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Abstract Delineating spatial patterns of precipitation isotopes (‘‘isoscapes’’) is becoming increasingly
important to understand the processes governing the modern water isotope cycle and their application to
migration forensics, climate proxy interpretation, and ecohydrology of terrestrial systems. However, the
extent to which these patterns can be empirically predicted across Canada and the northern United States
has not been fully articulated, in part due to a lack of time series precipitation isotope data for major regions
of North America. In this study, we use multiple linear regressions of CNIP, GNIP, and USNIP observations
alongside climatological variables, teleconnection indices, and geographic indicators to create empirical
models that predict the d18O of monthly precipitation (d18Oppt) across Canada and the northern United
States. Five regionalization approaches are used to separate the study domain into isotope zones to explore
the effect of spatial grouping on model performance. Stepwise regression-derived parameterizations quan-
tified by permutation testing indicate the significance of precipitable water content and latitude as predic-
tor variables. Within the Canadian Arctic and eastern portion of the study domain, models from all
regionalizations capture the interannual and intraannual variability of d18Oppt. The Pacific coast and north-
western portions of the study domain show less agreement between models and poorer model perform-
ance, resulting in higher uncertainty in simulations throughout these regions. Long-term annual average
d18Oppt isoscapes are generated, highlighting the uncertainty in the regionalization approach as it com-
pounds over time. Additionally, monthly time series simulations are presented at various locations, and
model structure uncertainty and 90% bootstrapped prediction bounds are detailed for these predictions.

1. Introduction

Precipitation isotopes (d18O and d2H) are natural tracers providing diverse attributes for understanding

processes characterizing the water cycle at local, regional, and continental scales. This understanding is of

paramount importance today as water resources provide the basis of rural and urban community sustain-

ability, commercial industries, and the delivery of essential ecosystem services. While precipitation amounts

and patterns are relatively well quantified, it is only over the last 25 years that we have begun to rigorously

explore the spatial patterns of water cycle isotopes at the continental and global scales [Rozanski et al.,

1993; Welker, 2000, 2012; Dutton et al., 2005; Birks and Edwards, 2009; Vachon et al., 2010a; Liu et al., 2013].

Woven into these spatial pattern analyses—termed ‘‘isoscapes’’—is now the ability to resolve processes and

mechanisms that may be controlling the temporal variability in water cycle isotopes such as moisture

source and climate conditions along the rainout trajectory [Rozanski et al., 1992; Birks and Edwards, 2009; Liu

et al., 2010; Vachon et al., 2010b; Welker, 2012].

Past efforts to predict oxygen-18 and deuterium distributions in precipitation (d18Oppt/d
2Hppt) have typically

focused on creating isoscapes of long-term annual or seasonal averages at both the global scale [Birks et al.,
2002; Bowen and Wilkinson, 2002; Bowen and Revenaugh, 2003] and regional/continental scale for the United
States [Dutton et al., 2005; Welker, 2012] and China [Liu et al., 2008] utilizing a coupled regression and geo-
statistical modeling approach. These initial studies placed high importance on geographical parameters
(elevation and latitude) as proxies for more physically based parameters to approximate Rayleigh distillation
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(i.e., the amount of temperature-dependent rainout that occurs as an air mass is transported to locations of
higher latitude and/or elevation without any secondary processes) [Dansgaard, 1964]. More recent studies
have begun incorporating climate parameters within the prediction models at the regional scale for Austria
[Liebminger et al., 2006], the eastern Mediterranean [Lykoudis and Argiriou, 2007; Lykoudis et al., 2010], China
[Zhao et al., 2011], Ireland [Fischer and Baldini, 2011], and Canada [Delavau et al., 2011]; and at the global
scale [Van der Veer et al., 2009; Terzer et al., 2013]. While these approaches have provided useful depictions
of long-term annual and seasonal averages for many regions, most of these estimates are not suitable for
predicting precipitation isotope compositions on the time scale necessary for many hydrological applica-
tions, such as iso-hydrological modeling, where a temporal frequency of monthly time series (or finer) com-
positions are required for model forcing [Stadnyk et al., 2013].

This study focuses on the creation of time series d18Oppt predictions at a monthly temporal frequency across
Canada and the northern United States. The objectives of this study are to: (1) quantify the degree to which
empirical models utilizing climate and geographic parameters capture the variability in monthly time series
d18Oppt observations across the study domain and, (2) provide an estimate of uncertainty associated with
the empirical simulations that reflects the boundaries of expected seasonal variation. Establishing this
knowledge is essential for future applications in coupled iso-hydrological modeling, where isoscapes pro-
vide the basis for modeling applications (specifically in ungauged or sparsely gauged locations, such as
most of northern Canada) and input uncertainty is propagated into hydrological model output.

2. Data and Methods

2.1. Observations and Gridded Products
2.1.1. Oxygen-18 in Precipitation
Oxygen-18 in precipitation is used as the dependent variable for model development in this study. Three
data networks provide d18Oppt measurements for this research: the Canadian Network for Isotopes in Pre-
cipitation (CNIP) [Birks and Gibson, 2009], the United States Network for Isotopes in Precipitation (USNIP)
[Welker, 2000, 2012], and the Global Network for Isotopes in Precipitation (GNIP), coordinated by the Inter-
national Atomic Energy Agency/World Meteorological Organization (IAEA/WMO) [Aggarwal et al., 2011;
International Atomic Energy Agency/World Meteorological Organization, 2014]. Canadian precipitation sam-
ples are collected at a monthly frequency by the CNIP and GNIP networks, with the exception of the supple-
mentary Calgary record which is taken from Peng et al. [2004]. Calgary d18Oppt observations are obtained
from short-term sampling (0.5-3 days) and are amount weighted to monthly compositions for direct com-
parison to CNIP and GNIP measurements utilizing the following formula:

d18Oppt monthly5
X

Pi � ðd18OpptÞi=
X

Pi (1)

Pi is the amount of each individual precipitation sample. Weekly precipitation composites are collected
throughout the northern tier of the U.S. at the 27 USNIP sites included in this study [Welker, 2000, 2012; Dut-
ton et al., 2005; Vachon et al., 2007]. Utilizing the precipitation amount-weighting approach outlined in
equation (1), weekly USNIP d18Oppt compositions are amount weighted to monthly composites utilizing pre-
cipitation data obtained from the NTN (National Trends Network) Branch of the NADP (North America Depo-
sition Program) (nadp.sws.uiuc.edu). Figure 1 depicts the temporal distribution of the CNIP/GNIP (stations
1–36) and USNIP (stations 37–63) observations at each station. Figure 2d displays the stations spatially
across the study domain. The supporting information for this study summarizes the station name, location,
years, and number of monthly measurements at each station.

On average, the CNIP/GNIP and USNIP networks have a similar number of monthly observations per station
(CNIP/GNIP: n �107; USNIP: n �109). However, USNIP measurements are more uniformly distributed
between stations in comparison to CNIP/GNIP measurements, which overall have more variability in their
temporal distribution, ranging from n514 monthly compositions at Inuvik (station 20), to n5331 at Ottawa
(station 23) (Figure 1). USNIP observations used in this study consistently begin in 1989 and conclude in
2004; whereas CNIP and GNIP observations are collected between the years of 1961–2010, with minimal
consistency in period of record between stations. These temporal and spatial discontinuities in d18Oppt

records may negatively affect model development, potentially biasing model parameters in data-sparse
regions, such as northern Canada and Alaska. Pre-1979 observations are excluded due to the lack of North
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Figure 1. Distribution of CNIP/GNIP and USNIP monthly d18Oppt compositions at each station. Number of monthly observations within
each decade is specified.

Figure 2. Study domain regionalization into isotope zones: (a) SSC, (b) Kpn, (c) RCWIP, and (d) 2 Zone. The CNIP, GNIP, and USNIP stations included in each zone are indicated, alongside
the number of years of data at each station, represented by the magnitude of the symbol.
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American Regional Reanalysis (NARR) climate data, resulting in over 6000 d18Oppt observations for use in
this modeling study.

2.1.2. Climate and Geographic Data
To approximate d18Oppt time series for a region as large and climatically diverse as Canada and the northern
United States, parameters with the ability to capture the multitude of factors contributing to d18Oppt vari-
ability across the study domain need to be incorporated into the modeling framework. The variables
included in this approach (Table 1) are selected based on this goal.

The climate data in this study are from the National Centers for Environmental Prediction (NCEP) NARR data
set. NARR is a long-term atmospheric and land surface hydrology reanalysis data set spanning the North
American domain [Mesinger et al., 2006]. NARR utilizes lateral boundary conditions from the NCEP-DOE
(Department of Energy) Global Reanalysis and makes use of the data assimilation system from the NCEP Eta
Model. This data set is available from 1979 to 2003, and is continued post 2003 as the Regional Climate
Data Assimilation system (R-CDAS). NARR has a spatial resolution of 32 km, and utilizes 45 layers in the verti-
cal. For this study, monthly time series of selected climate variables (Table 1) are extracted from the NARR
grid cell closest to each CNIP/GNIP or USNIP measurement location. Total precipitation, convective precipi-
tation, total evaporation, and precipitable water variables are converted to monthly totals from monthly
averages.

In addition to the 20 NARR climate variables, three geographic indicators and six teleconnection indices are
incorporated as potential predictors within the models (Table 1). Teleconnection indices are obtained from
the National Oceanic and Atmospheric Administration (NOAA) and University of Washington’s Joint Institute
for the Study of the Atmosphere and Ocean (JISAO). Finally, sine and cosine curves with one complete cycle
per year are used as a smoothing function of time (i.e., ‘‘dummy variables’’) to account for seasonal effects
that may not be captured by the aforementioned predictors [Peng and Dominici, 2008; Chun, 2010].

2.2. Model Regionalization
Pooling information from nearby locations within a region can be useful due to the similarity of processes
and mechanisms controlling the variability in d18Oppt. Given the large geographic area and diverse climate

Table 1. Variables Included in Regression Model Development

Variable ID Description Frequency Source

Climate Variables
apcp Accumulated total precipitation Monthly total NARR
cape Convective available potential energy Monthly average NARR
cdcon Mean of convective cloud cover Monthly average NARR
cdlyr Mean of nonconvective cloud cover Monthly average NARR
evap Accumulated total evaporation Monthly total NARR
hcdc High cloud area fraction Monthly average NARR
hpbl Planetary boundary layer height Monthly average NARR
mcdc Mean cloud area fraction Monthly average NARR
prwtr Precipitable water for entire atmosphere Monthly total NARR
rhum2m Relative humidity at 2 m Monthly average NARR
uwnd10m U-wind at 10 m (zonal) Monthly average NARR
vwnd10m V-wind at 10 m (meridional) Monthly average NARR
wcconv Water condensate flux convergence Monthly average NARR
wcvflx Water condensate meridional flux convergence Monthly average NARR

Teleconnection Indices
AMO Atlantic Multidecadal oscillation Monthly NOAA
AO Arctic oscillation Monthly NOAA
NAO North Atlantic oscillation Monthly NOAA
PDO Pacific decadal oscillation Monthly JISAO
PNA Pacific North American pattern Monthly NOAA
SOI El Nino/La Nina (Southern oscillation index) Monthly NOAA

Geographic Variables
LAT Latitude N/A CNIP/GNIP/USNIP
LONG Longitude N/A CNIP/GNIP/USNIP
ALT Altitude (elevation) N/A CNIP/GNIP/USNIP

Dummy Variables
SIN Sine function Monthly N/A
COS Cosine function Monthly N/A
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conditions and moisture sources (e.g., Pacific Ocean, Gulf of Mexico, Arctic, recycled continental moisture)
present across northern North America, a single empirical relationship may not be universally applicable
throughout the entire study domain. Our hypothesis is that empirical models for predicting monthly time
series of precipitation d18O may be improved if they are developed specifically for individual ‘‘isotope
zones.’’ By identifying isotope zones based on well-established meteorological and climatological zones
where moisture sources and hydroclimate parameters are likely more similar, we hope to improve our abil-
ity to understand the physical parameters controlling isotopic labeling in different regions as well as
improve predictions of d18O time series. For these reasons, five different regionalization approaches (three
of which are based on established classification schemes) are used to separate the study domain into iso-
tope zones to explore the effect of regionalization on model performance and to investigate the outcome
of regionalization on model structure uncertainty (i.e., selection of model parameters). Isotope zones are dis-
played on Figure 2, whereby d18Oppt observations from stations within the boundaries of each zone are
used to create a set of seasonal empirical models for that specific zone.

The Synoptic Scale Classification (SSC) [Kalkstein et al., 1996; Sheridan, 2002] (S. Sheridan, available at http://
sheridan.geog.kent.edu/ssc.html) system is a hybrid system, and therefore uses both manual and auto-
mated methods to classify daily weather conditions into one of six different weather types, or a transition
between weather types, at a station by station basis across the North American continent. Classification is
solely based on surface observations at individual stations (including temperature, dew point, wind, pres-
sure, and cloud cover). Since the SSC does not incorporate any upper level conditions or air mass source,
the SSC is primarily a weather-type classification system and not an air mass classification system. SSC cli-
mate zones are created based on principal component analysis (PCA) decomposition of seasonal normals
and a k-means cluster analysis. Canada is separated into five zones, Arctic (SSC4), Boreal Coast (SSC6),
Marine (SSC8), Laurentian (SSC3a- herein referred to as SSC31), and Northern Rockies (SSC3b—herein
referred to as SSC32) (Figure 2a).

The K€oppen-Geiger (Kpn) climate classification system is the most commonly used global climate classifica-
tion. The historical world map of K€oppen-Geiger climate classes was recently updated utilizing global data
sets of monthly temperature and precipitation observations covering the 50 year period of 1951–2000 [Kot-
tek et al., 2006]. The K€oppen-Geiger classification labels zones across the globe by a three letter name, indi-
cating the main climate, precipitation type, and air temperature, respectively. Ten K€oppen-Geiger climate
zones exist within Canada, whereby CNIP stations are situated within five of these zones representing
approximately 97% of the Canadian land mass (Figure 2b): Kpn35 (Csb—warm temperate, steppe precipita-
tion, warm summer), Kpn42 (Dfb—snow, fully humid precipitation, warm summer), Kpn43 (Dfc—snow, fully
humid precipitation, cool summer), Kpn47 (Dsc—snow, steppe precipitation, cool summer), and Kpn62 (ET-
polar tundra).

The third classification system is the Regionalized Climatic Water Isotope Prediction (RCWIP) approach
[Terzer et al., 2013]. RCWIP utilizes weighted fuzzy clustering techniques (including fuzzy c-means) to build
climate clusters from Global Historical Climate Network (GHCN) records, incorporating normalized climatic
variables of monthly mean temperature and precipitation and spatial variables (latitude and longitude),
resulting in 36 climatic clusters across the globe. Six of the 36 clusters encompass the Canadian domain,
with CNIP stations located within five of the six: RCWIP16 (Dfc), RCWIP17 (ET), RCWIP18 (Dfb), RCWIP19
(Cfb—warm temperate, fully humid precipitation, warm summer), and RCWIP23 (Dfb) (Figure 2c). Our
approach utilizes the CNIP, GNIP, and USNIP measurements within the aforementioned five climate clusters,
resulting in an enhanced data set used for the current regionalization relative to the RCWIP study.

The final two classification systems represent more simplified regionalization approaches. The 2 Zone classi-
fication scheme separates the study domain into north and south zones, with the border between zones
located at the Arctic Circle (Figure 2d). The 1 Zone regionalization (not shown) is the most simplistic
approach, whereby no regionalization occurs, and all available d18Oppt data are utilized in model develop-
ment, excluding those set aside for validation purposes.

2.3. Regression Model Development
The general approach to developing regression models capable of predicting time series of d18O for each of
the regionalization schemes includes a statistical evaluation of which parameters to include, an examination
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of the regression diagnostics to assess model deficiencies (e.g., collinearity, autocorrelation, etc.) and quanti-
fication of the model uncertainty.

A multiple linear regression approach is utilized to create the empirical models in this study. The general
expression of the ordinary least squares (OLS) regression model of precipitation oxygen-18 compositions is:

d18Oppt5Xb1e (2)

X is a matrix of regression variables which can be NARR climate variables, geographical variables, or telecon-
nection indices, b is the regression coefficient array, and e represents the regression residuals. Prior to
model creation, the relationship between potential predictors (Table 1) and d18Oppt is assessed through OLS
regression, and variables are natural-log transformed if necessary to linearize relationships. Additionally,
data are standardized to assist with numerical stability. Seasonal models are created for each zone within
the five regionalizations. A season is defined as: winter, December–January–February (DJF); spring, March–
April–May (MAM); summer, June–July–August (JJA); and fall, September–October–November (SON). The
SSC6 and Kpn47 isotope zones only include 34 and 69 observations for model calibration, respectively. For
this reason, annual models are utilized within these zones to ensure adequate data for model development.
This methodology results in a total of 66 empirical models for evaluation. A split sample calibration and vali-
dation modeling approach is utilized, whereby a portion of the d18Oppt observations are removed from the
data set to serve as a separate validation data set. Based on spatial and temporal data availability, the years
1982, 1985, and 2000 are selected to serve as a portion of the validation subset. Using three random dis-
crete years instead of three consecutive years can help to alleviate the autocorrelation problem due to low-
frequency oscillations (e.g., PDO) which cause decadal dry or wet periods. Using a consecutive period (either
dry or wet) for validation or calibration will introduce bias into our parameters. The remainder of the valida-
tion data set comprises four additional USNIP stations from the various isotope zones (station numbers 37,
47, 52, and 55), resulting in approximately 14.3% of the d18Oppt observations for validation and 85.7% for
calibration, on average. The regression models utilize all d18Oppt observations within a specified zone as
either calibration or validation data for model development. The amount of measurements for calibration
and validation within each model is provided in the supporting information.

2.3.1. Parameter Selection
Selection of the climate variables, teleconnection indices, and geographical parameters to include in each
of the models is made using a stepwise regression approach in Matlab software [The MathWorks Inc., 2013].
This approach utilizes forward and backward stepwise regression to add or remove predictor variables from
the regression models. The advantage of this method is that it allows flexibility in selecting the criterion
and threshold to add or remove terms from the model. The Akaike Information Criteria (AIC) [Akaike, 1974]
is used for this application, and is defined as:

AICi522log ðLiÞ12ðViÞ (3)

Li is the log likelihood for model i, with Vi free parameters. Smaller values of the AIC indicate a better model
fit. Addition of parameters to the model is an iterative procedure by changing the AIC threshold, and assess-
ing if the retained parameters are statistically significant and free of multicollinearity issues. Statistical signif-
icance is assessed by permutation tests [Good, 2005] conducted in the R-software lmPerm package
[Wheeler, 2010], the results of which are used as a guide to remove insignificant parameters. Permutation
tests are selected as they are nonparametric and therefore make no assumptions of the underlying distribu-
tion of the model residuals. It should be noted that quadratic terms and interaction between terms are con-
sidered within the models included in this study.

2.3.2. Regression Diagnostics
Regression diagnostics are used to evaluate whether the assumptions regarding the dependent and inde-
pendent variables and modelled residuals are valid, and to diagnose model deficiencies. The presence of
multicollinearity is assessed through calculation of Variance Inflation Factors (VIFs). VIFs greater than five
suggest that multicollinearity is present and are further investigated. Normally distributed model residuals
are required to satisfy model assumptions, specifically with respect to hypothesis testing and calculation of
confidence intervals for slope coefficients or prediction intervals for individual d18Oppt. Although we have
taken steps to utilize nonparametric approaches, normality is still assessed qualitatively through box plots
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or quantile-quantile (QQ) plots of the residuals, alongside utilization of the Lilliefors test for normality [Lillie-
fors, 1967]. Homoskedasticity is graphically evaluated through plots of residuals versus predicted d18Oppt.

Another assumption of OLS regression is independence of the residuals. Provided that we are working with
spatiotemporal data, this assumption is thoroughly examined. To investigate if the models display serial cor-
relation, the autocorrelation function (ACF) is calculated for lag values from 0 to 20 and tested against
standard-error bands for white noise at each sampling station. Additionally, plots of model residuals versus
time are examined at each measurement location, and the Durbin-Watson statistic [Durbin and Watson,
1951] is calculated and compared with published Durbin-Watson significance tables as a check. The second
aspect of independence involves assessing the existence of spatial correlation. Semivariograms of model
residuals (not shown) are plotted to identify the critical distance that is influenced by spatial correlations.
Overall, we do not see significant spatial or temporal correlation in model residuals. The distances between
stations are generally larger than the decorrelation distance.

2.3.3. Uncertainty Quantification
For time-series simulations, a bootstrapping approach [Davison and Hinkley, 1997] is utilized to quantify
uncertainty of model predictions. Ninety percent prediction intervals are created by estimating the distribu-
tion of the prediction error:

d�5xT
1b̂
�
2ðxT

1b̂1eT
1Þ (4)

xT
1 is the explanatory variable matrix, b̂

�
is the simulated vector of parameter estimates from the model-

based resampling algorithm, b̂ is the ordinary least squares estimates of the parameter vector, and eT
1 is the

vector of prediction errors from the resampled model, which are sampled from Ĝ, the empirical distribution
function of the centered modified residuals, ri2r . Modified residuals are calculated as follows:

ri5ei=ð12hiÞ1=2 (5)

ei are the raw residuals form the regression model and hi are the respective leverages. The exact quantiles
are estimated by sampling the empirical quantiles of ranked d*s. This estimated distribution is generated
from 1000 iterations of the resampling algorithm for each point in time and space where a prediction is
required. This approach is applied to each of the five regionalization schemes, and the uncertainty due to
model structure (i.e., method of regionalization) is also quantified.

3. Results and Discussion

3.1. Model Performance, Parameterization, and Diagnostics
Results are summarized for the 66 models created within this study and are outlined in the following sec-
tion. Figure 3 shows the average number of parameters retained within each zone, and provides a seasonal
analysis of significant parameters for the prediction of d18Oppt. ‘‘Combined’’ box and whisker plots of the
model residuals (Figure 4) display model performance within each zone. Additionally, due to the differing
number of observations incorporated within each model, performance for each regionalization scheme is
evaluated station by station through the mean squared error (MSE), residual excess kurtosis, and residual
inter quartile range (IQR) (Figure 5) to more directly compare model results.

The combined box and whisker plots on Figure 4 display the calibration (Figure 4a) and validation (Figure
4b) residuals from all seasons for each zone within a regionalization. Residuals greater than 1.5*IQR are clas-
sified as possible outliers (hollow diamond symbols), and residuals greater than 3.0*IQR are classified as out-
liers (red filled diamond symbols). The IQR for each regionalization is indicated to the direct right of each
box.

Stepwise regression derived parameterizations (Figure 3a) indicate the importance of several variables that
repeatedly survive the selection procedure. The most frequently retained climate predictor variable is pre-
cipitable water content, followed by mean cloud area fraction, evaporation, and water condensate meridio-
nal flux convergence. Although not temporally variant, geographic parameters explain enough variance in
monthly time series d18Oppt to be retained in a large portion of the empirical models, specifically the lati-
tude and longitude predictors. Latitude and precipitable water account for the largest components of the
variance in simulated d18Oppt, which is not surprising, since many of the ‘‘effects’’ described by Dansgaard,
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[1964] (e.g., temperature effect,
altitude effect, continental
effect) are derived from the
amount of precipitable water
present in an air mass. Other
studies have also found strong
linkages between d18Oppt and
precipitable water content
[e.g., Dansgaard, 1964; Ara-
gu�as-Aragu�as et al., 2000] and
atmospheric moisture resi-
dence time [Aggarwal et al.,
2012]. This relationship
between precipitable water
content and d18Oppt appears to
strengthen in high latitude
regions (i.e., SSC4, KPN62,
RCWIP17, and NORTH models)
as this variable is retained in
100 percent of northern mod-
els (16/16), while the number
of other parameters remains
relatively low (on average, less
than three additional parame-
ters per model in this region).

The prediction of d18Oppt

becomes increasingly complex
within lower latitude continen-
tal zones, where the correla-
tion with precipitable water is

still prominent, however, is confounded by additional effects, such as recycling of water from evaporating
Great Lakes [Gat et al., 1994], and transpiration of meteoric water from soils into the atmosphere [Yakir
and Sternberg, 2000], resulting in an increased variety and number of parameters retained in the models
within these central Canadian/U.S. regions (SSC31/32, KPN42/43, RCWIP23, and SOUTH models). Although
model parameterizations become increasingly complex in these regions, overall model performance
within the southeastern region (SSC31, Kpn42, and RCWIP23) is consistently strong, with relatively low IQR
compared to other zones (ranging from 2.63 to 3.07). South-central and western regions (SSC32, Kpn43,
RCWIP18) also display a high parameter retention rate (on average, six parameters retained per model),
however, show relatively poorer simulation statistics (IQR’s range from 3.50 to 3.71), potentially indicating
more complex isotope-climate relations within these regions. Both low-latitude coastal zones (SSC8,
Kpn35, RCWIP19) and northwestern regional models (SSC6, KPN47, RCWIP16) typically show poor correla-
tion between d18Oppt and predictor variables, resulting in very low parameter retention rates (on average,
less than three parameters retained per model). This lack of correlation is likely associated with the low
seasonality of precipitation isotopes in coastal regions in general [Welker, 2000; Vachon et al., 2007] and
changes in oceanic source [Fisher et al., 2004]. The isotopic labeling of precipitation in paleorecords from
the northwestern region has been attributed to changes in oceanic source rather than local climate param-
eters [Fisher et al., 2004], therefore the poor correlation between d18Oppt and local climate parameters is
not surprising. Although IQR’s are low in this region (ranging from 2.62 to 2.85) and outliers are less preva-
lent than other models, this is likely due to subdued seasonality in these locations rather than superior
model performance.

Overall, the 1 Zone and 2 Zone models show relatively comparable yet slightly higher IQR’s (ranging from
3.39 to 3.50). Models from these more simplistic regionalizations are more outlier-prone, resulting in an
increased occurrence of high-magnitude outliers in comparison to the rest of the models. It should also be

Figure 3. (a) Average number of parameters retained within each model, and (b) overall
seasonal parameter retention frequency for all models.

Water Resources Research 10.1002/2014WR015687

DELAVAU ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 1291



noted that reducing the number of zones within a regionalization results in an increased parameter reten-
tion rate and therefore more complex, less parsimonious models overall.

Teleconnection indices are retained in 35 percent of all models, therefore demonstrating moderate correla-
tion with monthly time series d18Oppt for this type of modeling application. PDO and PNA are most typically
retained during the fall and winter seasons in the west and central zone models (e.g., SSC31/32, Kpn 42/43,
RCWIP18/19, etc.), while NAO is included in two central region models (SSC32 and Kpn43) during the winter
season. The majority of the models incorporating the AO index are for northern regions (SSC4, Kpn62,
RCWIP16/17, etc.), typically during MAM; however, retention of AO throughout all seasons is present. The
aforementioned indices have been established to have significant relationships with cold season precipita-
tion, primarily for the west and central (PDO), and within the province of Alberta (PNA), and northeastern
regions of Canada (NAO/AO) [Bonsal et al., 2001; Bonsal and Shabbar, 2011]. Strong correlations have been
found between the PNA index and the d18O of precipitation in the Canadian prairies [Birks and Edwards,
2009]. The AMO index is retained during warmer seasons (MAM, JJA and SON) throughout the south-central
models (SSC31/32, Kpn43, etc.). Bonsal and Lawford [1999] indicate that the positive phase of AMO is related
to dry summer conditions over the central and northern regions of the Canadian Prairies and the lower
Great Lakes and St. Lawrence Valley. This agreement between the timing and location of retained telecon-
nection indices and the aforementioned studies suggests the teleconnection predictors make physical
sense.

To further diagnose spatial and temporal bias or deficiencies in the models, residuals from the five regional-
ization schemes are grouped by station, and the MSE is examined on a seasonal basis (Figure 5). To assist

Figure 4. Residual box and whisker plots for the (a) calibration and (b) validation subsets of each regionalization.
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with spatial analyses, stations are classified as either north or south of 55� latitude. Southerly stations are
ordered by longitude and displayed from west to east, and northern stations are sorted by latitude, with
the northernmost stations (station numbers 18–1) located coastally on the Arctic Archipelago. In an attempt
to differentiate model performance spatially, residual IQR and excess kurtosis between observed and simu-
lated d18Oppt for each regionalization are plotted alongside MSE.

The first item of mention from Figure 5 is that overall, the 1 Zone and 2 Zone simulations show higher IQRs
and higher magnitude kurtosis effects than the SSC, Kpn, and RCWIP simulations, supporting findings from
the box and whisker plots (Figure 4). Spatially, the smallest residual IQRs (and lowest MSE) generally occur
at southerly located coastal stations (both Pacific and Atlantic) and stations throughout southeast Canada
and U.S. (Figure 5a). These are typically locations where the variability in d18Oppt observations is considered
average or below average. Vachon et al. [2007] noted that although d18Oppt variability is moderate within
the Great Lakes, Ohio River Valley, and Northeast regions, very little interannual variability in seasonal pre-
cipitation is observed. This consistency from year to year may lead to strong model performance at these
locations. Regions of larger residual IQR’s (and higher MSE) are located in both the south (below 55�

Figure 5. Seasonal MSE (bar chart), for all model residuals at each station, and excess kurtosis and IQR’s for individual regionalizations
(scatter plots) at each station. Stations are grouped into two subsets: (a) stations located south of 55� latitude, ordered from west to east;
(b) stations located north of 55� latitude, ordered some south to north. Variance in observed d18Oppt is indicated by the black line. Star
symbols indicate stations displayed in further detail below on Figure 6.
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latitude) and north (above 55� latitude) continental Canada and U.S., particularly the west and central
regions. In many instances, these are at locations of higher altitude and display above average variance in
observed d18Oppt. These attributes may, in part, be driven by the stronger intraannual variance in d18Oppt

values for colder continental regions, such as the high-altitude sites of the Alps and the Rocky Mountains
and the deep interior of the UAS in Nebraska and Wisconsin [Rozanski et al., 1992; Harvey and Welker, 2000;
Welker, 2000; Vachon et al., 2007]. Correlation coefficients (r) between residual IQR and observed d18Oppt var-
iance, and IQR and altitude are 0.50 and 0.45, respectively (significantly different than zero at the 0.05 level),
validating the presence of such trends.

Focusing on high-latitude stations (Figure 5b; latitude� 55�), there is a larger range in model performance
in the more southerly continental stations (stations 9–20), while coastal stations situated within the Arctic
Archipelago (stations 18–1) show consistently low error variance despite the large variability in observed
d18Oppt, with the exception of station 24, Pond Inlet. This is primarily attributed to the small number of
observations at this station (n520), whereby the few larger magnitude residuals occurring in MAM and SON
skew the MSE. The northern models seem to be able to capture the annual cycle in observed d18Oppt, fur-
ther reinforcing a strong correlation with precipitable water and potentially fewer complicating factors influ-
encing Rayleigh distillation in this region.

Temporally, the least amount of error occurs during the summer (JJA) season (this is consistently the case
for almost all stations throughout the study domain). In many instances, the largest errors occur during the
cold season in winter (DJF) and spring (MAM). However, this trend is less consistent and varies spatially
across the domain. For instance, southwest continental stations (e.g., station numbers 54, 57, 40, 45, 46, 39,
etc.) show increased warm season (JJA and SON) contributions to error variance. These temporal trends in
the distribution of error may be related to the increased contributions of recycled moisture during the
warmer months, potentially acting to dampen the portion of variability in d18Oppt related to air mass circula-
tion and trajectory. The parameters utilized in the models cannot diagnose changes in moisture trajectory
or source, therefore resulting in increased error at locations and times of year when these effects are most
prominent on the composition of d18Oppt.

3.2. Time-Series Ensemble Simulations
Five stations from different physiographic zones across the study domain are selected to further investigate
seasonal error patterns and to visually quantify the uncertainty in model simulations over time. Bootstrap-
generated prediction intervals for each regionalization are produced, and the minimum and maximum pre-
diction bounds alongside model simulations and observed d18Oppt are displayed below on Figure 6. To
adequately visualize model performance, a 10 year subset of the 34 year (1979–2012) simulation is plotted.

Generally the models are able to capture the timing and magnitude of the intraannual (seasonal) d18Oppt

cycle, whereby simulations show moderate interannual variation when climate parameters are included within
the models. However, the time series plots reveal that although many of the models do quite well predicting
monthly d18Oppt compositions, showing small to moderate departures from the long-term monthly mean of a
given location, they often fail to capture the anomalies in observed d18Oppt—both enriched and depleted.
This suggests that the climatic and geographic variables used in this study, or the modeling methodology
itself, are not able to fully describe the complex physical processes driving the extreme shifts in d18Oppt,
whether that be a change in moisture source, mixing of air masses, water recycling, secondary effects (such as
below-cloud evaporation), or a combination thereof. An example of this is at station 6 (Calgary, Canada),
where d18Oppt derived from warm weather small rainfall events (<4 mm) is known to be affected by partial
evaporation of raindrops beneath the cloud base (i.e., secondary evaporation), causing an enrichment in
d18Oppt under these circumstances [Peng et al., 2004, 2007]. There are multiple instances where the models
are likely not able to capture this effect and large positive residuals occur during the warmer months.

Many of the results described earlier are also reinforced within the time series plots on Figure 6. For exam-
ple, station 52 (Alsea Guard Ranger Station) located within the Coast Range Mountains in Oregon, U.S., is a
validation station that shows considerable differences between model simulations. As previously men-
tioned, there is a lack of seasonality in this region and poor correlation between d18Oppt and the predictor
variables, resulting in a lack of physical basis, poor performance outside the region of calibration, and wider
prediction bounds. Simulations in the southeast region of the study domain are quite strong, which can be
seen in the time series plot of station 23 (Ottawa, Canada). All ensemble members show very similar results
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throughout this region, resulting in narrow prediction bounds and tightly constrained mean ensemble
members. The Arctic Archipelago station models perform comparably well, represented by the time series
plot at station 7 (Cambridge Bay, Canada).

3.3. Long-Term Spatial Mapping
Long-term annual average maps of d18Oppt across Canada and the northern portion of the U.S. are created
for each regionalization, generated from the mean of monthly time series ensembles over the period of
1981–2010. Time series simulations are generated at the grid scale at a resolution of 17 arc minutes and are
precipitation amount weighted to create the long-term annual average compositions displayed on Figure 7.
The gridded range between the five long-term simulations is displayed to provide an estimate of the model
structure uncertainty as it compounds over the aforementioned 30 year period (Figure 7f).

Generally the different models are able to produce long-term annual average d18Oppt contours of reasona-
ble magnitude while capturing the main trends in the variability in d18Oppt, such as depletion from: south to

Figure 6. Ten year monthly time series simulations for five stations throughout the study domain. Ensemble means are indicated by the
solid lines. d18Oppt observations are denoted as black diamonds. The gray-shaded region represents the envelope of bootstrapped 90%
prediction intervals for all regionalizations.
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north (latitude effect), coast to interior (continentality), and in areas of high elevation (altitude effect) [Dans-
gaard, 1964]. However, as evident on Figure 7, the SSC and RCWIP regionalizations produce unrealistic bor-
der effects at several of the isotope zone boundaries, manifesting in an unrealistic enrichment along west
coast of British Columbia and into Alaska (RCWIP) and an extremely sharp transition from relatively depleted
to enriched in heavy isotopes within the northern Ontario, Quebec, and Newfoundland and Labrador region
(SSC). The Kpn, 2 Zone and 1 Zone regionalizations appear to have much less apparent border effects due
to the nature of the isotope zone locations.

Figure 7f provides an estimate of the long-term uncertainty between the regionalizations. The largest range
in model simulations occurs along the Pacific coastal regions of British Columbia and Alaska, while more
moderate discrepancies are within the Cordilleran region in British Columbia and Alberta, the western por-
tion of the Mackenzie District in the Northwest Territories and the Yukon Territory, and into Quebec, New-
foundland and Labrador. Regions of model disagreement are caused by either one of two phenomenon:

Figure 7. Long-term precipitation amount weighted annual average d18Oppt simulations (units of &) for: (a) SSC, (b) Kpn, (c) RCWIP, (d) 2
Zone, and (e) 1 Zone regionalizations. The gridded range in long-term simulations is displayed on Figure 7f.
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(1) significant differences in model structure (i.e., parameterization) and therefore discrepancies in model
simulations (e.g., southern Pacific Coast models), or (2) similarity in model simulations at locations of model
development, but unrealistically placed isotope border locations (e.g., SSC31, SSC6).

Throughout the mid-Arctic, central, and southeastern portions of the study domain, all regionalizations are
relatively comparable, resulting in a smaller range in long-term simulations and less uncertainty associated
with model structure. The SSC models produce relatively enriched predictions in the Arctic Archipelago in
comparison to the remaining four regionalizations, and are the cause of the larger range in model simula-
tions within this region.

4. Conclusions

This study investigates the use of physically based hydroclimate parameters alongside geographic variables
and teleconnection indices within an empirical modeling framework to capture the time series monthly var-
iability in observed d18Oppt. Additionally, the uncertainty due to regionalization is assessed for both time
series and long-term average predictions.

Precipitable water content and latitude are found to be the most significant parameters for the time series
prediction of d18Oppt, typically explaining the largest portions of variance in observed d18Oppt. Within the
mid-Arctic to high-Arctic and eastern portion of the study domain, all five regionalizations generate models
with the ability to capture the interannual and intraannual variability of d18Oppt. However, other areas such
as the Pacific coast and northwestern portion of the study domain show less agreement between models
and poorer model performance, resulting in higher uncertainty in simulations throughout these regions.
Overall, the current study is an improvement from the regional simulations reported by Delavau et al.
[2011] and previous global simulations due to the refined spatial and temporal scales of prediction (i.e.,
time series versus long-term averages), enhancement of the suite of physically based predictor variables,
and the incorporation of uncertainty associated with model predictions.

As previously discussed, results indicate that with long-term predictions, model structure uncertainty can
be substantial in certain locations. However, at the monthly time series scale, 90% bootstrapped prediction
intervals show that uncertainty of an individual estimate is much greater than that attributed to model
structure. Based on these findings, it is our recommendation that future studies continue to incorporate the
corresponding method of uncertainty quantification depending upon the temporal scale of predictions
required. Uncertainty can be further reduced by continued d18Oppt monitoring and through enhancement
of existing monitoring networks, particularity in data-sparse regions with high model uncertainty.

In an attempt to reduce border effects, more simplistic regionalizations (2 Zone and 1 Zone) are investi-
gated within the current study. Although border effects are eliminated, these more simplistic regionaliza-
tions result in poorer model performance, including higher IQRs and more frequent outliers. SSC, Kpn, and
RCWIP simulations perform comparably at most locations of model development. However, it is the extrap-
olation of the models across the study domain that in many instances causes the major discrepancies
between regionalizations. As previously outlined, both the SSC and RCWIP regionalizations produce long-
term average maps with unrealistic d18Oppt contours. For these reasons, the Kpn regionalization is selected
as the preferred regionalization scheme for future iso-hydrologic modeling applications.

The next step in this research is to generate d18Oppt monthly time series and the corresponding prediction
bounds within the Fort Simpson Basin, NWT, Canada. These simulations will be utilized to force the existing
isoWATFLOOD model and create predictions of oxygen-18 in streamflow at this location. Results will be
compared to previous simulations in the FSB that were derived from annual average d18Oppt model forcing
[Stadnyk et al., 2013]. This methodology allows for an assessment of uncertainty relating to model input
data (i.e., simulated d18Oppt time series) and the resulting uncertainty on simulations of d18O in streamflow.
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