
118

7 EXPERIMENT: EMPIRICAL INVESTIGATION

7.1 Background

For the purposes of empirical investigation, the notion of a design episode is useful for

framing a session of early lifecycle software design using an interactive computational

support framework. In detailing the components of design thought, Lawson (2004)

describes both design events and design episodes. According to Lawson, design events

may be the “physical actions, drawing, modelling, gesturing, acting” or “verbalisations

… or entirely internal mental operations”. He goes on to provide examples of various

types of design events: “… a structuring of a problem, a proposition about a possible

solution characteristic, a representation of a solution characteristic, an evaluation of a

solution characteristic”. Lawson suggests that design events happen at a point in time

and thus are atomistic, with an indivisible nature with respect to design. Lawson further

proposes that as events are usually not unconnected, they often exist as part of some

larger purpose. A group of events is carried out to move the design forward in some

way. Lawson refers to a group of events as an episode thus: “In a dramatic sense, they

consist of a series of transactions that deal with a particular theme or themes that can

be used to punctuate a larger narrative into the „scenes‟ or „acts‟ in plays or operas, or

the „chapters‟ in books, or the „episodes‟ in longer running serials on television or

radio. It is not the case that they are entirely discrete and separate from the rest of the

narrative but that they seem reasonably self-contained”. This notion of a design episode

appears useful and consistent with observational studies of Guindon (1990) and Curtis

et al. (1998) and thus is used in this investigation to frame a session of interactive

evolutionary upstream software design. In outline, an early lifecycle software design

episode might run from start to finish as follows.

To begin, a design episode requires a design problem. Representing design

problems as use cases is widely applied in software engineering, and so the narrative

text of the use case is used to identify the actions that the software is to perform,

together with the data that the software will manipulate. From this, an initial population

of candidate classes is derived at random. The designer having provided their search

preferences (e.g. population size, maximum number of generations) and chosen from

the desired objective fitness functions available (e.g. design coupling, cohesion of

classes in a design, number of classes in a design), a software agent performs global

multi-objective evolutionary search of the design solution space. To efficiently guide

119

the designer through the design space, further software agents isolate discrete zones

mapping to designs with specific numbers of classes for subsequent local search. At any

point in the episode, the designer may inspect an individual design and add it to the

portfolio should it appear useful or interesting. The collaborations of the software agents

of the interactive framework are described in more detail below. Typically, the first

event is to commence logging of design events.

1) Logging of design events is facilitated by an Event Logger Agent, which has

knowledge of all possible design events, together with the date and time within the

episode at which the design event occurs. The Event Logger Agent provides the

designer with a design event notification service and a chronological trace of all

design events as they occur during the episode, including any preferences and

choices of the designer to steer the search.

2) Building on the findings of earlier work of Cvetkovic and Parmee (2002) into agent-

based support for design, software designer preferences are held by a Preferences

Agent. With the design problem recorded, the designer might provide their search

preferences for both global and local search. Preferences such as population size,

number of generations, choice of fitness functions (and where applicable, mutation

and crossover rates) can be supplied by the designer. Alternatively, the designer may

opt to select pre-set default values available from the Preferences Agent. The design

search space is initialized with a population of candidate class designs. The initial

population of candidate class design solutions is created by firstly creating each

individual class design with a random number of classes.

3) Multi-objective evolutionary search is enabled by a Global Search Agent, which

explores the global design solution space, trading-off conflicting objective fitness

functions selected by the user. The progress of global search is monitored and

controlled by the Zone Isolator Agent, which monitors the utility of the evolving

population with respect to the trade-off between increasing population fitness and

decreasing population diversity. The Global Search Agent terminates global search

either at a generation pre-determined by the Preferences Agent, or at a point when

the Zone Isolator Agent indicates that halting is judicious. At the termination of

global search, each zone is available for local search.

4) After the local zones have been isolated from the multi-objective search, the

software designer manually selects promising zones for local search. A list of all

120

zones is provided to the designer, together with an indication of the diversity present

in each zone in terms of the number of unique designs in the zone. The designer

may manually select one or more zones to go forward to local search. A Local

Search Agent initialises the design population of each local search. At the point

when global search is halted, it is possible that zones may comprise fewer individual

designs than the population size local search preference known by the Preferences

Agent. Should this be the case, individual designs in a zone are first placed in the

local search population, and then the individual designs are repeatedly cloned and

mutated until the local population size preference is reached. This mechanism

promotes diversity in the local search. The Local Search Agent then conducts local

search using design coupling as the preferred fitness function. Within each local

search, the number of classes of each design remains unaltered. Local search

proceeds until the number of generations known by the Preferences Agent is

reached. To achieve speedy execution time, computational concurrency is exploited

by executing each local search agent in parallel. This enables up to approximately

20 local searches to be conducted concurrently. After local search, software design

visualisations may be inspected by the designer, who may add useful and interesting

designs to the Design Portfolio as required.

The behaviours of all software agents employed in this approach (episode logger

agent, preferences agent, global search agent, zone isolator agent and local search agent)

are co-ordinated and controlled by an Agent Controller (itself a software agent) that

regulates both the life cycles and the task-based behaviours of the agents.

7.2 Software Design Problem Domain

The software design problem domain chosen for investigation is the „Graduate

Development Program‟, which is described in detail in chapter 5, Methodology. The

Graduate Development Program is a development of the existing student administration

system performed by the in-house Information Systems Department at the University of

the West of England, UK. The Graduate Development Program software system seeks

to record and manage outcomes relating to personal student development during their

studies.

In line with usual practice for the in-house Information Systems Department,

initial requirements capture activities have involved regular, highly iterative, people

121

intensive, interactive sessions with stakeholders where „mock-up‟ scenarios of usage

have been piloted under conference room conditions. While no specific development

methodology has been employed, principles common to agile methods (e.g. Beck, 2000)

predominate. During the interactive pilot sessions, no computational tool support has

been deployed except for rapid construction of mock graphical user interfaces (GUIs).

The pilot sessions successfully identified system actors and four main goals that the

actors would wish to achieve within a scenario of interaction with the system. The four

goals included:

 the ability to record a personal development outcome for an individual student;

 the ability to record personal development outcomes for a batch of many

students;

 the ability to generate various reports on personal development outcomes; and

 the ability to export report results in a format capable of being read in desktop

spreadsheet applications.

The four goals have been recorded as use cases and are available at Simons (2010b).

7.3 Method and Empirical Investigation Design

The method employed in the empirical investigation is to observe two early lifecycle

software design episodes in an industrial setting. The first episode is conducted without

the support of the computational framework (i.e. design is performed manually); in the

second episode the designers are supported by the interactive framework. The same

participants take part in both episodes. Effectively, the manual episode constitutes a

baseline (or control) against which comparisons and contrasts with the computational

interactive framework supported episode may then be drawn.

The participants being observed include a project manager and business analyst

who work within the in-house Information Systems Department under investigation.

The project manager and business analyst have been selected for observation as they

typically perform early lifecycle software design within the in-house Information

Systems Department. The project manager has a bachelor‟s degree in Systems Analysis

and 20 years professional experience of requirements capture, analysis, design and

project management of information systems. The business analyst has bachelor‟s degree

in Business Information Systems and 7 years professional experience of requirement

capture, analysis and design of information systems. Visual and audio recordings of

122

observations are made for both design episodes, and a textual transcript of verbal

utterances has been taken from the recordings. The author is present at both design

episodes in order to produce the recordings but remains silent and non-participatory

throughout, except with respect to the necessary physical mechanics of producing

recordings and tool support in the second episode.

Two issues arise at this point:

 How generalizeable might be the results when the number of participants is

small?

 How representative is this sample of the larger population of software

engineers?

Given the relative lack of empirical studies reported in the literature for search-based

engineering, it is hard to answer these questions. There exists little or no population data

to compare this sample against, and there is no standard type of individual who

performs early lifecycle software design – education, professional experience, job

context and competencies may differ markedly. However, the two individuals selected

are held in high esteem by their colleagues, and are representative of some segment of

the population of software engineers who perform early lifecycle software design.

The method of the investigation compares and contrasts two design episodes,

based on the same problem domain. Clearly, a higher degree of confidence in

observations would have been achieved from observing a greater number of participants

over further design episodes over different design domains. However, finding suitable

people-intensive industrial design situations appropriate to observational studies is not a

trivial task. In addition, it is very difficult to ensure that different design domains are

comparable in terms of complexity and difficulty of the design problem. Therefore, with

respect to method, it is pragmatic to use one problem domain and conduct a manual

episode firstly, followed by a tool supported episode. In this way, data obtained from

the first episode may therefore be treated as a baseline for comparison with the second.

A limitation of this method, however, is that the participants‟ use of the interactive

framework support tool may be influenced by the fact that they have previously

engaged with the design problem. The impact of this limitation on analysis of the

observational data is discussed later in this chapter in section 7.7, „Threats to Validity‟.

123

7.4 Observation and Data Collection

Measurements have been selected to investigate the richness of the design episodes both

in terms of outputs produced and the means by which the outputs are produced. With

respect to the means by which the outputs are produced, a number of characteristics of

interaction have been investigated including approaches to:

 concept generation,

 iteration,

 opportunistic realization, and

 medium of interaction.

According to Liu and Bligh (2003), “...design should contain two types of steps:

divergent in which alternative concepts are generated, and convergent in which these

are evaluated and selected”. This iterative notion of Liu and Bligh is consistent with

reports within software engineering by Jacobson et al. (1999) and Glass (2003), who

describe software design as a complex, iterative process. Thus divergent and convergent

design activities are observed and recorded as a measure of the richness of the design

episode. As iteration is widely regarded as a necessary and natural component of design,

iteration between not only the problem and solution spaces but also convergent and

divergent design activities are observed. Furthermore, sudden discovery moments and

opportunistic understandings (as observed by Guindon, 1990) have been noted as being

significant events within design episodes and so these are observed too. Finally, as an

indicator of the richness of the design episode, the medium of interaction between the

two designers has been observed, be it verbal, paper-based sketching, interacting via the

search-based support tool, or via UML class modeling.

Textual transcripts of the two episodes are also analyzed according to design

mode, design activity, and the occurrence of design events. Design modes and design

activities are analyzed within 20 second intervals in the design episode. 20 second

intervals have been chosen to provide a reasonable level of granularity of analysis.

Design modes include:

 Space – is the design episode focused primarily on the problem or solution

space in each 20 second timed interval?

 Thrust – is the thrust of the design episode primarily convergent or divergent

in each 20 second time interval?

124

 Medium – is the medium of designer interaction verbal, sketching, search-

based tool supported, or UML class modeling in each 20 second time

interval?

Design Activities include:

 Evaluation – are the designers primarily evaluating individual candidate

designs in a 20 second time interval?

 Generation – are the designers primarily generating candidate designs in a 20

second time interval?

 Trading-off - are the designers primarily trading-off between multiple

candidate designs in a 20 second time interval?

 Scoping – are the designers primarily considering if a candidate design is in

scope during a 20 second time interval?

 Reflective silence pauses – have the designers paused for silent reflection?

Design Events are discrete happenings at a point in time in the design episode and

include:

 Request for clarification – a designer requests a clarification of design

activities of the other,

 Explanation of understanding – a designer explains their understanding of a

design activity to the other,

 Sudden discovery – a designer expresses an “ah-ha!” moment of sudden

discovery of a design concept or design concept relationship,

 Realization of constraint – a designer expresses a moment of realization that

a candidate solution is constrained in some manner by the problem domain

requirements,

 Realization of inferred requirement – a designer expresses an insight of an

inferred requirement i.e. although not explicitly stated in the case study

problem domain specification, a further requirement is inferred as consistent

with the specification,

 Inspection of a candidate UML class diagram – a designer inspects a

candidate UML class diagram, and

125

 Add a UML class diagram to portfolio – a designer adds a useful and

interesting UML class diagram to the episode portfolio.

7.5 Results

A textual transcript of the baseline manual design episode is available in Appendix A; a

transcript of the test design episode is available in Appendix B. In both transcripts, the

abbreviation “PM” refers to the participant undertaking a „project manager‟ role in the

episode; the abbreviation “BA” refers to the participant responsible for a „business

analyst‟ role.

7.5.1 Duration

It is observed that the duration of the baseline manual conceptual design episode is 37

minutes and 2 seconds (2122 seconds), while the duration of the test design episode

with search-based tool support is 55 minutes and 23 seconds (3323 seconds).

7.5.2 Software Designs Produced

It is observed that no design artefacts of early lifecycle software designs are produced

during the baseline manual conceptual design episode. While much verbal interaction

centered on the explanation of the concept of “Student” and its associated information,

no drawings or UML diagrams are arrived at. However, it is also observed that many

software designs are produced in the course of the search-based tool supported design

episode. Analysis of the transcript reveals that 30 candidate class diagrams are

inspected, and from these, 7 are added to the portfolio via the interactive framework

support tool. During the test episode, the two participants are observed recognizing a

“Student” class after 5 minutes, an “Award” class after 6 minutes, a “Report” class after

16 minutes, and a “Rule” and a “Development” class after 23 minutes. Thus in total, 5

classes are identified in the interactive framework supported design episode, which

contrasts with one class identified in the manual design episode.

7.5.3 Event Log

The following is a listing of the Event Log produced by the Event Logging Agent

during the test software design episode:

30 July 2008 15:02:49 BST New design episode started. Episode name is: 'lee nick 30 07 2008'

126

30 July 2008 15:02:59 BST Design problem selected. Graduate Development Programme (GDP)

30 July 2008 15:03:11 BST Multi-objective search parameter selected. MOGA population size set to 100

30 July 2008 15:03:11 BST Multi-objective search parameter selected. MOGA number of generations set to 500

30 July 2008 15:03:11 BST Multi-objective search parameter selected. MOGA search objective function set to external coupling

30 July 2008 15:03:11 BST Multi-objective search parameter selected. MOGA search objective function set to number of classes

30 July 2008 15:03:11 BST Multi-objective search parameter selected. MOGA search priority set to variety

30 July 2008 15:03:17 BST Local search parameter selected. Population size set to 100

30 July 2008 15:03:17 BST Local search parameter selected. Number of generations set to 100

30 July 2008 15:03:17 BST Local search parameter selected. Crossover rate set to 70%

30 July 2008 15:03:17 BST Local search parameter selected. Mutation rate set to 3%

30 July 2008 15:03:17 BST Local search parameter selected. Reproduction / selection operator set to tournament

30 July 2008 15:03:22 BST Isolation of discrete zones selected.

30 July 2008 15:03:22 BST Isolation factor specified. preference of two consecutive falls in utility selected for global search halting

30 July 2008 15:03:40 BST Multi-objective search parameter selected. MOGA population size set to 100

30 July 2008 15:03:40 BST Multi-objective search parameter selected. MOGA number of generations set to 500

30 July 2008 15:03:40 BST Search strategy selected. Search strategy set to multi-objective

30 July 2008 15:03:40 BST Search population initialised. Multi-objective search

30 July 2008 15:03:42 BST Multi-objective search parameter selected. MOGA search priority set to variety

30 July 2008 15:03:42 BST Multi-objective search parameter selected. MOGA search objective function set to number of classes

30 July 2008 15:03:42 BST Multi-objective search parameter selected. MOGA search objective function set to external coupling

30 July 2008 15:03:42 BST Isolation agent specified. two falls

30 July 2008 15:03:42 BST MOGA Search started.

30 July 2008 15:03:46 BST Isolation agent stopped MOGA search. average population coupling is 0.697, sample generation is 57,

sparsity count is 0, duplicate count is 3, utility is 0.462

30 July 2008 15:04:45 BST Local search agent starting local search. Agent is not selected to choose discrete zones. Designer has

manually selected the following discrete zones: 4, 5, 6, 7,

30 July 2008 15:04:46 BST Local search initatiated. Discrete zone 4

30 July 2008 15:04:46 BST Local search initatiated. Discrete zone 5

30 July 2008 15:04:46 BST Local search initatiated. Discrete zone 6

30 July 2008 15:04:46 BST Local search initatiated. Discrete zone 7

30 July 2008 15:04:56 BST Local search completed. Discrete zone 7

30 July 2008 15:04:57 BST Local search completed. Discrete zone 6

30 July 2008 15:04:58 BST Local search completed. Discrete zone 5

30 July 2008 15:04:59 BST Local search completed. Discrete zone 4

30 July 2008 15:08:09 BST Design added to Portfolio. design 'award class' added.star rating is: 2

30 July 2008 15:10:46 BST Design added to Portfolio. design 'possible student class with high cohesion' added.star rating is: 2

30 July 2008 15:16:12 BST Design added to Portfolio. design 'zone 7 too dispersed' added.star rating is: 1

30 July 2008 15:20:16 BST Design added to Portfolio. design 'z6 d1 number of possible classes' added.star rating is: 3

30 July 2008 15:22:39 BST Design added to Portfolio. design 'z6 d2 possible mix of classes' added.star rating is: 3

30 July 2008 15:27:01 BST Design added to Portfolio. design 'z6 d3 very similar to z6 d1, d2' added.star rating is: 3

30 July 2008 15:33:52 BST Design added to Portfolio. design 'z5 d5 beginnings of student, award, rule' added.star rating is: 3

30 July 2008 15:35:34 BST Local search agent starting local search. Agent is not selected to choose discrete zones. Designer has

manually selected the following discrete zones: 4, 5, 6, 7, 5, 6,

30 July 2008 15:35:34 BST Local search initatiated. Discrete zone 4

30 July 2008 15:35:34 BST Local search initatiated. Discrete zone 5

30 July 2008 15:35:34 BST Local search initatiated. Discrete zone 6

30 July 2008 15:35:34 BST Local search initatiated. Discrete zone 7

30 July 2008 15:35:43 BST Local search completed. Discrete zone 7

30 July 2008 15:35:45 BST Local search completed. Discrete zone 6

30 July 2008 15:35:46 BST Local search completed. Discrete zone 5

30 July 2008 15:35:47 BST Local search completed. Discrete zone 4

30 July 2008 15:41:32 BST Design added to Portfolio. design 'z5 d3 student clsss' added.star rating is: 2

127

7.5.4 Comparison of Design Episodes

Figures 7.1 to 7.6 graphically reveal the results of design modes, activities and events

for both observed software design episodes. Following these figures, all observational

data is summarised in Table 7.1.

 0 500 1000 1500 2000

time (seconds)

problem SPACE

solution SPACE

diverging DESIGN

converging DESIGN

verbal MEDIUM

sketching MEDIUM

Figure 7.1. Design Modes for Baseline Episode

 0 500 1000 1500 2000 2500 3000

time (seconds)

problem SPACE

solution SPACE

diverging DESIGN

converging DESIGN

 verbal MEDIUM

UML modelling MEDIUM

tool interaction MEDIUM

Figure 7.2. Design Modes for Test Episode

128

 0 500 1000 1500 2000

time (seconds)

evaluation ACTIVITY

generation ACTIVITY

trade-off ACTIVITY

scoping ACTIVITY

Figure 7.3. Design Activities for Baseline Episode

 0 500 1000 1500 2000 2500 3000

time (seconds)

evaluation ACTIVITY

generation ACTIVITY

trade-off ACTIVITY

Figure 7.4. Design Activities for Test Episode

129

 0 500 1000 1500 2000

time (seconds)

challenge or request for clarification EVENT

explanation of understanding EVENT

sudden discovery EVENT

realisation of constraint EVENT

realisation of inferred requirement EVENT

Figure 7.5. Design Events for Baseline Episode

 0 500 1000 1500 2000 2500 3000

time (seconds)

challenge or request for clarification EVENT

explanation of understanding EVENT

sudden discovery EVENT

inspection of candidate design EVENT

add candidate to Portfolio EVENT

Figure 7.6. Design Events for Test Episode

130

Table 7.1 Observational Data

ASPECT OBSERVATION BASELINE Proportion TEST Proportion

Duration Seconds 2212 3323

 Minutes-Seconds 37-02 56-23

Mode Space Problem 34 0.307 4 0.024

 Solution 77 0.699 158 0.950

 Thrust Convergent 45 0.406 87 0.523

 Divergent 17 0.153 37 0.222

 Iterations 10 28

 Medium Verbal 110 0.994 10 0.060

 Sketching 1 0.090 0 0.000

 Tool Interaction 0 0.000 71 0.000

 UML Class Modelling 0 0.000 85 0.512

Activity Evaluation 60 0.542 67 0.403

 Generation 4 0.036 28 0.168

 Trading-off 5 0.045 36 0.216

 Scoping 1 0.009 0 0.000

 Reflective Silence 0 0.000 9 0.054

 Ave Freq Ave Freq

Events Request for clarification 37 59.780 32 103.840

 Explain Understanding 41 530950 37 89.910

 Sudden Discovery 2 1106.000 18 184.610

 Constraint Realisation 3 737.330 0

 Inferred Requirement 3 737.330 0

 Inspect Candidate 0 30 110.770

 Add to Portfolio 0 7 474.710

131

In table 7.1, where proportions are reported for episode modes and activities, these

relate to the proportion of the mode or activity as a part of the total duration of the

episode. Where average frequencies are reported for episode events, the average

frequency in seconds is the episode duration divided by the number of events.

7.5.5 Human Experience

It is interesting to observe that participant reaction to the interactive framework support

tool was highly positive overall. After a short period of familiarization, the two

participants became fluent in the use of the capabilities provided by the interactive

framework support tool. Indeed, by the end of the test design episode, both designers

were freely suggesting useful enhancements and extensions to the search-based tool.

A full list of the suggested enhancements is available in Appendix C. It is interesting to

note that of all the suggested enhancements, the ability to rate the „quality‟ of designs

and individual classes is considered by the participants to be the most important. Other

suggested enhancements include, for example, the ability to find all designs in a

population with designer specified groupings of attributes and methods, and the ability

to drag and drop attributes or methods from one class to another „on-the-fly‟ during

search.

7.6 Analysis

With regard to the duration of the two episodes, the participants appeared to respond

positively to opportunities presented to explore and exploit designs, resulting in more

time spent in the test episode than the manual. Indeed, the test episode would have

continued longer had not the interactive framework unfortunately encountered an out-

of-memory problem and so was forced to terminate.

With respect to design modes observed, it is clear that iteration between the

problem and solution spaces is richer in the manual design episode; less problem /

solution iteration is evident in the tool supported episode. This suggests that interactive

framework support tends to focus the designers on the solution space. The design thrust

of the manual design episode is essentially convergent whereas the tool supported

episode shows more divergence and iteration. This may be due to population-based

search providing support for extensive exploration. The medium of the manual design

episode shows dramatic differences to the medium of the tool supported episode. The

132

manual design episode is highly verbal, with occasional paper sketching of graphical

interfaces but no UML modeling. However, the tool supported design episode is greatly

more productive in terms of UML modeling, with over one half of the episode focused

on this.

Within the design activities, design evaluation is observed to be the dominant

activity in the manual design episode. Indeed, with few candidate software designs

being generated, evaluation appears to dominate. However, the interactive framework

provides much designer support via generating candidate software designs.

Interestingly, tool support also provides opportunities for both quantitative evaluation as

well as trade-off evaluation. Trade-off evaluation appears to be a difficult activity in the

manual design episode as it requires designers to remember many designs for

comparison. Conversely, in the tool supported episode, a design portfolio is provided

which greatly assists trade-off evaluation – a significant benefit of interactive

framework support. Furthermore, it is observed that colourful visualization of UML

class designs enables periods of cognitive reflection. In fact, nine reflective periods of

silence were observed in the tool supported episode whereas none were observed in the

manual design episode.

Regarding design events, designers were observed to make more requests for

clarification at a greater frequency in the manual design episode. In addition, a greater

number of verbal explanations of understanding were observed in the manual design

episode. This is consistent with the highly verbal medium in which the manual design

episode is conducted. Conversely, requests for clarification and explanations were less

abundant in the tool supported episode; it seems likely that this is due to the

visualizations of candidate software designs that promoted shared understanding of the

designs. It is significant that the number of sudden design discovery events were

observed to be higher in the tool supported episode (18) than in the manual design

episode (2). This finding appears to be consistent with the nine periods of reflective

silence observed in tool supported episode. It seems likely that rich generation of

alternative candidate designs, when combined with opportunities for visual reflection,

affords more opportunities for moments of sudden design discovery. It is also

significant that in the tool supported episode, 30 unique software designs were inspected

by the participants; i.e. a candidate design was inspected roughly once every two

minutes. The designers having been stimulated by the visualization on the UML

133

designs, 7 were added to the interactive framework portfolio. Lastly, it was observed

that the participants expressed the wish to more fully express their opinions on the

„quality‟ or „appearance‟ of the software designs, and elected to award „star ratings‟ to

designs. Although the interactive framework recorded the star rating of a design

textually, it was incapable of exploiting this information during the design episode.

7.7 Threats to Validity

Two designers have been observed in the course of this empirical investigation. While a

greater number of designers would add weight to the investigation, this situation

reflected the reality of the software development team under study. Moreover, the two

designers are representative of some section of the software engineering design

community where empirical investigations available in the literature are few.

The above analysis of findings must also tempered by the fact that the same

problem domain has been used for both episodes. Given that the manual design episode

has been conducted firstly, it is possible that the designers will take any acquired

knowledge of the problem domain into the second, tool supported episode. Given this

learning effect, it might be reasonably expected that the designers would arrive at a

greater number of designs in the tool supported episode. However, it is argued that the

numbers of trade-off evaluations (36), moments of sudden design discovery (18),

candidate design inspections (30) and additions to the portfolio (7) are considerably

higher in the tool supported episode, even accounting for any learning effect. To counter

any learning effect, it could also be argued that two different design problems might be

used in the study. However, ensuring that any two design problems are strictly

comparable for the purposes of an empirical study is a hugely difficult, if not

impossible, undertaking to achieve.

7.8 Conclusions

Overall, analysis of the observational data reveals that for this small scale empirical

investigation, the interactive framework of agent-mediated, search-based support for

early lifecycle software design is effective at generating multiple candidate software

designs, and highly productive in terms of visual UML class designs. In the manual

design episode, as few candidate designs are generated, manual evaluation of candidate

designs is the dominant design activity. In contrast, in the search-based tool supported

134

design episode, (i) generation of candidate designs is more balanced with evaluation, (ii)

evaluation is both manual and computer-based and (iii) trade-off analysis is greatly

enhanced. Furthermore, visualization of colourful UML class designs, when combined

with generation of multiple candidate designs, enables periods of reflection that

stimulate opportunities for sudden design discovery.

With respect to the human experience of interactive search support, feedback

from the participants suggests that software designers respond positively when

presented with opportunities to interactively explore and exploit many candidate

software designs via an interactive framework. Indeed, feedback from the participants

also indicates that opportunities for qualitative evaluation of what was described as the

„quality‟ or „appearance‟ of the software designs might enhance the potential of the

interactive framework further. Building upon such feedback, investigations into

incorporating qualitative evaluation of design elegance are conducted in the next

chapter.

