K produced lower cost sup-

pression patterns for all ten tables. For the ten statis-

tical tables that were protected by both Marginal and

Hypercube, Hypercube produced lower cost suppression

patterns for all ten tables.

There are two anomalies in Table V where unexpected

suppression pattern costs were reported. The reason for

these anomalies is most likely due to the mathematical

solver being pushed beyond it’s working bounds. For

three of the 200x50 statistical tables the Modular al-

gorithm performed very well with secondary cell costs

of 393.0, 790.0 and 419.0. The reason for this is that

no matter what permutation of the primary suppressed

cells is used the LP model sometimes produces relatively

poor results when compared with algorithms that protect

all the primary suppressed cells at once. Solving this

problem is ongoing work.

C. Conclusions

GA-group-K has shown itself to be a reliable tech-

nique for protecting statistical tables when compared

against current ‘state of the art techniques’. In all cases

it produced lower cost suppression patterns than the

Hypercube and Marginal algorithms. Although it only

produced lower cost suppression patterns than the Modu-

lar algorithm for three out of the twelve statistical tables,

the later cannot protect the larger statistical tables and

was only able to protected 60% of the smaller statistical

tables. This indicates that in the future the GA-group-

K algorithm will have an important role to play in the

protection of published statistical tables.

VII. PROTECTING LARGER STATISTICAL

TABLES

A. Procedure

We have seen that for larger statistical tables the lower

cost suppression patterns are achieved by protecting can-

didate initially exposed primary suppressed cells (K) in

groups. Unfortunately this approach can not be directly

applied to larger statistical tables. The problem lies with

the preprocessing stage that identifies the members of K .

Part of this preprocessing stage requires the running of

two linear programs for each of the primary suppressed

cells. To get around this problem a different subset of

primary suppressed cells that we call Ku are used, where

Ku ⊆ K , these are the candidate initially exposed

primary suppressed cells that can be identified using an

unpicking algorithm. As an unpicking algorithm does

not require the use of a mathematical solver it can

handle large statistical tables: for example it took only

42 seconds to unpick a one million cell statistical table.

Tests on a large variety of statistical tables showed that in

approximately 99% of cases K = Ku. In the cases where

K was larger than Ku it was so by, on average, only one

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

or two primary cells. Therefore the self-adaptive GA part

of the algorithm uses a surrogate fitness function which

is the linear programming model modified to protect

members of Ku in groups. Once the ‘best’ permutation

of the groups has been identified (i.e. after running the

GA) they are again protected followed by protecting an

extra group comprising the subset P \Ku. This final step

ensures that all primary suppressed cells are protected,

for this the maximum number of iterations allowed for

each LP was increased to ensure the full protection of

each of the statistical tables. This approach was tested

on fourteen artificial three-dimensional statistical tables

of varying size and was shown to have successfully

protected them. In order to make the tables as realistic

as possible a Poisson distribution was used to assign the

number of contributors to each table cell and −1/ log r

was used to generate each contributor’s contribution,

where r is a random number [0..1]. Other factors like

the proportion of zero valued cell and primary cells

were randomly assigned. Six of the statistical tables were

hierarchical. The size and dimensions of the statistical

tables is given in Table VII. The algorithm was allowed

to run for up to 24 hours for each statistical table being

protected and the number of groups was reduced to 20.

The algorithm successfully protected all fourteen sta-

tistical tables. However even though the number of

groups was reduced to 20 and it was allowed to run for

up to 24 hours it was only able to make a limited number

of calls to the fitness function which in turn limited

the improvement that it could make to the suppression

patterns, see Table VIII.

B. Analysis

The limited number of calls to the fitness function

is because as the table has grown in size each fitness

function call has taken longer to execute. The results

shown in Table VIII however are hard to interpret. The

relationship between the table size and the number of

calls to the fitness function was not statistically signifi-

cant. As the number of calls to the fitness function was

limited the algorithm was unable to search the fitness

landscape thoroughly. This lead to only seven out of

the fourteen statistical tables having their suppression

patterns improved. The best improvement from the sur-

rogate fitness function being 15.12%, see Table VIII. It

is reasonable to expect that more improvements would

have been seen given either more time or computational

power.

C. Conclusions

The introduction of a surrogate fitness function has

allowed the algorithm to successfully protect three-

dimensional non-hierarchical statistical tables with up

to 209,300 cells and three-dimensional hierarchical sta-

tistical tables with up to 142,200 cells using the CLP

mathematical solver from the open source COIN-OR

framework. Although this a very good achievement in the

field of cell suppression in statistical disclosure control

the algorithm is still not able to effectively search it’s

fitness landscape, for these very large statistical tables.

This implies that further improvements to the algorithm

should be obtained by simply speeding up each call to

the fitness function and this can be easily achieved by

using a more powerful commercial mathematical solver.

VIII. CONCLUSIONS AND SUGGESTED

FUTURE WORK

The use of a heuristic algorithm that combines a

genetic algorithm and linear program has been shown

to successfully protect large statistical tables. This al-

gorithm was shown to outperform the combination of

local search and linear programing. This algorithm has

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

been shown to perform consistently on a variety of

statistical tables of differing sizes. It has been shown

to better protect larger tables than all the algorithms

it was compared with in this study. The use of a

surrogate fitness function has allowed the algorithm to

protect statistical tables with over 200,000 cells. In this

paper this algorithm has only been used to protect two

and three-dimensional hierarchical and non-hierarchical

statistical tables, however it can also protect statistical

tables with more than 3 dimensions.

Future work to improve this algorithm will need to

address the large amount of time that is required to

execute the fitness function as this limits the ability of

the algorithm to search it’s fitness landscape. Further

improvement in the cost of the suppression patterns

found using this algorithm may come from using a

different grouping strategy. Currently grouping is done

by the cell weighting but the addition of grouping by row

and column would add new, previously unseen, points on

the fitness landscape.

The datasets used in this paper will be made avail-

able for download from http://www.cems.uwe.ac.uk/

∼jsmith/Statistical Disclosure Control.html.

ACKNOWLEDGMENT

This work was funded by an EPSRC Maths CASE

award.

REFERENCES

[1] Almeida, M.T., G. Schutz amd F.D. Carvalho (2008) “Cell sup-

pression problem: A genetic-based approach”. Computers and

Operations Research 35 (2008) pp 1613-1623

[2] Bäck, T. (1992) “Self Adaptation in Genetic Algorithms” pp

263–271 in F.J. Varela and P. Bourgine, editors. 1992. Toward a

Practice of Autonomous Systems: Proceedings of the 1st European

Conference on Artificial Life, MIT.

[3] Beyer, H.-G. (2001) “Theory of Evolution Strategies”, Springer

Berlin / Heidelberg / New York.

[4] Castro, J. (2002) “Network Flows Heuristics for Complementary

Cell Suppression: An Empirical Evaluation and Extensions” pp

59–73 in J. Domingo-Ferrer, editor. 2002. Inference Control in

Statistical Databases, Lecture Notes in Computer Science, vol.

2316, Springer Berlin / Heidelberg / New York.

[5] Castro, J. (2005) “Quadratic interior-point methods in statistical

disclosure control”. Computational Management Science, vol. 2,

no. 2, pp 107-121, Springer Berlin / Heidelberg / New York.

[6] Cplex (2006), Mathematical Programming Optimizer, ILOG SA,

9, rue de Verdun, BP 85, 94253 Gentilly Cedex, France. Website:

www.cplex.com

[7] COIN-OR (2006), COmputational INfrastructure for Operations

Research, Website: www.coin-or.org

[8] Davis L. (1991), “Handbook of Genetic Algorithms”, Van Nos-

trand Reinhold.

[9] Fischetti, M. and J.J. Salazar (1998), “Experiments with Controlled

Rounding for Statistical Disclosure Control in Tabular Data with

Linear Constraints”, Journal of Official Statistics, vol. 14, pp 553–

565.

[10] Fischetti, M. and J.J. Salazar (1999), “Models and algorithms for

the 2-dimensional cell suppression problem in statistical disclosure

control”, Mathematical Programming, vol. 84, pp 283-312.

[11] Fischetti, M. and J.J. Salazar (2001), “Solving the Cell Suppres-

sion Problem on Tabular Data with Linear Constraints”, Manage-

ment Science, vol. 47, no. 7, pp 1008-1027.

[12] Glickman, M. and K. Sycara (2000), “Reasons for Premature

Convergence of Self-Adaptating Mutation Rates”. 2000 Congress

on Evolutionary Computation (CEC’2000), IEEE Press, Piscat-

away, NJ pp 62–69.

[13] Hundepool, A., Tau-Argus manager, private e-mail.

[14] Hundpool, A., J. Domingo-Ferrer, L. Franconi, S. Giessing,

R. Lenz, J. Naylor, E.S. Nordholt, G. Seri and P-P. de Wolfe

(2007), “Handbook on Statistical Disclosure Control”, available

online at http://neon.vb.cbs.nl/casc/SDC Handbook.pdf.

[15] Kelly J.P., B.L. Golden and A.A. Assad (1992), “Cell suppres-

sion: Disclosure protection for sensitive tabular data”, Networks,

vol. 22, pp 397-417.

[16] Preuss, M. and T. Bartz-Beielstein (2007) “Sequential Parameter

Optimisation applied to Self-Adaptation for Binary-Coded Evo-

lutionary algorithms”, pp 91–120 in Lima et al, editors. 2007.

Parameter Setting in Evolutionary Algorithms, Springer Berlin /

Heidelberg / New York.

[17] Robertson, D.A. (1995), “Cell suppression at Statistics Canada”,

Proc. Second Internat. Conf. Statist. Confidentiality. Luxembourg.

[18] Salazar, J.J., C. Bycroft and A.T. Staggemeier

(2005), “Controlled Rounding Implementation”,

Joint UNECE/Eurostat work session on statistical

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 16

data confidentiality, Geneva, available online at

http://www.unece.org/stats/documents/2005.11.confidentiality.htm

WP36.pdf

[19] Schwefel, H.-P. (1981) “Numerical Optimisation of Computer

Models”, Wiley, New York.

[20] Serpell M.C., A.R. Clark, J. Smith and A.T. Staggemeier (2008),

“Pre-processing Optimisation Applied to the Classical Integer Pro-

gramming Model for Statistical Disclosure Control”, Proceedings

of Privacy in Statistical Databases 2008, pp 24-36.

[21] Serpell M.C., and J. Smith (2010), “Self-Adaption of Mutation

Operator and Probability for Permutation Representations in Ge-

netic Algorithms”. Journal of Evolutionary Computation, vol. 18,

no. 3, pp 491-514 (2010).

[22] Smith, J.E. (2007) “On Replacement Strategies in Steady State

Evolutionary Algorithms” Evolutionary Computation, vol. 15, no.

1, pp 29-59

[23] Smith, J.E., A.R. Clark and A.T. Staggemeier (2009), “A genetic

approach to statistical disclosure control”. Genetic and Evolu-

tionary Computation Conference (GECCO 2009) Proceedings, pp

1625-1632.

[24] Surry, P.D., and N.J. Radcliffe (1996), “Inoculation to Initialise

Evolutionary Search” pp 269-285 in T.C. Fogarty, editor. 1996.

Evolutionary Computing, AISB Workshop, Lecture Notes in Com-

puter Science, vol. 1143, Springer Berlin / Heidelberg / New York.

[25] Tau-Argus Statistical Disclosure Control software,

http://neon.vb.cbs.nl/CASC/TAU.html

[26] Willenborg, L. and T. de Waal, (2000), “Elements of Statistical

Disclosure Control”, Springer, Lecture Notes in Statistics.

Table Type LS LS LS GA GA GA

Swap Insert Invert Swap Insert Invert

200x5 9.66 8.60 9.89 10.27 10.47 8.51

sens=0.02 6.33 2.88 3.85 5.78 4.81 3.04

zeros=0.05 16.31 7.66 17.25 22.08 20.09 20.58

24.12 18.15 25.34 25.68 25.35 25.46

1.02 0.76 0.58 0.69 0.85 0.74

200x5 13.66 14.63 15.57 12.88 13.84 17.03

sens=0.10 1.86 1.67 1.10 1.24 1.25 1.21

zeros=0.25 17.54 17.13 14.25 14.91 10.30 16.71

6.77 7.94 8.00 9.35 21.86 17.59

13.72 12.21 11.42 15.40 12.32 14.54

200x50 1.96 1.87 7.40 8.95 6.50 5.69

sens=0.02 2.77 2.21 2.58 7.77 8.48 9.27

zeros=0.05 3.54 1.99 8.70 7.39 9.25 6.45

6.22 1.80 12.36 13.72 13.36 13.21

3.03 4.28 3.71 5.59 5.19 2.11

200x50 1.10 0.94 2.12 1.37 0.19 2.40

sens=0.10 6.24 0.13 9.41 10.33 9.28 14.10

zeros=0.25 3.12 2.96 0.75 10.62 11.51 15.12

4.41 1.41 11.24 10.52 9.96 12.78

3.29 1.79 5.96 2.66 0.75 1.61

14x654 1.35 0.00 1.08 1.26 1.43 2.46

sens=0.186

zeros=0.16

14x654 0.00 0.00 0.68 0.00 0.84 0.20

sens=0.19

zeros=0.16

712x10 0.59 0.62 0.72 0.71 0.62 0.72

sens=0.06

zeros=0.49

712x10 0.27 0.46 0.94 1.18 1.05 1.17

sens=0.08

zeros=0.49

712x19 0.00 0.00 0.07 1.17 0.91 1.66

sens=0.11

zeros=0.35

712x19 0.07 0.07 0.52 1.10 1.00 1.31

sens=0.13

zeros=0.35

14x1433 0.00 0.15 1.17 1.35 3.10 1.16

sens=0.16 3.65 1.73 3.11 4.38 4.66 6.33

zeros=0.14

4000x10 0.82 0.65 0.43 0.18 0.25 0.25

sens=0.02 1.22 0.61 1.60 2.20 2.34 2.30

zeros=0.05 0.59 1.05 0.66 1.21 1.16 1.16

0.86 0.78 1.10 0.94 1.01 1.14

0.35 0.00 0.28 0.11 0.16 0.31

4000x10 0.14 0.14 0.02 0.41 0.33 0.24

sens=0.10 0.79 0.52 1.03 1.02 0.81 0.60

zeros=0.25 0.69 0.66 0.72 0.72 0.90 0.60

0.38 0.39 0.41 0.52 0.39 0.47

0.14 0.31 0.61 0.57 0.58 0.61

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 17

Performance Algorithm Mean Rank

Best GA Invert 4.33

GA Swap 4.25

GA Insert 4.11

LS Invert 3.47

LS Swap 2.83

Worse LS Insert 2.01

TABLE IV

THE FRIEDMAN’S ANOVA RANKING OF THE AVERAGE

PERCENTAGE IMPROVEMENT OF THE SUPPRESSION PATTERN COSTS

FOR THE SIX ALGORITHMS FOR SIX OF THE STATISTICAL TABLES

Table Type GA- Hyper Mod Opt Marg

group-K cube ular imal inal

200x5 1199 2377 999 997 39580

sens=0.02 232 951 227 - 22560

zeros=0.05 1276 1608 - - 33639

1686 3131 1287 - 20545

1775 3299 - - 37165

200x5 550 2535 - - 18616

sens=0.10 853 1696 597 - 23753

zeros=0.25 285 1316 64 - 39550

254 1368 - - 21273

1193 1199 850 - 20417

200x50 2955 - - - 54280

sens=0.02 2939 - 86984∗ - 54923

zeros=0.05 2228 - 393∗ 2169 55769

3436 - 790 - 56712

2089 - 418 - 56778

200x50 2820 - - - 54566

sens=0.10 2161 - 2189 - 36891

zeros=0.25 1970 - 2522 - 54525

2532 - - - 56895

2352 - - - 36956

4000x10 2730 - - - 8033

sens=0.02 2908 - - - 8542

zeros=0.05 2838 - - - 8433

2605 - - - 8292

2572 - - - 8343

4000x10 2371 - - - 8411

sens=0.10 2715 - - - 8704

zeros=0.25 2646 - - - 8620

2432 - - - 9039

2436 - - - 8643

TABLE V

THE COST OF SUPPRESSING THE SECONDARY CELLS FOR 30 OF

THE STATISTICAL TABLES USING DIFFERENT ALGORITHMS. -

INDICATES THAT THE ALGORITHM FAILED TO PROTECT THE

STATISTICAL TABLE. ∗ INDICATES AN ANOMALY IN THE RESULTS

PROVIDED BY τ -ARGUS. THE LOWEST COST OF SUPPRESSING THE

SECONDARY CELLS HAVE BEEN HIGHLIGHTED IN BOLD.

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 18

Table Size

Algorithm 200x5 200x50 4000x10

GA-Group-K 10 10 10

Hypercube 10 0 0

Modular 6 6 0

Network 0 0 0

Optimal 1 1 0

Marginal 10 10 10

TABLE VI

THE NUMBER OF STATISTICAL TABLES PROTECTED BY EACH

ALGORITHM BY TABLE SIZE

Dimensions Number of Number of Size of

(including margin totals) Cells Primary Cells Ku

100 × 27 × 18 48,600 14,807 263

sens=0.30, zeros=0.49

100 × 21 × 24 50,400 10,555 645

sens=0.21, zeros=0.12

100 × 5 × 106(H) 53,000 8,763 5,558

sens=0.17, zeros=0.41

100 × 112(H) × 4 56,000 4,544 4,047

sens=0.08, zeros=0.54

100 × 7 × 83 58,100 11,517 4,430

sens=0.20, zeros=0.43

100 × 20 × 31 62,000 13,164 678

sens=0.21, zeros=0.13

100 × 6 × 112(H) 67,200 1,972 1,933

sens=0.03, zeros=0.51

100 × 20 × 36 72,000 15,422 734

sens=0.21, zeros=0.13

100 × 76 × 10 76,000 13,429 3,629

sens=0.18, zeros=0.26

100 × 4 × 212(H) 84,800 10,265 8,859

sens=0.21, zeros=0.46

100 × 11 × 90(H) 99,000 18,978 10,069

sens=0.19, zeros=0.47

50 × 50 × 40 100,000 21,850 259

sens=0.22, zeros=0.13

100 × 158(H) × 9 142,200 28,032 14,172

sens=0.20, zeros=0.50

100 × 91 × 23 209,300 16,008 3,441

sens=0.08, zeros=0.36

TABLE VII

THE FOURTEEN LARGE STATISTICAL TABLES. (H) INDICATES THAT

THE DIMENSION IS HIERARCHICAL.

November 22, 2011 DRAFT

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 19

Dimensions Number of Number of Percentage

(including margin Cells Fitness Improvement

totals) Function Calls Surrogate

100 × 27 × 18 48,600 35 15.12

100 × 21 × 24 50,400 30 0.0

100 × 5 × 106(H) 53,000 40 0.0159

100 × 112(H) × 4 56,000 60 10.79

100 × 7 × 83 58,100 35 10.5

100 × 20 × 31 62,000 25 0.0

100 × 6 × 112(H) 67,200 25 2.46

100 × 20 × 36 72,000 20 0.0

100 × 76 × 10 76,000 20 0.0

100 × 4 × 212(H) 84,800 40 0.0

100 × 11 × 90(H) 99,000 25 0.36

50 × 50 × 40 100,000 15 0.0

100 × 158(H) × 9 142,200 20 0.0

100 × 91 × 23 209,300 195 0.15

TABLE VIII

THE NUMBER OF CALLS MADE TO THE FITNESS FUNCTION AND

THE PERCENTAGE IMPROVEMENT IN THE SUPPRESSION PATTERN

COST, BY THE GA, FOR THE FOURTEEN LARGE STATISTICAL

TABLES. (H) INDICATES THAT THE DIMENSION IS HIERARCHICAL.

November 22, 2011 DRAFT

