
Int. J., Vol. x, No. x, 201x 1

Copyright © 200x Inderscience Enterprises Ltd.

Bridging the gap between business process models and Service Oriented
Architectures with reference to the Grid Environment

Zaheer Khan*
Centre for Complex Cooperative Systems, Dept. of CSCT, FET,
University of the West of England,
BS16 1QY, Bristol, United Kingdom
Email: Zaheer2.khan@uwe.ac.uk
* Corresponding Author

Mohammed Odeh
Centre for Complex Cooperative Systems, Dept. of CSCT, FET,
University of the West of England,
BS16 1QY, Bristol, United Kingdom
Email: Mohammed.Odeh@uwe.ac.uk

Richard McClatchey
Centre for Complex Cooperative Systems, Dept. of CSCT, FET,
University of the West of England,
BS16 1QY, Bristol, United Kingdom
Email: Richard.McClatchey@uwe.ac.uk

Abstract: In recent years organisations have been seeking technological solutions for
enacting their business process models using ad hoc and heuristic approaches. However,
limited results have been obtained due to the expansion of business processes across
geographical boundaries and the absence of structured methods, frameworks and/or
Information Technology (IT) infrastructures to enact these processes. In an attempt to enact
business process models using distributed technologies, we introduce a novel architectural
framework to bridge the gap between Business Process Models and Grid-aware Service
Oriented Architectures (GSOA). BPMSOA framework is aligned with the Model Driven
Engineering (MDE) approach and is instantiated for role-based business process models,
(in particular Role Activity Diagramming (RAD)) using mobile process languages such as
pi-ADL. The evaluation of the BPMSOA framework using the Submission process from
the digital libraries domain has revealed that role-based business process models can be
successfully enacted in GSOA environments with certain limitations.
Key words: Service Oriented Architecture, RAD business process models, Metamodels,
pi-ADL, Process Enactment, Model Driven Engineering, Model Transformation

Bibliographic Notes: Dr. Zaheer Khan is a postdoctoral research fellow in the Faculty of
Environment and Technology of UWE, Bristol, UK. He has over seven years of teaching
and research experience in system analysis and design, databases, distributed systems, etc.
He has been actively working in large scale EU and non-EU collaborative computing
research projects: Health-e-Child, HUMBOLDT, LifeWatch, SAGE. His main research
interests are in distributed computing, software engineering, business process management,
data interoperability and management, software agents, and geospatial information systems.

Dr. Mohammed Odeh is a senior lecturer and leading the Software Engineering Research
Group in the Centre for Complex Cooperative Systems of UWE, Bristol, UK. He has over
twenty years of experience of working in industry and academia. His areas of interest are
software and requirement engineering, intelligent systems, business process management.

Professor Richard McClatchey has been research active for the past 30 years and has led
many projects funded by industry and by the EC in the areas of large-scale distributed data
and process management and database modelling and in systems design and integration.
Prof. McClatchey currently leads the Centre for Complex Cooperative Systems at UWE
and is active in collaborative computing projects at CERN, and with many international
partners in other EC projects: Health-e-Child, SHARE and neuGRID.

1. INTRODUCTION

Business process modelling is the process of visualising business processes in order to understand, improve and/or enact these
processes in a particular computing environment. The availability of different business process modelling approaches (such as
role-based modelling) and their associated process modelling languages (Giaglis, 2001; Curtis, 1992; Aguilar-Saven, 2003;
Havey, 2005) enable organisations to capture and model different perspectives of their business processes. In the presence of
such diverse process modelling approaches, the homogeneous enactment and execution of business processes is not
straightforward. Furthermore, such enactment becomes more complicated when businesses expand across geographical
boundaries. Thus, it becomes challenging to find solutions from Technological Spaces (TS) (Kurtev, et. al, 2002) in the
absence of homogeneous and structured methods or frameworks that can provide mechanisms to enact these business
processes using distributed technologies.

It is envisaged that environments that adopt the Service Oriented Architecture (SOA) (Krafzig, et. al, 2004) model of
computing are increasingly becoming the de facto environment for executing business processes represented by their visual
models (BEA Systems, 2007). Service oriented computing can utilise the characteristics of both Object-oriented and
Component-based (Breivold, et. al, 2007) computing models in an open environment. However, the enactment and execution
of business process models in service-oriented environments is not straightforward since it requires appropriate mappings and
translations of business process models into system models for their execution in such environments, with the objective of
utilising application domain specific services and also for facilitating business-to-business (B2B) process integration.

In this context, the research here presented is an attempt to bridge the gap between business process models and service
oriented environments (such as the grid-aware SOA (GSOA) environment). This gap can be mainly attributed to the following
challenges:

a. As there exist several business process modelling approaches (e.g. role-based, functional, activity-based, etc) and
their associated business process modelling languages (e.g. Role Activity Diagrams (Ould, 1995), Business Process
Modelling Notations (BPMN 2007), UML Activity Diagrams, etc) with different syntactic and semantic notations, a
structured approach is needed to uniformly handle the instantiation and execution (i.e. enactment) of business process
models;

b. As business process models are mainly intended for domain experts and system models are for IT experts, an
autonomy between business process models and system models should be maintained;

c. Not all graph-based visual process models can be directly translated into block-structured models due to conceptual
differences between graph-based and block-structured process models which restrict one-to-one mappings and
translations from former to later; and

d. Reusable transformation of visual business process models into executable workflow specifications and/or code that
can be instantiated in distributed environments and in particular GSOA.

As a first step in bridging the gap between business process models and GSOA, application domain specific services (e.g.

utility services) can be deployed on top of grid core services in order to access grid resources by encapsulating the complexity
of low level grid-specific tasks and facilitating business applications for executing their business processes as envisioned in
(NGG, 2006; SOKU, 2006). Such application domain specific services can be referred to as grid-aware services or utility
services. For example, Web Service Resource Framework (WSRF) based application services are capable of accessing grid
infrastructure services (Grid Resource Allocation Manager - GRAM, Monitoring and Discovery Service – MDS, etc.) and
resources when deployed using the Globus Toolkit 4 (Sotomayor, 2005). As a second step business process models would
then require rigorous mappings and translations into the source code of executable programming models and/or languages
capable of accessing grid resources. Such an approach necessitates homogeneous structured methods and tools to avoid
complexity in performing the aforementioned translations.

In the above context, this paper presents a novel approach in bridging the gap between business process models and grid-
aware service oriented environments. It introduces an architectural framework, namely the BPMSOA (Business Process
Models for Service Oriented Architectures) framework (Khan 2009), which adapts Model Driven Engineering (MDE) (Stuart,
2002; Fondement, et. al, 2004) approach to transform visual process models (irrespective of business process modelling
approach and/or modelling language) into concrete code that is executable in a GSOA environment. This approach not only
maintains autonomy between business process models and system models but also promotes reusability of translated artefacts.
As part of the BPMSOA framework, mobile process languages such as pi-ADL (Architectural Description Language)
(Oquendo, 2004; Oquendo, 2005) – a derivative of high-order typed pi-calculus (Milner, 1999) is utilised to mitigate
conceptual mapping and translation challenges between graph-based and block-structured models. The BPMSOA framework
is instantiated for the role-based process modelling paradigm and evaluated (in particular for Role Activity Diagramming -
RAD modelling (Ould, 1995)) with the objective of validating the hypothesis that mobile process languages, such as pi-ADL,
can be utilised to enact role-based business process models in a GSOA environment. As a result, RADpiADL concrete
program library is developed which enables the BPMSOA framework to semi-automatically generate code for a business
process model in pi-ADL, which with minimal human intervention, can be executed in GSOA environment. Both the

BPMSOA framework and its role-based instantiation using the RADpiADL specifications provide novel contributions in
bridging the above gap.

In the remainder of this paper we briefly present background and related work in the following section. In Section 3, an
overview of the BPMSOA framework is presented followed by its role-based instantiation. In Section 4, we present the
application of the role-based BPMSOA framework to the Submission process from the domain of digital libraries (DL) (Khan,
et. al., 2006a). This application is evaluated using the static verification and dynamic validation described in Section 5,
followed by critical analysis and reflection on the usefulness and limitations of the BPMSOA framework, role-based
modelling approaches and pi-ADL in Section 6. Then in section 7 we draw conclusions and provide directions for future
work.

2. BACKGROUND AND RELATED WORK

There are two aspects covered in this paper: i) mappings and translations between business process models and executable
models, and ii) applying a homogeneous and structured approach to accomplish the (i) aspect. In relation to the first aspect,
there have been efforts to map business process models, and in particular RADs (Ould, 1995), into system models using
heuristics (Odeh, et. al, 2002; Odeh, et. al, 2003), simulations (Martinez-Garcia, et. al, 2002) and formal representations
(Badica, et. al, 2001). However, such approaches require tools and technological support for enacting and evaluating the given
business processes. For example, no tools have been identified to actually instantiate and execute business process models
based on these approaches. Also, these approaches are not based on the SOA paradigm (i.e. web or grid services) which is
considered to be a key shortcoming in dealing with business process management aspects. In this regard, many eXtensible
Markup Language (XML) based business process modelling languages such as Business Process Modelling Language
(BPML) (Arkin, 2002) and Business Process Execution Languages (BPEL) (Juric, et. al, 2004; Blanvalet, et. al, 2006) have
been widely utilised to execute business processes using web services. However, the non-visual or non-diagrammatic nature
of such languages (i.e. BPML, BPEL) makes them less suitable to understand, analyse and improve business processes by
business analysts. In addition, these languages are designed for machine processing rather than for human understanding. This
limitation has been overcome by mapping visual and graphical business process modelling language constructs to descriptive
executable constructs, for example mappings between Fundamental Business Process Modelling Language (FBPML) and the
Ontology Web Language for Services (OWL-S) (The OWLService Coalition, 2005; Guo, et. al, 2004), and translating
Business Process Modelling Notations (BPMN) constructs into BPEL (White, 2005; Owen, et. al, 2007; White, 2007). These
mappings and translations are not, however, straightforward and lack one-to-one construct mappings, which may become
difficult to verify and validate. For example, researchers (Ouyang, et. al, 2006; Recker, et. al, 2006; BPMN, 2007) have
identified limitations in translating graph-based BPMN models into block-structured BPEL and suggested various solutions.
They argued that due to the conceptual difference between block-structured and graph-based models, it may not be possible to
map all visual process topologies of BPMN and FBPML based process models to BPEL and OWL-S process descriptions,
respectively (Guo, et. al, 2004; BPMN, 2007; Shapiro, 2002). RAD is another graph-based business process modelling
language that we have attempted to map and translate into block-oriented pi-ADL using the BPMSOA framework, with the
objective of assessing to what extent the channel unification and mobility characteristic of pi-ADL can facilitate mappings of
graph-based models. It is important to mention here that we are not after comparing the strengths and weaknesses of different
business process modelling languages and suggesting the suitability and appropriateness of a particular business process
modelling language. Rather, we aim to experiment on selected case studies using the simplest approach such as RAD and
provide an evidence of suitability of mobile process languages such as pi-ADL for enacting business process models in GSOA
environments.

With respect to distributed computing and in particular grid SOA environment, mostly related work is in the domain of
scientific workflow and there exist several tools and environments which facilitate execution of scientific workflows in grid
SOA. For example, (Yu and Buyya 2006; Curcin and Ghanem 2008; Deelman et. al. 2009) have presented a comprehensive
overview and taxonomy of workflow systems in distributed environments and in particular grid SOA such as Discovery Net,
DAGMan, Pegasus, Traverna, Triana, Kepler, etc and languages such as UML and XML-based BPEL and SCUFL, etc. All
these tools and respective languages support different programming models and can be used depending on the requirements of
scientific applications.

In recent years, use of Model Driven approach for grid SOA has gained attention such as Grid Tool Kit (GDT) (Friese et.
al. 2006) uses UML profiles and BPEL to model and execute scientific workflows. BPEL has gained good attention for
workflow modeling not only by IT experts but also by domain experts, for example, BPEL extensions are introduced to adapt
WSRF-compliant services for grid workflow modeling (Dornemann et. al. 2007). Despite its textual nature, mostly research
specify workflows in graphical notations and many tools exist to translate graphical workflow representations into BPEL
script such as XBaya (Shirasuna 2011), OMII-BPEL (OMII-BPEL 2011), Sedna (Wassermann et al., 2007), etc. However,
according to some workflow domain experts e.g. (Deelman et. al. 2009), complex scientific workflows may require additional
graphical rendering approaches such as nesting based on workflow hierarchies, concurrency, etc. This may be attributed to

graph-oriented and block-structured conceptual difference between various modeling and workflow languages as discussed
above. Among other approaches, (Blythe et. al. 2004) focused on artificial intelligence methods to automatically compose
scientific workflows by applying semantic annotations. Similarly, (Brandic et. al. 2008) provide a holistic approach for QoS-
aware workflows which enables scientific community to specify workflows using UML based graphical notations (and
constraint annotations) in Tueta application (Pllana et. al. 2004), transform the workflow to XML-based language namely
QoWL for workflow planning and execution in QoS-aware Grid Workflow Execution Engine to fulfill the user requirements.
All stages of QoS-aware workflow are implemented and evaluated for Amadeus framework that provides a service-oriented
environment but only supports acyclic workflow graphs. Manset et al (Manset et al. 2006) introduced gMDE architectural
style that adopts Model Driven approach to generate programming models for IT experts to write and reuse modelled
applications for grid environment. In contrast to the above approaches, A-WARE project (A-WARE 2008) enables
domain/scientific experts to draw workflow using BPMN and transforms it into BPEL which is then handled by IT experts for
service grounding and enactment of a scientific workflow in SOA grid environment (e.g. OGSA) and in particular UNICORE
6.

However, the above approaches are mostly intended for the IT experts but not for business domain experts or do not
capture the full spectrum of various business process modelling approaches and languages. Further, despite some similarities
there is a fine distinction between business process modelling and workflows. For example, (Dehnert and Van Der Aalst
2008) argued that workflows specifications are mostly intended for IT experts and may not be as intuitive as is a business
process model for a business domain expert. Similarly, (Brandic et. al. 2007) distinguish scientific workflows for grid and
business workflows based on the long execution time and large amount of data transfers in grid environment. This suggests
that in order to maintain autonomy between business models and system models, a business process model requires mappings
and transformation into workflow specifications for enactment in a GSOA environment. The BPMSOA framework handles
the above limitations and requirement mostly from the business domain perspective and enables the transformation of a
platform independent business process model into a concrete platform specific model using pi-ADL – an executable mobile
process language - that can utilise grid enabled utility services. However, at the moment the lower-level grid based
programming models, resource scheduling and monitoring are beyond the scope of the BPMSOA framework and handled as
future research direction.

3. THE BPMSOA FRAMEWORK

This section briefly presents the BPMSOA framework (Khan, 2009). It consists of five logical layers as depicted in Figure 1.
These are: (i) Process Modelling, (ii) Generalisation, (iii) Transformation, (iv) Enactment and (v) Service Management and
Integration. Each layer (in particular the first four layers) takes a specific input and processes it using its internal
computational components to generate a specific output which is then consumed by the subsequent lower layers. Further, each
layer is provided with catalytic artefacts (i.e. Metamodels) to support the layered components in the intermediary translations
of business processes. The role of the fifth layer (orthogonal to the other layers) is to manage and monitor the process of
translating and enacting business processes.

The layered architecture of the BPMSOA framework is aligned with the separation of concerns design principle
(Sommerville, 2006). These layers enable loose coupling between the activities of process modelling, generalisation,
transformation and enactment for the objective of executing a business process model using application domain specific grid
services. Below we briefly discuss each layer.
• The Process Modelling layer deals with process modelling view only. In addition, the PM-Metamodel is used to mask the

syntactic heterogeneity of different business process modelling languages of a specific modelling approach by
generalising the common modelling constructs, as briefly presented in (Khan et. al, 2008a). In this layer, a business
process description can be modelled using a particular process modelling language. This process model can be used for
comprehension, analysis and improvement purposes in addition to enactment.

• Similarly, the Generalisation layer translates a business process model into a machine-readable XML form whereas rules
for mapping a process model into generic XML elements are defined in the associated instance of α-Metamodel (Khan et.
al, 2008a) which is defined using a particular instance of PM-Metamodel. The output from the Generalisation layer can
be used to exchange process information among different tools.

• The Transformation layer takes the above XML representation of the business process as an input to interpret and
translate it into respective pi-ADL specification. The τ-Metamodel enables the customisation component to transform the
XML representation into a programming context enabling the concretisation component to translate it into a respective
pi-ADL form. The χ-Metamodel defines the pi-ADL specification for a particular business process modelling approach
that is used by the concretisation component to translate the respective business process model into its corresponding pi-
ADL code. Furthermore, the output of the Transformation layer is specific to a particular execution environment, and in
particular pi-ADL environment e.g. emptyStore repository (ArchWare 2005).

Figure 1: The BPMSOA Architectural Framework

• The Enactment layer takes the pi-ADL based executable script of the business process as an input and enacts it into an
execution environment, in particular the ArchWare (ArchWare, 2005) virtual machine. The proxy router component
enables the enacted process description to communicate with the external world. For example, it integrates the enacted
process activities with respective application domain specific grid services using Java-based implementation of the proxy
router (Khan, et. al., 2008b).

• The Service Management and Integration orthogonal architectural layer is supposed to bring higher levels of automation
into the BPMSOA architectural framework i.e. facilitating the automated flow of information between the other four
layers. Furthermore, this layer can also be utilised to keep track of the transformations of the business process at different
levels of the BPMSOA framework and state transitions while in execution. However, the implementation of this layer is
not within the scope of this paper and referred as future research direction.

Business
Process

Modeller

Abstraction

Concretisation

Process Modelling

A Business Process

A Business Process Model

Generalisation

A Meta-Representation of the
Business Process Model

Transformation

Executable Script of the Business
Process Model

Enactment

Enacted Business Process using
Grid application services

Application
domain specific

business and
utility grid

services

Process Modelling

Metamodel

α-Metamodel

τ-Metamodel

Proxy
Router

Execution

Engine

χ-Metamodel

Customisation

Service M
anagem

ent and Integration

Table 1: Summary of the RAD Constructs Mappings at different Levels of BPMSOA

RAD
Notation

PM-Metamodel
Meta-

representation
α-Metamodel τ-Metamodel χ-Metamodel

pi-ADL

 Specifications and
Abstractions

Intra-Role
Mapping

Role

Role

Composition
Element

(CE)
Role (SP, IP) Composed

Element (SP)

Inter-Role
Mappping

IRegistry_Process
Interaction_Repository

Registry_Filler
Router_Role_Connect

Part interaction

Receiver (FE),
Interaction (IE)

Receiver_Part ,
Interaction, Role

(SP, IP)

Interaction
Element (SP)

Part_Interaction

Driver part
interaction

Sender (FE),
Interaction (IE)

Sender_Part,
Interaction, Role

(SP, IP)

Interaction
Element (SP)

Intra and Inter-Role
Mappings

Driver_Part_Interaction

Trigger

Trigger – (Timer,
Message, Error)

(FE)

Trigger- (Timer,
Message, Error)

(SP)

Flow Element
(SP)

RAD_Trigger,

Trigger_External_Code

State/Goal

State (FE) State (SP) Flow Element
(SP)

Abst_Goal_State,
Abst_State_Action

Part Refinement

Gateway–
Concurrency (FE)

Gateway -
Concurrent (SP,

FP)

Flow Element
(SP)

Part_Refinement,
Part_Synchronisation,

Part_Split, Part_Thread

Activity

Activity – Action
(FE)

Activity - Action
(SP)

Flow Element
(SP)

RAD_Activity,
Activity_External_Code
Proxy_Router (for grid

services)

Case

Refinement

Gateway-
Conditional (FE)

Gateway -
Conditional (SP,

FP)

Flow Element
(SP)

Case_Activity,
Case_Refinement,

Case_Synchronisation,
XOR_Split, Case_Thread

Role

Instantiation

Activity –
Instantiation (FE)

Activity - Role-
Instantiation (SP)

Flow Element
(SP) Instantiate_Role

State
State (FE) State (SP) Flow Element

(SP)

Using in_trig and out_trig
channels by applying

unifications

Loop

Gateway-Iterative
(FE)

Gateway-
Iterative (SP, FP)

Flow Element
(SP)

Intra-Role Mapping

Iterative_flow, normal_flow,
Loop_handling_with_Activity

(inside Case_Thread)
Inter-Process Enactment Engine Process CE, IE, FE SP, IP, FP SP, NFP, CP,

AIP Intra-Process Process Controller

Hence, BPMSOA’s layered architecture follows a general to specific model translation of business processes, which suggests
that BPMSOA is closely aligned with the MDE approach i.e. that of transforming platform independent business process
models into concrete platform dependent models. Moreover, the PM-, α-, τ- and χ-Metamodels (as depicted in Figure 1) play
two important roles according to the needs of metamodels in MDE (Stuart, 2002). Firstly, they provide syntactic and semantic
guidelines to translate a given business process model at respective layers of the BPMSOA framework. Without these
guidelines, the BPMSOA components cannot dynamically translate different process designs. Each metamodel is associated
with a specific component of a particular layer, for example the α-Metamodel provides translation rules and guidelines for the
abstraction component. Similarly, the τ-Metamodel and the χ-Metamodel are associated with the customisation and
concretisation components respectively. Secondly, there can be multiple implementations of associated metamodels at the
respective layers, for example one implementation of PM-Metamodel can be used to capture the role-based perspective
whereas another one can consider the functional view of business processes.

However, a particular implementation of the PM-Metamodel requires a corresponding implementation of the α-
Metamodel, the τ-Metamodel and the χ-Metamodel. Whilst these layers with the multiple implementations of metamodels

enable the BPMSOA framework to be general, extensible and flexible, this framework can become rigid and thus requires
proper information flow between layers in addition to coordination. In this regard, the orthogonal Service Integration and
Management layer is introduced which can be used to coordinate the information flow at the appropriate levels and verify the
correctness of respective translations.

In this paper, the role-based business process modelling approach (and in particular Role Activity Diagramming (Ould,
1995) is adopted, which provides a distinctive modelling approach because of its intuitiveness, and its increased visibility by
depicting flexible process topologies and event-driven and collaborative perspectives (Harrison-Broninski, 2007). Hence the
role-based BPMSOA is instantiated and role-based metamodels and components of BPMSOA framework have been
published elsewhere and can be accessed from (Khan, 2009; Khan, et. al, 2007; Khan, et. al, 2008a; Khan, et. al, 2008b; Khan,
et. al, 2008c). These metamodels capture different perspectives built using different elements as depicted in Annex-I. All
perspectives (i.e. Structural, Interaction, Flow, Control, Non-Functional and Application Integration Perspectives (SP, IP, FP,
CP, NFP, AIP respectively)) and their elements (i.e. Composition, Flow and Interaction Elements (CE, FE, IE respectively))
have been presented in detail in (Khan, 2009). Due to space limitations, in Table 1 we summarise just the mappings of the
different RAD constructs while being processed at the different role-based BPMSOA layers and facilitated by the respective
layer’s metamodels.

4. THE CASE-STUDY: APPLYING THE ROLE-BASED BPMSOA FRAMEWORK ON THE DL SUBMISSION PROCESS

In order to aid understanding of the functionality of BPMSOA, an enactment process (as detailed below) is applied on the
Submission process from the digital libraries (DL) domain. The Submission process is introduced to enact more complex RAD
process models with control flow structures such as loops, case and part refinements, and hanging threads, etc. The
Submission process is concerned with submitting an article or manuscript for publishing in a particular digital library. The
manuscript is submitted to the Editor (role) by the Author (role). The Editor, after having performed the initial evaluation,
notifies the Author, if the manuscript is not accepted, to proceed to peer-review. The Author subsequently then may consider
resubmitting the same article after a further review of the initial feedback received. The articles which are accepted for peer-
review are properly managed (i.e. assigned an ID, etc.) and forwarded for peer-review process. Finally, the Author is notified
of progress while the article is being reviewed. The following is a step-by-step progression of above mentioned enactment
process when applied on the Submission process.

• Step 1: Modelling the Submission Process: Using the above description, the RAD model of the Submission process that
captures the basic flow of activities is depicted in Figure 2(a). RADModeller Ver. 1.1.0 (RADModeller, 2006) is used as
the process modeller component of the Process Modelling layer. There are two roles involved in this process: Author and
Editor. Activities such as “Peer-review Article” in the Editor role is shown as an encapsulated activity, as it may involve
other roles such as a Reviewer role that does not fall within the region of the Submission process.

• Step 2: Generating the generalised XML representation of the Submission Process: Using BPMSOA’s role-based α-
Metamodel and abstraction component, the XML representation of the Submission process is generated and a snippet is
represented in Figure 2(b). Once again, RADModeller Ver 1.1.0 is used as the abstraction component of the
Generalisation layer.

• Step 3: Translating the process model into pi-ADL specifications: Using the role-based τ-Metamodel and customisation
component, the XML representation of the Submission process is translated to the Java programming language, which
can facilitate the concretisation component in translating it into pi-ADL. Using the role-based χ-Metamodel, the RAD pi-
ADL specifications have been generated (Khan 2009) which can be utilised to program role-based business process
models into pi-ADL. Due to space limitations these RAD pi-ADL specifications cannot be presented here but a small
example is depicted in Annex-II. Using these RAD pi-ADL specifications, the Submission process is translated into pi-
ADL (over 2000 lines of code)* and accessible from (Khan 2009). The signatures of more specific pi-ADL abstractions
from the RAD pi-ADL specifications, which have been used to translate specific RAD constructs of the Submission
process model, have been presented in Table 2. In Table 2, the application of the RAD-based pi-ADL specifications for
the different modelling constructs can be classified into the following three categories:
• Fully-automated: reflects that a RAD modelling construct can be automatically translated into the corresponding pi-

ADL abstractions. For example, Proxy_Router, IRegistry_Process, Interaction_Registry, Router_Role_Connect,
Process_Engine_Enactment, Driver_Part_Interaction, Part_Interaction, Part_Registry, and utility functions, etc;

• Semi-automated: shows that a RAD modelling construct requires human intervention to add specific elements to the
corresponding RAD pi-ADL abstractions, such as Role, Activity_External_Code, Case_Activity, RAD_Trigger, etc.

* Due to space limitations, the pi-ADL code for the Submission process is either accessible from (Khan 2009) or downloadable from
http://www.cems.uwe.ac.uk/~zakhan/BPMSOA/processes.pdf. 

For example, defining parameters and their values for a specific instance of Activity_External_Code of a process
activity which are required to invoke a specific grid service. In addition, Case_Activity, RAD_Trigger,
Instantiate_Activities (sub-abstraction or Role for handshaking protocols), etc. need to declare global channels which
can be utilised for human user interaction for specific roles. Similarly, in order to handle loops,
Loop_handling_with_Activity and iterative_flow abstractions are defined which utilise global channels to
demonstrate iterative behaviour; and,

• Customised: represents a RAD modelling construct which requires humans (i.e. pi-ADL programmers) to define the
required behaviour of that modelling construct in the respective pi-ADL specification. For example, a driver part
interaction may receive a resource value from a human user and may compose it into Resource_Abst which would
require behavioural changes in the default Driver_Part_Interaction abstraction.

• Step 4: Executing the pi-ADL specification of the Submission Process: When the pi-ADL specification of a business
process model is enacted using the ArchWare environment (ArchWare, 2005), the direct and indirect outputs are
obtained. The direct output (i.e. human-based activities) of the execution of the Author and the Editor roles of the
Submission process is depicted in Figure 3. In Figure 3, human users enter input values for specific activities within
quotes (i.e. “ ”), whereas the system generated output is depicted without any quotes. Also, both the Author and the Editor
roles are executed in the required order as labelled with the sequence numbers and associated descriptions. The
handshaking protocol is used to ensure that the human user is connected with a user interface to interact with the required
process activities at run-time. Furthermore, it is also depicted in Figure 3 that both of these roles execute loop, case
refinements and nested part refinement constructs. The execution output also reveals that the pi-ADL based process
activities successfully communicate with the ASP component of the proxy router (Khan, 2009), which enables them to be
integrated with the respective grid-aware services, for example being deployed using the Globus Toolkit 4 (Sotomayor,
2005). In contrast, the indirect outputs (i.e. the detailed execution and communication logs of the Submission process and
the ASP component of the proxy router) are used for the evaluation of the dynamic behaviour of the Submission process
model as discussed in the following section.

5. EVALUATION AND DISCUSSION

In order to evaluate the BPMSOA framework, a structured evaluation methodology has been derived from the research
hypothesis (section 1) (Khan, 2009) and is briefly presented below. In general, this evaluation is mainly concerned with the
static verification of the correct syntax of the translations which take place at the different layers of the BPMSOA framework.
In addition, it also performs the dynamic validation of the correct behaviour of the given business process when enacted. The
overall goal of the combined static verification and dynamic validation is to assess and reflect on the extent to which the
BPMSOA framework can be utilised to bridge the gap between business process models and GSOA environments. Both static
verification and dynamic validations are based on the Kotonya and Sommerville’s concern-based approach (Kotonya, et. al,
2002) to derive main concerns which are verified and validated using the checklist questionnaires and walkthrough techniques
(Sommerville, 2006).

5.1. Static Verification
Static verification is performed in two stages. In the first stage, the translation from a business process model to the respective
abstract generalised form (i.e., RAD to XML) is verified with respect to the role-based α-Metamodel. In the second stage, the
translation from the generalised process form to the concrete and executable form (i.e., XML to pi-ADL) is verified with
respect to the pi-ADL specifications of RADs. In general, the above two verification stages conform to the expression ‘Are we
building the product right?’ (Sommerville, 2006) i.e. do the respective translations conform to the guidelines of the respective
metamodels at the different layers of BPMSOA? Using the concern-based approach (Kotonya, et. al, 2002), Figure 4 depicts
the main concerns related to static verification. In Figure 4, verification stage I requires the quantitative analysis of RAD
business process models, with the objective of cross-verifying that the modelling in a given RAD process model tallies with
its respective XML modelling elements. Figure 4 also derives the main requirements and associated questionnaires for
verifying the correctness of the resultant pi-ADL specifications of the translated RAD XML constructs. Based on these
concerns different RAD pi-ADL abstractions, newly defined data types and channel unifications are verified using
walkthrough/inspection technique (Sommerville, 2006).

As a result of the derived questions (as depicted in Figure 4), a checklist for necessary mappings has been prepared using
different RAD pi-ADL abstractions, newly defined data types (a glimpse is depicted in Table 3 and presented in detail in
(Khan, 2009)) and channel unifications, which are verified using walkthrough/inspection technique (Sommerville, 2006). A
few checklist questionnaires to assist this verification have been shown in Table 4.

 

a) RAD model of Submission process

<CE type="Role", id="1", desc="Author">
 <FE Id=“2”, type =“Trigger”, desc=“Article ready to be submitted”,
 NextElement = “3” />
 <FE Id=“3”, type =“Sender-Part”, Interaction_Id=“30”, NextElement=“4”,
 PreviousElement = “2_10”, Gateway_Id=“10”/>
 <FE Id=“4”, type = “Receiver-Part”, Interaction_Id=“31”,
 NextElement =“5”, PreviousElement=“3” />
 ::::::
 
<CE type="Role", id="14", desc="Editor"> 
    <FE  Id=“15”, type=“Reciever‐Part”, Interaction_Id=”30”, NextElement=“16” /> 
                                  ::::::: 
<IE id="30", type="Interaction", desc=”Submit Article”> 
     <FE Id=”3”, type=”Sender‐Part”, Parent_CE_Id=”1” /> 
     <FE Id=”15”, type=”Receiver‐Part”, Parent_CE_Id=”14” /> 
</IE>  
                                  ::::::: 
b) XML snippet of the Submission process

:::::
"via debugConn receive { Role : Author }"
"via debugConn send { Role: Author }"
 :::::
"via prox_ch send { Revision, Evaluated Article }"
 :::::
"via com_ch send { Enter case value :Accepted for Peer-review? yes / no ? }"
"via com_ch receive { no }"
"via Sin_trig receive { no, Evaluated Article }"
 :::::
"via channel_value1 receive { true, Article is managed and Indexed }"
"via out_trig send { true, Article is managed and Indexed }"
 :::::
c) A snippet of the Trace-File Log (over 2000 lines)

 

d) A snippet of the Proxy Router – ASP Log with Author Role
Figure 2: Translations and execution logs of the Submission process using the BPMSOA

Table 2: pi-ADL Abstractions of the Submission Process
RAD Modelling Construct

Concerned
Elements

XML
Model Elements

Corresponding

RAD pi-ADL Abstraction(s) (actual pi-ADL
code is over 2000 Lines of Code)

Classification
of RAD pi-

ADL
Abstractions

Trigger
(Article Ready)

RAD_Trigger using normal_flow, iterative_flow and
abst_comp

Semi-automated

Sender-Part (Submit Article) Driver_Part_Interaction Customised

Receiver-Part (Notify Author) Part_Interaction Fully-automated

Conditional-Activity (Consider
Resubmission?)

Case_Activity

Semi-automated

Gateway-Condition,
Case-Thread (Yes?),
Case-Thread (No?)

Case_Refinement, XOR_Split, Case_Synchornisation,
Case_Thread1, Case_Thread2

Customised and
Semi-automated

Activity-Encapsulation
(Revision)

RAD_Activity, Activity_Internal, and
Activity_External_Code

Semi-automated

Gateway-Iterative Normal_flow, iterative_flow, and abst_comp sub-
abstractions

Semi-automated

Activity-Stop (Stop) Stop abstraction Fully-automated

Modelling
constructs of
the
Author
Role

Receiver-Part (Inform Author) Part_Interaction1 Customised and
Semi-automated

Author Role AuthorRole Semi-automated
Receiver-Part (Submit Article) Part_Interaction Fully-automated
Activity-Action (Initial
Evaluation)

RAD_Activity, Activity_Internal, and
Activity_External_Code

Semi-automated

Conditional-Activity (Accepted
for Peer-review?)

Case_Activity1 Semi-automated

Gateway-Condition,
Case-Thread (No?),
Case-Thread (Yes?)

Case_Refinement1, XOR_Split, Case_Synchornisation,
Case_Thread3, Case_Thread4

Semi-automated

Sender-Part (Notify Author) Driver_Part_Interaction1 Fully-automated
Gateway-Concurrent, Part-
Thread1, Part-Thread2.

Part_Refinement, Part_Split, Part_Synchronisation,
Part_Thread1, Part_Thread2.

Semi-automated

Activity-Action (Manage
Article)

RAD_Activity, Activity_Internal, and
Activity_External_Code

Semi-automated

Activity-Encapsulation (Peer-
review Article)

RAD_Activity, Activity_Internal, and
Activity_External_Code

Semi-automated

Modelling
constructs of
the Editor
Role

Sender-Part (Inform Author) Driver_Part_Interaction1 Fully-automated
Editor Role EditorRole Semi-automated

Submission
Process

 Proces_Engine_Enactment, Process_Controller,
Router_Role_Connect, IRegistry_Process,
Proxy_Router, Utility Functions, Customised Data
Types

Semi-automated

5.2. Dynamic Validation
Dynamic validation is used to evaluate the behavioural correctness of the respective pi-ADL specifications of the RAD
business processes at run-time which generates direct and indirect outputs. The aim here is to reveal the presence of any
behavioural errors and limitations in the respective pi-ADL specification in order to suggest improvements accordingly. In
addition, this validation is used in assessing the suitability of pi-ADL as the mobile process execution language adopted in the
BPMSOA framework. This behavioural validation conforms to the expression ‘Are we building the right product?’
(Sommerville, 2006) i.e. is the process model specification that an end user or a client expects correctly propagated to the pi-
ADL level? Using the concern-based approach (Kotonya, et. al, 2002), Figure 5 derives the main concerns and associated
questions to validate the behavioural correctness of the resultant pi-ADL specifications by enacting the Submission process

model. Based on these concerns, checklist questions have been derived (a few question are depicted in Table 5) and utilised in
dynamically validating the behaviour of RAD process models.

The pi-ADL specification of the Submission process is enacted and executed using the execution engine component and an
execution log (i.e. indirect output) is stored in a trace-file (only a snippet is shown in Figure 2(c) as the actual log is over 2000
lines and accessible from Khan 2009). This execution log is made more expressive by using a debugger channel (i.e.
debugConn) that records the communication between the different channels of the RAD pi-ADL abstraction instances.
Furthermore, the ASP component of the proxy router stores the log of the communication between the RAD process activities
and the respective services (a snapshot of ASP log is shown in Figure 2(d)). Both of the above logs serve as indirect outputs
for the process being executed. In addition, the output generated to have human-user interaction during the execution of the
Submission process model is used as a direct output and has been presented in Figure 3.

Table 3: pi-ADL Abstractions and Data Types for some of the Role, Hanging Thread and Process Modelling Constructs of
RAD Modelling (Khan, 2009; Khan, et. al, 2008c)

Concerned Elements
(RAD Constructs)

New pi-ADL
Constructs (or
Abstraction)

Additional supporting pi-
ADL Abstractions New Data Types

Role
Role,

router_role_connect

Iregistry_Process
Interaction_Repository

Registry_Filler

IR_Tuple, Trans_Element,
Role_Address, globally scoped

Role Channel(s)

Hanging Thread

-

Customised FE
abstractions,

for_hangthread n
Role scoped channels

Process Process_Engine_Enactm
ent

Process_Controller,
IRegistry_Process,

Proxy_Router
Globally declared channels

Table 4: A Few Static Verification Checklist Questions for Role Modelling Construct of RAD (Khan, 2009; Khan, et. al,
2008c)

Modelling
constructs and
additional pi-

ADL
abstractions

Concerned Checklist Questions

Role

1. Does each role abstraction consist of abstractions of individual RAD constructs?
2. Have RAD constructs inside the role abstraction been enacted?
3. Have the channels of RAD constructs inside a role been unified as per the order depicted

in the RAD process model?
4. Have the mechanisms in a role abstraction been defined to handle more than one

hanging threads?
5. Has a global role_channel been declared for each role to communicate with human

actors? E.g. trigger value, Case_Activity value etc.
6. Has a protocol been defined to start role processing?
7. Has a Part_Registry been enacted within a role abstraction to handle part interactions?
8. Have all roles registered their names and channels to Interaction Registry at

bootstrapping so that they can receive transmission element?

Table 5: Dynamic Validation Checklist Questions For a few RAD Modelling Constructs (Khan, 2009; Khan, et. al, 2008c)

Modelling
Constructs

Concerned Questions for the Expected Behaviour

Role 1. Has the role performed the required behaviour during execution?
2. Has the topological formation within role correctly executed? i.e. flow of activities.
3. Have all the hanging threads executed properly?

Activity and
Encapsulation

4. Has the activity performed the required behaviour during execution?
5. Has the activity properly linked with its corresponding grid service?

Trigger 6. Has the trigger performed the required behaviour during execution?
Stop 7. Has stop activity provided the required behaviour during execution?
Driver-part
interaction

8. Has the driver part interaction transmitted the resource and transmission element to its
corresponding receiver-part interaction in another role?

Receiver-part
interaction

9. Has the receiver part interaction received the resource being sent by its corresponding driver-
part interaction from another role?

a) Output of the Author Terminal

a) Output of the Editor Terminal

Figure 3: Execution Output of the Submission Process

1a. Handshaking Protocol
between process execution
environment and human-user
for the Author role (i.e.
Zaheer)

3. Author fires the
“Article ready to be
submitted” Trigger

2a. Author agrees
to execute the
Author role

4. Author provides
the Article for the
“Submit Article”
driver part
interaction

6. Author enters the value for the
“Consider Resubmission?” Case
refinement in the Author role

8. After having one iteration, user again enters the
value for the “Consider Resubmission?” Case
refinement in the Author role

1b. Handshaking Protocol between process
execution environment and human-user for
the Editor role (i.e. Mohammed)

2b.Editor agrees
to execute the
Editor role

5. Editor enters
the value for
the “Accepted
for Peer-
review?” case
refinement in
the Editor role

9. In second iteration, Editor again enters the
value for the “Accepted for Peer-review?”
case refinement in the Editor role

7. In first iteration, Editor again enters the
value for the “Accepted for Peer-review?”
case refinement in the Editor role

5.3. Evaluation Outcomes
Both static verification and dynamic validation have identified a number of issues related to RAD process model translation
and enactment using the BPMSOA framework, for example:

• Stage I verification verifies that the RAD model of the Submission process is correctly translated into its corresponding
XML representation since the number of elements, their description and order in the XML representation is consistent
with the corresponding RAD model (Khan, 2009). Also, inspecting the respective pi-ADL specifications of a RAD
process model based on the stage II criteria verifies that the required functionality is correctly specified in the pi-ADL
abstractions of the specific modelling constructs. However, stage II verification reveals that translating a RAD modelling
construct into the respective pi-ADL specification is not straightforward since it requires customisation during
translations for specific modelling constructs, for example, parametric values for RAD activities, resource elements (i.e.
messages, e.g. ‘Submit Article’ driver part interaction of the Submission process), variation of control structures (i.e.
loops, case and part refinements), human-user based activities, etc. (Khan, 2009). Such translation customisations lessen
the extent to which RAD process models can be automatically translated into the respective pi-ADL specifications.

Figure 4: Static Verification using the Concern-based Approach

• In addition, the static verification (using inspections) of the pi-ADL specifications of the Submission process reveals that
all the channel unifications have been correctly performed. An invalid channel unification between different abstractions
may result in an unexpected process behaviour (e.g. halting the process). Such an error may be caused due to improper
design of process abstractions or an incorrect channel qualifier name checking (i.e. syntactic checking), which cannot be
detected at compile time. This indicates that channel unifications must be verified for process abstractions such as process
activity, proxy router, case-refinements, loops, etc.

In general, the static verification of the role-based BPMSOA instantiation verifies that the translation of the Submission

process from RAD process models to the respective pi-ADL specifications (through the intermediate XML translation steps)
is syntactically correct with respect to the checklist questions derived using the adopted concern based approach. Stage II
verification has revealed a number of issues which restrict the extent to which an XML representation of a RAD process
model can be automatically translated into the respective pi-ADL specification. These issues can be mainly attributed to
coarse grained RAD process models with poor execution semantics, and the restrictions in designing specific modelling
constructs such as nested gateways (Khan, 2009).

Similarly, based on the above dynamic validation for the Submission process (Khan, 2009), the following few
observations and results can be briefly reported and reflected on:
• Pi-ADL has the capability to capture and model different execution semantics, but to automate the correct interpretation

of a coarse-grain RAD process model is not a straightforward procedure. The dynamic validation of the Submission
process reveals that pi-ADL can model the structural, informational, flow and behavioural aspects of a business process
(Khan, 2009). However, it has been observed that the more enriched RAD business process models are the more they can
lead to correct and clear execution semantics. The following few scenarios highlight the uncertainty in determining the
required execution behaviour for a particular modelling construct due to the unavailability of certain information in the
corresponding RAD process models which may result in unwanted behaviour.
• It is difficult to automatically determine at run-time whether the resource element of a driver-part interaction needs to

be entered by a human-user of that role or that resource received from a previous activity or modelling construct.
This reveals that there should be an application domain specific data model associated with the business process
models that can be utilised during the process model execution. However, current models’ representations (i.e. XML
and pi-ADL specification of RADs) at different levels of BPMSOA cannot automatically generate such resources.

• Similarly, a goal-state and/or merging two states does not provide clear execution semantics that can be automatically
determined from the respective RAD model. For example, in the part refinement segment (in the Editor role of the
Submission process model), all threads produce some state values which may need to be passed to an activity after
the part refinement segment. However, the RAD model of the Submission process does not indicate how to
synthesize these multiple state values generated by the part refinement threads before these are passed on to the next
activity.

• The current RAD pi-ADL specifications necessitate process activities of the enacted process model to assemble the
parameters required to invoke a particular grid service. A run-time error in integrating a process activity with the
respective grid service (for example, due to incorrect parameters) can result in erroneous process execution behaviour
such as halting the process model execution (Khan, 2009). For example, based on the intra-role model of χ-Metamodel
(Khan, et. al, 2007) when a process activity goes into blocking mode (i.e. the synchronous receive prefix is waiting for a
reply from the Proxy_Router abstraction), it also keeps the execution of the subsequent process modelling constructs
blocking since they cannot continue their execution because they are waiting for the control trigger and state values from
the current process activity. The current RAD pi-ADL specifications do not deal with such a blocking behaviour due to
the default synchronous behaviour of pi-ADL send/receive prefixes. This suggests that further investigation is required in
re-designing pi-ADL abstractions and handling such run-time errors.

Figure 5: Dynamic Validation using the Concern-based Approach

In general, the execution behaviour of the Submission process has been dynamically validated and revealed the correct
behaviour. This reflects on the suitability of pi-ADL as an execution language to be used in the BPMSOA framework to enact
and execute a business process using application domain specific grid services (Khan, 2009). In addition, the pi-ADL
specifications for RADs are still not complete and require further investigation since they currently cannot handle errors,
exceptions, and are lacking in automating the proper identification of resources required for inter-role interactions at run-time.

6. ANALYSIS OF THE RESEARCH OUTCOMES

In this section, we briefly reflect on the BPMSOA’s layered architecture, the use of metamodels, pi-ADL, and the respective
model mappings at different layers.
• Business process models can be enacted in GSOA environments using the BPMSOA framework as demonstrated using

the Submission process. The BPMSOA framework uses special purpose designed instantiation and application processes
which facilitate the enactment of a role-based business process model into the GSOA environment via intermediary
model translations. The orthogonal layers of the BPMSOA framework can be used to manage intermediary translated
models as artefacts which can be reused for later process model enactment.

• The above characteristic suggests that the BPMSOA framework is closely aligned with the MDE approach as each layer
generates a particular model of a given business process in accordance with its respective metamodels. Further, a top-
down translation of Platform Independent Models (PIM) e.g. RAD, to Platform Specific Models (PSM) e.g. pi-ADL and
its enactment is facilitated with a structured process. In addition, each associated metamodel has specific perspectives
which capture different model dimensions such as structural, flow, non-functional, etc.

• There is a direct relationship between the particular instances of the BPMSOA metamodels, where each metamodel
instance directs its associated layered component to perform specific model translation steps. For example, in (Khan
2009), the role-based α-Metamodel (i.e. at the Generalisation layer) is defined using the meta-concepts introduced in the
Process Modelling Metamodel (i.e. at the Process Modelling layer). Similarly, the role-based instances of the τ-
Metamodel and the χ-Metamodel (i.e. at the Transformation layer) are based on the concepts introduced in the role-based
α-Metamodel. Further, particular instances of these associated metamodels can be used to capture a particular business
process modelling approach such as role-based, etc. More instances of these metamodels allow BPMSOA to deal with

different process modelling approaches, and hence this suggests that BPMSOA can be a generalised framework. In
addition, each metamodel is concerned with different perspectives (e.g. α-Metamodel consists of Structural, Flow and
Interaction perspectives), where each is realised using a number of elements (e.g. Structural perspective of α-metamodel
consists of Composition, Flow and Interaction elements). The modular design of these metamodels is flexible enough to
accommodate new perspectives (for example, a Functional perspective) and elements (such as Control elements, etc.),
which suggests that BPMSOA can also be an extensible framework.

• The extent to which the intermediary translations can be automated in the BPMSOA framework is subject to generic
mappings between different technological spaces such as role-based business process modelling languages, XML and pi-
ADL. The application of the role-based BPMSOA framework on the Submission process of the DL domain has yielded
that it is not straightforward to have such generic mappings because it requires bespoke design of the intermediary model
representations and, in particular, the pi-ADL specifications associated with the dynamic behaviour of different business
process modelling constructs. These limitations can be attributed to the restricted capability of these technological spaces
(e.g. the business process modelling language space and architectural description languages such as pi-ADL) to be
mapped and translated fully from one to the other. Hence, this reveals that the extent to which the BPMSOA framework
can bridge the gap between business process models and service oriented environments depends on the capability to
correctly map and translate business process models into their respective XML and pi-ADL specifications.

• Furthermore, the limitation of the translation automation may also be attributed to coarsely defined process models, ad-
hoc, randomly presented resources or to data elements, and the associated human user responsibilities within the specific
roles of the business process models. In addition, these limitations are not straightforward to identify automatically by
intermediary translation tools. In contrast, humans are capable of handling the above limitations in real time and can make
non-deterministic decisions to understand the semantics of specific process activities and the need for the required
resources/data elements of particular business process models. However, software tools are constrained without human
support in terms of correctly identifying and translating the syntactic representations and the semantic behaviour of
coarsely grained process models into executable code. Hence, this suggests that role-based business process models can
be enacted in GSOA environment but the translations for these process models into executable programs must be partially
facilitated by programmers to aid undefined or coarsely grained execution semantics with additional resource or data
requirements (Khan, 2009).

• The use of pi-ADL and its associated ArchWare tools play a major contribution in bridging the gap between business
process models and GSOA environments. Although pi-ADL is considered a block-structured architectural description
language, its channel unification and mobility features enable it to also capture graph-based models such as RAD, etc. For
example, RAD modelling constructs are represented as abstractions using pi-ADL, which can embody the required
programming expressions, statements, etc. related to the behavioural requirement for that particular modelling construct.
When these abstractions are enacted, execution control can be passed from one abstraction instance to another using the
unified and mobile channels between these instances through the send and receive action prefixes. These features enable
the pi-ADL specification of a business process model to adhere to the specified control flow (Khan, 2009). However, the
use of channel unification and mobility may result in erroneous process execution and/or halt process execution due to
input/output (I/O) blocking (i.e. synchronous behaviour of send and receive prefixes), if improper channel unification is
performed. As a consequence, this raises the need to incorporate advanced debugging facilities in order to identify
possible erroneous channel unification to be applied for correct utilisation. Also, new design mechanisms can be
investigated to facilitate asynchronous channel based communication in order to avoid limitations which can be caused
due to I/O blocking prefixes.

• The pi-ADL specification of the Submission process (and in particular loop handling) shows that pi-ADL can execute the
graph-based process structures using its channel based mobile communication characteristics. For example, the BPMSOA
pi-ADL iterative_flow and abst_comp abstractions are activated using such characteristics. Thus, in the absence of such
characteristics, it will be difficult to achieve such graph-based (e.g. loops) behaviour let alone designing pi-ADL
specifications for RAD process models (Khan, 2009).

• Human roles or activities (i.e. activities with human intervention) can be simulated and executed in pi-ADL using a
terminal node. Such roles and activities need to be distinguished from the outset in the Process Modelling and
Generalisation layers since the BPMSOA and its respective role-based pi-ADL specifications do not cater for such a need
unless it is identified in the above mentioned two layers.

• The application of the Submission process using the BPMSOA framework leads us to strongly conclude that pi-ADL can
capture different dimensions (as envisaged in the MDE approach (Stuart, 2002)) of the original business process model
such as platform specific executable specifications which can also include:
• a subject area dimension such as human user based roles (e.g. the Author and the Editor roles in the Submission

process), or system supported activities (e.g. in the Submission process, performing initial evaluation for a submitted
article); and,

• an aspect dimension such as process flow (within a role or process model) which may include sequence, concurrency,
iteration, distribution, information and data. This enables programmers to program both block-structured as well as
graph-based business process models in pi-ADL.

• The application of the separation of concerns design principle has yielded a logical separation between sub components of
BPMSOA layers. For example, the proxy router component enables pi-ADL based process activities to communicate
with respective grid services without interfering with the associated pi-ADL based process execution (Khan, 2009; Khan,
et. al, 2008b). Furthermore, the design of the proxy router sub-components can be extended to introduce a Universal
Description Discovery and Integration (UDDI) like mechanism and can also access the required functionality from other
IT applications, e.g. web-services, P2P, etc.

• The above model of enacting a business process using the BPMSOA framework further suggests its suitability for process
agility (Khan, 2009). For example, while the execution behaviour of RAD modelling activities may not be determined
using its respective RAD model, this execution behaviour is acquired from the respective application domain specific grid
services. This approach demonstrates that the actual process workflow is translated into respective pi-ADL specifications
and is executed in the ArchWare Virtual Machine (ADLVM) (ArchWare, 2005). However, the behavioural functionality
of the executing process activities is acquired from the application domain specific grid services using the proxy router
component. On the one hand, a change in the process design topology (i.e. its workflow or structure) is not affected by the
behavioural functionality of the respective process activities since it can be accessed from specific application services.
On the other hand, binding a new application domain specific grid service (i.e. with different functionality) with the
specific executing process activity can also accomodate the required behavioural changes.

In addition, the following limitations have been revealed which will be dealt as future research work:
• The absence of an application domain specific resource data model can make it difficult to automatically specify a

business process in pi-ADL, because it is not possible to automatically determine from the given RAD model of a
business process the data elements or resources which need to be exchanged during inter-role interactions, for example,
an article or manuscript in the case of the Submission process. This indicates that an application domain specific data
model needs to be introduced in the BPMSOA framework that can be associated with business process representations at
different layers, which can be considered as a step towards handling this shortcoming.

• Designing and customising the pi-ADL specification for complex RAD process models is not a straightforward task. For
example, as the level of control flow complexity (e.g. with nested gateways, overlapping loops, loops with hanging thread
fragments and replicate refinement) increases in a RAD business process model, this may require refinements in the
current RAD pi-ADL specifications. For example, in a RAD model a replicate refinement (indefinite part-refinement) can
be represented. This however, cannot be accommodated by the current RAD pi-ADL specifications due to the need to
specify the required number of part threads with their constructs and channel unifications. Hence, more case studies with
complex control flows need to be conducted in order to find remedies for such shortcomings.

• Errors and Exceptions can lead to the unexpected execution behaviour of a given business process. The current pi-ADL
specifications for RAD models do not cover exception and error handling, mainly due to the non-existence of any
asynchronous channel communication in pi-ADL. This indicates that the current RAD pi-ADL specification needs to
incorporate additional mechanisms to handle errors and exceptions by incorporating asynchronous communication
design.

7. CONCLUSION

In conclusion and despite the above issues discussed in section 6, the evaluation outcomes reflect on the usefulness of
BPMSOA as a framework that has been instantiated using the role-based process modelling paradigm and in particular using
RADs as a step towards bridging the gap between role-based business process models and service oriented environments. In
particular, the use of pi-ADL as a process execution language demonstrates its capability to specify, enact and execute
complex business process models. We used a simple case study from digital libraries domain to establish a foundation for
conducting the experiments. The same approach (i.e. by using the BPMSOA framework) could be adopted for other
application domains (e.g. finance, etc.) to integrate business process activities with grid utility services. However, the RAD pi-
ADL specifications need further extensions (for example, handling run-time errors) and refinements (for example, static
parametric requirements to invoke respective grid services), which are anticipated to increase the usability of the BPMSOA
framework when validated using different other process modelling paradigms and complex designed business processes.

REFERENCES

Giaglis, G. M., (2001), A Taxonomy of Business Process Modelling and Information Systems Modelling Techniques, The
International Journal of Flexible Manufacturing Systems, vol. 13, pp. 209-228.

Curtis, B., (1992), Process Modelling, Communications of the ACM, 35(9), pp. 75-90.

Aguilar-Saven, R. S., (2003), Business process modelling: Review and Framework, International Journal of Production
Economics, 90(2), pp. 129-149.

Havey, M., (2005), Essential Business Process Modelling, ISBN. 0-596-00843-0, O'Reilly Publishers.

Kurtev, I., Bezivin, J. and Aksit, M., (2002), Technological Spaces: an Initial Appraisal, Federated Conferences: Cooperative
Information Systems (CoopIS) - International Symposium of Distributed Objects and Applications (DOA), Industrial
Track, Irvine, California.

Krafzig, D., Banke, K. and Slama, D., (2004), Enterprise SOA: Service-Oriented Architecture Best Practices, ISBN. 0-13-
146575-9, Prentice Hall PTR.

BEA Systems, (2007), The Integration Journey - a Field Guide to Enterprise Integration for SOA [online], BEA White Paper,
Available from: http://contact2.bea.com/bea/www/soa_mom/mom3.jsp?PC=56TU3GXXWPBE [Accessed
10/07/2007].

Breivold, H.P. and Larsson, M., (2007), Component-Based and Service-Oriented Software Engineering: Key Concepts and
Principles, 33rd EUROMICRO Conference on Software Engineering and Advanced Applications, pp. 13-20.

Oquendo, F., (2004), pi-ADL: An Architecture Description Language based on the Higher-Order Typed pi-Calculus for
specifying Dynamic and Mobile Software Architectures, ACM Software Engineering Notes, 29(4).

Oquendo, F., (2005), Tutorial on ArchWare ADL - Version 2 - Pi-ADL Tutorial - Project Deliverable D1.9 [online], Available
from: http://www.arch-ware.org/ [Accessed 15/05/2006].

Milner, R., (1999), Communicating and mobile systems: the pi calculus, ISBN. 052164320, Cambridge University Press.

NGG - Next Generation Grids, (2006), Future for European Grids: GRIDs and Service Oriented Knowledge Utilities: Vision
and Research Directions 2010 and Beyond [online], NGG Expert Report, Available from: URL Access:
ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3_eg_final.pdf [Accessed 15/6/2008].

SOKU, (2006), From Grids to Service-Oriented Knowledge Utilities: A critical infrastructure for business and the citizens in
the knowledge society [online], EC Report ISBN: 92-79-02116-8, Available from:
ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/soku-brochure_en.pdf.

Sotomayor, B., (2005), The Globus Toolkit 4.0 [online], Available from: http://gdp.globus.org/gt4-
tutorial/multiplehtml/index.html [Accessed 14/12/2007].

Manset, D., Verjus, H., McClatchey, R. and Oquendo, F., (2006). A Formal Architecture-centric model-driven approach for
the automatic generation of Grid applications, ICEIS06, Paphos, Cyprus.

Stuart, K., (2002), Model Driven Engineering, In Book: Integrated Formal Methods - Lecture Notes in Computer Science,
Springer Berlin/Heidelberg, ISBN: 978-3-540-43703-1, vol. 2335/2002, pp. 286-298.

Fondement, F. and Silaghi, R., (2004), Defining Model Driven Engineering Processes [online], 3rd Workshop in Software
Model Engineering/the 7th International Conference on the UML (WiSME@UML2004), Lisbon, Portugal. Available
from: http://www.metamodel.com/wisme-2004/papers.html [Accessed 04/02/2008].

Khan, Z. A., (2009), Bridging the gap between business process models and service oriented architectures with reference to
the Grid environment, PhD Thesis, Bristol Institute of Technology, University of the West of England, Bristol, UK.
British Library EThOS Persistent ID: uk.bl.ethos.501099

Ould, M., (1995), Business Processes: Modelling and Analysis for Re-engineering and Improvement, ISBN. 0-471-95352-0,
Wiley.

Khan, Z.A., Odeh, M. and McClatchey, R., (2006a), Digital Libraries: From Process Modelling to Grid-based Service
Oriented Architecture, Proceedings of the 2nd Int. Conference on Information & Communication Technologies from
Theory to Application (ICTTA'06), Damascus, Syria, vol. 1, pp. 280-285.

Odeh, M., Beeson, I., Green, S. and Sa, J., (2002), Modelling Processes Using RAD and UML Activity Diagrams: an
Exploratory Study, The 3rd International Arab Conference on Information Technology, ACIT2002, Doha, Qatar.

Odeh, M. and Kamm, R., (2003), Bridging the Gap between Business Models and System Models, Information and Software
Technology, 45(15), pp. 1053-1060.

Martinez-Garcia, A. I. and Mendez-Olague, R., (2002), Integrating Process Modeling and Simulation Through Reusable
Models in XML, In Proceedings of the Summer Computer Simulation Conference 2002, The Society for Modeling
and Simulation International-SCS, pp. 452-460.

Badica, C. and Fox, C., (2001), Business Process Modelling Using Process Algebras, OR'43 (BPCME'01), Bath, UK.

Arkin, A., (2002), Business Process Modelling Language [online], BPMI.org, Available from:
http://xml.coverpages.org/BPML-2002.pdf [Accessed 11/08/2007].

Juric, M. B., Mathew, B. and Sarang, P., (2004), Business Process Execution Language for Web Services, ISBN. 1-904811-
18-3, PACKT Publishing.

Blanvalet, S., Bolie, J. and et. al., (2006), BPEL Cookbook: Best Practices for SOA-based Integration and Composite
Applications Development, ISBN. 1-904811-33-7, PACKT Publishing.

The OWLService Coalition, (2005), OWL-S: Semantic Markup for Web Services [online], Available from:
http://www.daml.org/services/ [Accessed 01/10/2005].

Guo, L., Chen-Burger, Y.H. and Roberston, D., (2004), Mapping a Business Process Model to a Semantic Web Service
Model, Proceedings of the Third International Conference on Web Services, ICWS 2004, San Diego, California,
USA.

White, S.A., (2005), Using BPMN to Model a BPEL Process, BPTrend.

Owen, M. and Raj, J., (2007), BPMN and Business Process Management: Introduction to the New Business Process
Modelling Standard [online], Available from:
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf [Accessed 17/07/2007].

White, S.A., (2007), Using BPMN to Model a BPEL Process [online], Available from: http://www.bpmn.org/ [Accessed
10/07/2007].

Ouyang, C., Aalst, W. M., Dumas, M. and Hofstede, A. H., (2006), Translating BPMN to BPEL [online], Available from:
http://eprints.qut.edu.au/archive/00003615/ [Accessed 10/08/2007].

Recker, J. and Mendling, J., (2006), On the Translation between BPMN and BPEL: Conceptual Mismatch between Process
Modelling Languages, CAiSE 2006 Workshop Proceedings - Eleventh International Workshop on Exploring Modelling
Methods in Systems Analysis and Design, pp. 521-532.

BPMN, (2007), Business Process Modelling Notation (BPMN) [online], Available from: http://www.bpmn.org/ [Accessed
10/07/2007].

Shapiro, R., (2002), A comparison of XPDL, BPML, and BPEL4WS [online], ebPML.org, Available from:
http://xml.coverpages.org/bpml.html [Accessed 10/05/2008].

Khan Z. A. and Odeh, M., (2007), A Framework for Translating RAD business process models into π-adl, in proceedings of
Arab Conference of IT (ACIT2007), Syria.

Khan Z. A. and Odeh, M., (2008a), Business Process Modelling: Coarse to Fine Grain Mapping Using Metamodels,
Proceedings of IASTED Software Engineering, Innsbruck, Austria.

Khan Z. A. and Odeh, M., (2008b), The BPMSOA: Linking Utility Grid Services with Executable Business Processes using
the p-ADL based Proxy Router, Proceedings of the 3nd Int. Conference on Information & Communication
Technologies from Theory to Application (ICTTA'08), Damascus, Syria.

Khan Z. A., Odeh, M., Solomonides, T. and Oquendo, F., (2008c), The BPMSOA: evaluating the enactment of a business
process using application domain specific grid services, Proceedings of the 10th International Conference on
Information Integration and Web-based Applications Services (iiWAS2008), ISBN 978-1-60558-349-5, p.p. 232-
239. Linz, Austria.

Sommerville, I. (2006), "Software Engineering", ISBN. 9780321313799, Addison-Wesley.

ArchWare, (2005), ArchWare EmptyStore Repository [online], Available from:
http://intranet.cs.man.ac.uk/ipg/research/projects/AW/ [Accessed 26/03/2008].

Harrison-Broninski, K., (2007), A Role-Based Approach To Business Process Management [online], Accessed from:
http://human-interaction-management.info.

RADModeller, (2006), RADModeller: Instream Tools [online], Available from: http://www.instream.co.uk/radmodeller.html
[Accessed 10/09/2006].

Kotonya, G. and Sommerville, I., (2002), Requirements Engineering: Processes and Techniques, ISBN. 0-471-97208-8, John
Wiley & Sons. Inc.

Blythe, J., Deelman, E., Gil, Y., (2004), “Automatically Composed Workflows for Grid Environments” IEEE Intelligent
Systems July/August 2004.

Brandic, I., Pllana, S., and Benkner, S., (2008), “Specification, Planning, and execution of QoS-aware Grid workflows within
the Amadeus environment”, CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE, Wiley
InterScience, 20(4), p.p. 331-345.

A-WARE project: EC IST FP6 project contract number: IST-05-034545, June 2006 – 2008.

Curcin, V., Ghanem, M., (2008), “Scientific workflow systems – can one size fit all?”, In Proceedings of the 4th Cairo
International Biomedical Engineering Conference, 2008, CIBEC 2008. 18-20 December 2008. IEEE, ISBN 978-1-
4244-2695-9.

Pllana, S., Fahringer, T., Testori, J., Benkner, S., and Brandic, I., (2004), “Towards an UML Based Graphical Representation
of Grid Workflow Applications”, In Proceedings of European Across Grids Conference 2004, pp.149~158.

Dornemann, T., Friese, T., Herdt, S., Juhnke, E., and Freisleben, B., (2007), “Grid Workflow Modelling Using Grid-Specific
BPEL Extensions, In Proceedings of German e-Science 2007, p.p 1-9.

Yu J., and Buyya, R., (2006), “A Taxonomy of Workflow Management Systems for Grid Computing”, Journal of Grid
Computing, Sept. 2005, 3(3-4), p.p. 171-200. Springer Science Business Media B.V., NY, USA,

Dehnert J., and Van Der Aalst, W.M.P., (2008), “Bridging the gap between business models and workflow specifications”,
International Journal of Cooperative Information Systems.

Friese, T., Smith, M., Freisleben, B., (2006), “GDT: A Toolkit for Grid Service Development”, Proceedings of NODe/GSEM,
p.p 131-147, Erfurt, Germany.

Deelman, E., Gannon, D., Shields, M., Taylor, I., (2009), “Workflows and e-Science: An overview of workflow system
features and capabilities”, Journal of Future Generation Computer Systems 25(5), p.p. 528-540.

Shirasuna, S., (2011), “XBaya: A graphical workflow composer for web services”, URL Access:
http://www.extreme.indiana.edu/xgws/xbaya/#introduction Last Accessed: 26 April 2011.

Wassermann, B. and Emmerich, W. and Butchart, B. and Cameron, N. and Chen, L. and Patel, J., (2007), “Sedna: a BPEL-
based environment for visual scientific workflow modelling”. In: Taylor, I.J. and Deelman, E. and Gannon, D.B. and
Shields, M., (eds.) Workflows for e-Science, ISBN 9781846285196, DOI: 5620, p.p. 428-449, London, UK.

OMII-BPEL: URL Access: http://sse.cs.ucl.ac.uk/omii-bpel/docs/index.html Last Accessed: 28 April 2011.

Int. J., Vol. x, No. x, 201x 21

Copyright © 200x Inderscience Enterprises Ltd.

ANNEX – I: BPMSOA FRAMEWORK: STRUCTURES OF THE ROLE-BASED METAMODELS

1. A generic role-based meta-model (Khan, 2009; Khan, et. al, 2008c)

2. Structure of the Role-based (in particular RAD) α-Metamodel (Khan, 2009; Khan, et. al, 2008c)

Trigger

Activity
Interaction

Gateway

State

Trigger

Activity Interaction

Gateway

Sate

Sender

Receiver

Composition
Element (CE)

Interaction Element
(IE)

Flow Element (FE) Key:
Possible types

Shared between two or more CEs

Conditional

Concurrency

Iterative

Action

Sub-process

Instantiation

Terminate

Language
spacific type

Timer Message Error etc.

3. Structure of the Role-based (in particular RAD) τ-Metamodel (UML model) (Khan, 2009; Khan, et. al, 2008c)

4. Structure of the Role-based (in particular RAD) χ-Metamodel (Khan, 2009; Khan, et. al, 2007)

ANNEX – II: RAD PI-ADL SPECIFICATIONS: AN EXAMPLE

1. New Pi-ADL abstractions for RAD (Khan, 2009)

2. An example: pi-ADL code of IRegistry_Process abstraction for Interaction Repository Model (Khan, 2009)

Like an SOA model, in RAD pi-ADL specifications, the Interaction Registry model (Khan, 2009; Khan, et. al, 2007)
enables two RAD roles to interact using a driver part and a receiver part interaction using a central registry mechanism. From
RAD pi-ADL specifications (Khan, 2009), Figure B.1 (b) depicts the sequence of activities and interaction between different
newly defined pi-ADL sub-abstractions to implement an interaction between two roles as depicted in Figure B.1 (a). For
example, in Figure B.1 (b) the following steps are executed in sequence to perform a part interaction activity: (1) Likewise to
a service provider in an SOA model, all roles register one dedicated mobile channel with the Interaction Registry component;
(2) Similarly, all receiver part interactions inside a role register one dedicated mobile channel to Part Registry of the role; (3)
Driver part interaction sends resource (e.g. message) to the associated instance of Router Role Connect abstraction which in
steps (4) and (5) gets the registered mobile channel of the receiver role of the part interaction from the Interaction Registry;
(6) Then the Router Role Connect forwards the resource on the received mobile channel of the receiving role; After receiving
the resource, in steps (7) and (8), the receiving role gets the registered mobile channel of the receiving part interaction from
the Part Registry; (9) Then this resource is forwarded to the receiving part interaction on the received mobile channel of the
part interaction.

The IRegistry_Process abstraction is the implementation of the Interaction Registry model using the pi-ADL. It consists of
two sub abstractions: the Interaction_Registry and the Registry_Filler. The instance of Registry_Filler abstraction utilises the
addresses and names of roles and interaction activities (i.e. Interaction Elements (IE) from the τ-Metamodel) to populate the
Interaction_Registry (also referred as Interaction_Repository). This results in binding the addresses of both the sender and the
receiver part interactions with the corresponding roles in the Interaction Registry at the start of the execution of a business
process. The Interaction_Registry abstraction provides many sub abstractions which are used to manage the Interaction
Registry (i.e. store, extract and remove the addresses and names of roles and interactions activities).

Trigger

Case_Refinement

Part_Interaction Driver_Part_Interaction

Role_Instantiate

Abst_Goal_State

Router_role_connect

Interaction_Repository
IRegistry_Proces

s

Process_Controller

Part_Refinement

Activity
Stop

Process_Engine_Enactment

Registry_Filler

Role

Case_Activity

Figure B.1 Interaction Registry working model (Khan, 2009)
The pi-ADL code for the above Interaction Repository model (Figure B.1 (b)) is detailed below (anything after ‘!’ is
considered as comments by the ADL Virtual Machine).

value IRegistry_process = abstraction();{
 value tuple_Registry = sequence(dummy_IR_tuple)
 value t_registry = location(tuple_Registry)
 value address_registry = sequence(dummy_Rol_Address)
 value r_registry = location(address_registry)
 value mobile_IRtuple_channel_rec = connection(IR_Tuple)
 value mobile_IRtuple_channel_rec1 = connection(IR_Tuple)
 value send_tuple = connection (IR_Tuple)
 value tuple_rec_channel = connection(connection[IR_Tuple])
 value tuple_rec_channel1 = connection(connection[IR_Tuple])
 value role_channel = connection(Role_Address)
 value role_name_channel = connection(string)
 value role_add_channel = connection(connection[Trans_Element])
 value rem_add_mchannel = connection(Role_Address)
 value addr_rec_channel1 = connection(connection[Role_Address])

!Following abstraction implements Interaction Repository
 value Interaction_Repository = abstraction();{
 value tuple_channel = connection(connection[IR_Tuple])
 value mobile_IRtuple_channel = connection(IR_Tuple)
 value dummy_tuple = location(dummy_IR_tuple)
 tuple_Registry excluding dummy_IR_tuple
 address_registry excluding dummy_Rol_Address
 via tuple_channel send mobile_IRtuple_channel
 via tuple_rec_channel send mobile_IRtuple_channel_rec
 via tuple_rec_channel1 send mobile_IRtuple_channel_rec1

 value receive_and_add_tuple_values = abstraction();{replicate{
 via mobile_IRtuple_channel receive IR_entry : IR_Tuple
 tuple_Registry including IR_entry
 t_registry := tuple_Registry
 done}
 } ! End of receive_and_add_tuple_values

1 1

2

= Role mobile channel
= Part interaction mobile channel

= Part Registry

= Interaction Registry

= Router role connect

3
4

5
6

7

8
9

Key:

Role 1
Role 2

Role 1 Role 2 (a) An example Interaction
Model

(b) Reference Implentation

 (b) Inter-Role Interaction Registry

Part
Registry

R2-r1 R1-d1

R1-d1 R2-r1

 value receive_and_add_role_address = abstraction();{replicate{
 via role_channel receive role_reference : Role_Address
 address_registry including role_reference
 r_registry := address_registry
 done}
 } ! End of receive_and_add_role_address

 value get_address_from_Registry = abstraction();{replicate{
 via role_name_channel receive role_name : string
 value dummy_address = view(name=role_name,mchannel=dummy6)
 iterate 'r_registry by r : Role_Address
 from ra = location(dummy_address)
 accumulate { if (r.name = 'ra.name) then r else 'ra }
 via role_add_channel send 'ra.mchannel
 done}
 } ! End of get_address_from_Registry

 value remove_address_from_Registry = abstraction();{
 via addr_rec_channel1 send rem_add_mchannel
 replicate{
 via rem_add_mchannel receive rm_add : Role_Address
 iterate 'r_registry by r : Role_Address
 from rt = location(rm_add)
 accumulate {if (r.name='rt.name) then r else 'rt}
 address_registry excluding 'rt
 r_registry := address_registry
 done}
 } ! End of remove_address_from_Registry

 value get_tuple_from_Registry = abstraction();{replicate{
 via mobile_IRtuple_channel_rec receive d : IR_Tuple
 dummy_tuple := d
 iterate 't_registry by e : IR_Tuple
 from dt = location(d)
 accumulate {

if ((e.drv_role='dt.drv_role) and (e.drv_entity='dt.drv_entity)) then e else 'dt
}

 via send_tuple send 'dt
 done}
 } ! End of get_tuple_from_Registry

 value remove_tuple_from_Registry = abstraction();{replicate{
 via mobile_IRtuple_channel_rec1 receive rm_tuple : IR_Tuple
 iterate 't_registry by e : IR_Tuple
 from dt = location(rm_tuple)
 accumulate {

if ((e.drv_role='dt.drv_role) and (e.drv_entity='dt.drv_entity)) then e else 'dt
}

 tuple_Registry excluding 'dt
 t_registry := tuple_Registry
 done}
 } ! End of remove_tuple_from_Registry

 compose{
 rm_tp_reg as remove_tuple_from_Registry()
 and
 gt_tp_reg as get_tuple_from_Registry()
 and
 rec_tp_reg as receive_and_add_tuple_values()
 and
 get_add_reg as get_address_from_Registry()

 and
 rec_add as receive_and_add_role_address()
 and
 rm_ad_reg as remove_address_from_Registry()
 }
 done
 } ! End of Interaction Repository

 !Following abstraction implements Registry Filler
 value Registry_Filler = abstraction();{
 value sir_tuple_channel = connection(connection[IR_Tuple])

value set_interaction_registry = abstraction(sir_channel:connection
[connection[IR_Tuple]]); {

 value tuple_receive = connection(IR_Tuple)
 via sir_channel receive m_channel : connection[IR_Tuple]
 replicate{
 via tuple_receive receive tuple_value : IR_Tuple
 via m_channel send tuple_value
 done}
 } ! End of set_interaction_registry

 ! Following abstraction fills IR with IR_Tuple (for Figure B.2 below)
 value send_registry_tuples = abstraction();{
 value tuple_value1 = view(drv_role="R1", drv_entity="R1-d1",

rec_role="R2", rec_entity="R2-r1")
 value tuple_value2 = view(drv_role="R2", drv_entity="R2-d1",

rec_role="R1", rec_entity="R1-r1")

 value tuple_send = connection(IR_Tuple)
 via tuple_send send tuple_value1
 via tuple_send send tuple_value2
 done
 } ! End of send_registry_tuples

 compose{
 sr as set_interaction_registry(sir_channel=sir_tuple_channel)
 and
 snr as send_registry_tuples() where {sr::tuple_receive unifies

snr::tuple_send}
 }
 done
 } !End of Registry Filler

 !Instantiating the Interaction_Repository and Registry_Filler abstractions
 compose{
 IR as Interaction_Repository()
 and
 RF as Registry_Filler() where {RF::sir_tuple_channel unifies IR::tuple_channel}
 }
 done
} ! End of IRegistry_Process abstraction

3. pi-ADL Script for an Inter-Role Interactions using Interaction Repository Model (Khan, 2009)

In order to demonstrate an inter-role interaction using Interaction Repository (IR) model as depicted in Figure B.1 (b), the
following script shows two interactions between two roles (Role1 and Role2), where Role1 send a message to Role2 and after
receiving the message Role2 sends back a message to Role1, as shown in Figure B.2. Please note that anything after ‘!’ is
considered as comments by the ADLVM.

Figure B.2: A simple RAD model depicting Inter-Role Interaction (Khan, 2009)

!Terminal node channel declaration – allows Input/Output e.g. input from users, connection to sockets, etc.
value ins_value = stdio(std)

!Global Type declarations – defined in detail in (Khan, 2009)
type IR_Tuple is view[drv_role:string, drv_entity:string, rec_role:string, rec_entity:string]
type Trans_Element is view[res:string, tuple1:IR_Tuple]
type Role_Address is view[name:string, mchannel:connection[Trans_Element]]
type Part_Address is view[name:string, mchannel:connection[Trans_Element]]

!Following variables are declared to initialize different pi-ADL constructs with default values
value dummy1 = ""
value dummy2 = ""
value dummy3 = ""
value dummy4 = ""
value dummy5 = ""
value dummy6 = connection(Trans_Element)
value dummy_IR_tuple = view(drv_role=dummy1, drv_entity=dummy2, rec_role=dummy3,

rec_entity=dummy4)
value dummy_Rol_Address = view(name=dummy5, mchannel=dummy6)
value dummy_Part_Address = view(name=dummy5, mchannel=dummy6)

!Important Note!
!Here pi-ADL code of Interation Repository model will be utilised – as listed above.

!Declaration of part_interaction abstraction
value part_interaction = abstraction(rname: string, pname:string, role_channel:connection

[Part_Address], rm_channel:connection[Part_Address]);{
 value in_trig = connection(string)
 value out_trig = connection(string)
 value res_rec_channel = connection(Trans_Element)
 value part_address = view(name=pname, mchannel=res_rec_channel)
 via in_trig receive in_x : string
 if (in_x="true") then{
 via role_channel send part_address
 via res_rec_channel receive resource_ab : Trans_Element
 !! now also remove tuple1 from registry inside role...
 via rm_channel send part_address
 via out_trig send "true"
 }
 else{
 via out_trig send "false"
 done
 }
 done
} ! End of part_interaction abstraction

! !Declaration of driver_part_interaction abstraction
value driver_part_interaction = abstraction(drname:string, dpname:string, res:string, te_channel:

RESOURCE FROM R1

Role1 Role2

RESOURCE FROM R2

R1-d1

R1-r1

R2-r1

R2-d1

connection[abstraction[]], re_channel:connection[abstraction[]]);{
 value in_trig = connection(string)
 value out_trig = connection(string)
 via in_trig receive in_x : string

 value resource_abst = abstraction();{
 value resource = res
 value resource_out_channel = connection(string)
 via resource_out_channel send resource
 done
 } ! End of resource_abst

 value Trans_envelope = abstraction();{
 value HEADER = view(drv_role=drname, drv_entity=dpname, rec_role="", rec_entity="")
 value header_out_channel = connection(IR_Tuple)
 via header_out_channel send HEADER
 done
 } ! End of Trans_envelope

 if (in_x = "true") then{
 via te_channel send Trans_envelope
 via re_channel send resource_abst
 via out_trig send "true"
 done
 }
 else{
 via out_trig send "false"
 done
 }
} ! End of driver_part_interaction abstraction

! An empty abstraction required to initialize other necessary abstractions
value dummy_te = abstraction();{
 done
} ! End of dummy_te

! Process_Controller abstraction enacts router_role_connect and roles with their associated elements
value Process_Controller = abstraction(stop_chann:connection[string]);{
 value dummy_chan = connection(string)
 value tuple_rec_channel = connection(connection[IR_Tuple])
 value tuple_rec_channel1 = connection(connection[IR_Tuple])
 value tuple_rec_value = connection(IR_Tuple)
 value r_address_channel = connection(Role_Address)
 value r_name_channel = connection(string)
 value r_maddr_channel = connection(connection[Trans_Element])
 value addr_rec_channel1 = connection(connection[Role_Address])
 via tuple_rec_channel receive m_tuple_channel : connection[IR_Tuple]
 via tuple_rec_channel1 receive m_tuple_channel1 : connection[IR_Tuple]
 via addr_rec_channel1 receive m_addr_channel1 : connection[Role_Address]

 ! Following is the router_role_connect abstraction
 value router_role_connect = abstraction(parent_role:string, rname_chan:connection[string],

mchannel:connection[connection[Trans_Element]])
 {
 type IR_Tuple is view[drv_role:string, drv_entity:string, rec_role:string, rec_entity:string]
 type Rol_Address is view[name:string, mchannel:connection[abstraction[]]]
 value m_te_channel = connection(abstraction[])
 value channel_te_transf = connection(connection[abstraction[]])
 value m_re_channel = connection(abstraction[])
 value channel_re_transf = connection(connection[abstraction[]])
 value trans_env_loc = location(dummy_te)

 value trans_res_loc = location(dummy_te)
 value header_loc = location(dummy_IR_tuple)
 value resource_loc = location("resource")
 via channel_te_transf send m_te_channel
 via channel_re_transf send m_re_channel
 value receive_te = abstraction(m_tchannel:connection[abstraction[]], m_rchannel:

connection[abstraction[]]);{replicate{
 via m_tchannel receive te : abstraction[]
 via m_rchannel receive re : abstraction[]
 trans_env_loc := te
 trans_res_loc := re

 value extract_send_te = abstraction();{
 value header_in_channel = connection(IR_Tuple)
 value resource_in_channel = connection(string)
 via header_in_channel receive header : IR_Tuple
 header_loc := header
 via resource_in_channel receive resource : string
 resource_loc := resource
 value trans_element = view(res=resource,tuple1=header)
 via m_tuple_channel send header
 via tuple_rec_value receive ttuple : IR_Tuple
 header_loc := ttuple

 if (ttuple.drv_role = header.drv_role) and (ttuple.drv_entity=

header.drv_entity) and (ttuple.rec_role="") and
(ttuple.rec_entity="") then {

 via ins_value send " No entry matches inside IR , router ! 'n"
 done
 }
 else{
 via ins_value send " entry matches 'n"
 via rname_chan send ttuple.rec_role
 via mchannel receive rmchannel : connection[Trans_Element]
 value resource_new = view(res=resource,tuple1=ttuple)
 via rmchannel send resource_new
 done
 }
 done
 } ! End of extract_send_te

 compose{
 tr_en as te()
 and
 tr_re as re()
 and
 ex_te as extract_send_te() where { tr_en::header_out_channel unifies

ex_te::header_in_channel, tr_re::resource_out_channel unifies
ex_te::resource_in_channel}

 }
 done}
 } ! End of receive_te abstraction

 receive_te(m_tchannel=m_te_channel, m_rchannel=m_re_channel)
 done

 } ! End of router_role_connect abstraction

 !The following abstraction composes Role 1

value Role1 = abstraction(rol_name:string, raddress:connection[Role_Address],
stop_chan:connection[string]);{

 value part_registry = sequence(dummy_Part_Address)
 value p_registry = location(part_registry)
 value out_value = connection(string)
 value loc_final = location("")
 value ac1 = driver_part_interaction ! R1-d1
 value ac2 = part_interaction ! R1-r1
 value role_name = rol_name
 value mchannel_role = connection(Trans_Element) !this is the role channel set in IR
 value Role_Addr_IR = view(name=role_name, mchannel=mchannel_role)
 value channel_te_transf = connection(connection[abstraction[]])
 value channel_re_transf = connection(connection[abstraction[]])
 via channel_te_transf receive m_te_channel : connection[abstraction[]]
 via channel_re_transf receive m_re_channel : connection[abstraction[]]
 via raddress send Role_Addr_IR
 value rem_add_mpchannel = connection(Part_Address)
 value part_channel = connection(Part_Address)
 value part_name_channel = connection(string)
 value part_add_channel = connection(connection[Trans_Element])

 value res_reception = abstraction(mres_chann : connection[Trans_Element],

part_name:connection[string], addrec_pchannel:
connection[connection[Trans_Element]]);{

 value resource_in_channel1 = connection(string)
 value header_in_channel1 = connection(Role_Address)
 replicate{
 via mres_chann receive te_res : Trans_Element
 via part_name send te_res.tuple1.rec_entity
 via addrec_pchannel receive mchannel_part1 : connection[Trans_Element]
 via mchannel_part1 send te_res
 done
 }
 } ! End of res_reception abstraction

 value receive_and_add_part_address = abstraction();{replicate{
 via part_channel receive part_reference : Part_Address
 part_registry including part_reference
 p_registry := part_registry
 done}
 } ! End of receive_and_add_part_address

 value get_address_from_pregistry = abstraction();{replicate{
 via part_name_channel receive part_name : string
 value dummy_address = view(name=part_name,mchannel=dummy6)
 iterate 'p_registry by p : Part_Address
 from pa = location(dummy_address)
 accumulate { if (p.name = 'pa.name) then p else 'pa }
 via part_add_channel send 'pa.mchannel
 done}
 } ! End of get_address_from_pregistry

 value remove_address_from_pregistry = abstraction();{replicate{
 via rem_add_mpchannel receive rm_padd : Part_Address
 iterate 'p_registry by p : Part_Address
 from pt = location(rm_padd)
 accumulate {if (p.name='pt.name) then p else 'pt}
 part_registry excluding 'pt
 p_registry := part_registry
 done}
 } ! End of remove_address_from_pregistry

 value role_pregistry_inst = abstraction();{

 compose{
 rr as res_reception(mres_chann=mchannel_role,

part_name=part_name_channel, addrec_pchannel=part_add_channel)
 and
 rpa as receive_and_add_part_address()
 and
 gar as get_address_from_pregistry()
 and
 rar as remove_address_from_pregistry()
 }
 } ! End of role_pregistry_inst

 !! Following abstraction is used to instantiate very first activity within this role
 value instantiate_activities = abstraction();{
 value inst_act = connection(string)
 via inst_act send "true"
 done
 } ! End of instantiate_activities

 !! Following abstraction links the post-state of very last activity within Role with Role
 value role_channel_comm = abstraction();{
 value in_value = connection(string)
 via in_value receive final : string
 loc_final := final
 done
 } ! End of role_channel_comm

 if (instance_x = "true") then
 {
 compose{
 inst as instantiate_activities()
 and
 rcc as role_channel_comm()
 and
 rpi as role_pregistry_inst()
 and
 c1 as ac1(drname=rol_name, dpname="R1-d1", res="RESOURCE FROM

R1", te_channel=m_te_channel, re_channel=m_re_channel)
 and c2 as ac2 (rname = rol_name, pname="R1-r1", role_channel=part_channel,

rm_channel=rem_add_mpchannel) where {inst::inst_act unifies
c1::in_trig, c1::out_trig unifies c2::in_trig, c2::out_trig unifies rcc::in_value}

 }
 }
 else
 {
 via ins_value send "Role - role end false 'n"
 done
 }
 } ! End of Role1

 !The following abstraction composes Role 2
 value Role2 = abstraction(rol_name:string, raddress:connection[Role_Address],

stop_chan:connection[string]);{
 value part_registry = sequence(dummy_Part_Address)
 value p_registry = location(part_registry)
 value out_value = connection(string)
 value loc_final = location("")
 value ac1 = part_interaction ! R2-r1
 value ac2 = driver_part_interaction ! R2-d1
 value role_name = rol_name

 value mchannel_role = connection(Trans_Element) !this is the role channel set in IR
 value Role_Addr_IR = view(name=role_name, mchannel=mchannel_role)
 value channel_te_transf = connection(connection[abstraction[]])
 value channel_re_transf = connection(connection[abstraction[]])
 via channel_te_transf receive m_te_channel : connection[abstraction[]]
 via channel_re_transf receive m_re_channel : connection[abstraction[]]
 via raddress send Role_Addr_IR
 value rem_add_mpchannel = connection(Part_Address)
 value part_channel = connection(Part_Address)
 value part_name_channel = connection(string)
 value part_add_channel = connection(connection[Trans_Element])

 value res_reception = abstraction(mres_chann : connection[Trans_Element],

part_name: connection[string], addrec_pchannel:connection
[connection[Trans_Element]]);{

 value resource_in_channel1 = connection(string)
 value header_in_channel1 = connection(Role_Address)
 replicate{
 via mres_chann receive te_res : Trans_Element
 via part_name send te_res.tuple1.rec_entity
 via addrec_pchannel receive mchannel_part1 : connection[Trans_Element]
 via mchannel_part1 send te_res
 done
 }
 } ! End of res_reception

 value receive_and_add_part_address = abstraction();{replicate{
 via part_channel receive part_reference : Part_Address
 part_registry including part_reference
 p_registry := part_registry
 done}
 } ! End of receive_and_add_part_address

 value get_address_from_pregistry = abstraction();{replicate{
 via part_name_channel receive part_name : string
 value dummy_address = view(name=part_name,mchannel=dummy6)
 iterate 'p_registry by p : Part_Address
 from pa = location(dummy_address)
 accumulate { if (p.name = 'pa.name) then p else 'pa }
 via part_add_channel send 'pa.mchannel
 done}
 } ! End of get_address_from_pregistry

 value remove_address_from_pregistry = abstraction();{replicate{
 via rem_add_mpchannel receive rm_padd : Part_Address
 iterate 'p_registry by p : Part_Address
 from pt = location(rm_padd)
 accumulate {if (p.name='pt.name) then p else 'pt}
 part_registry excluding 'pt
 p_registry := part_registry
 done}
 } ! End of remove_address_from_pregistry

 value role_pregistry_inst = abstraction();{
 compose{
 rr as res_reception(mres_chann=mchannel_role, part_name=

part_name_channel, addrec_pchannel=part_add_channel)
 and
 rpa as receive_and_add_part_address()
 and
 gar as get_address_from_pregistry()

 and
 rar as remove_address_from_pregistry()
 }
 } ! End of role_pregistry_inst

 !! Following abstraction is used to instantiate very first activity within this role
 value instantiate_activities = abstraction();{
 value inst_act = connection(string)
 via inst_act send "true"
 done
 } ! End of instantiate_activities

 !! Following abstraction links the post-state of very last activity within Role with Role
 value role_channel_comm = abstraction();{
 value in_value = connection(string)
 via in_value receive final : string
 loc_final := final
 done
 } ! End of role_channel_comm

 if (instance_x = "true") then
 {
 compose{
 inst as instantiate_activities()
 and
 rcc as role_channel_comm()
 and
 rpi as role_pregistry_inst()
 and
 c1 as ac1 (rname= rol_name, pname="R2-r1", role_channel=part_channel,

rm_channel=rem_add_mpchannel)
 and c2 as ac2 (drname=rol_name, dpname="R2-d1", res="RESOURCE FROM

R2", te_channel=m_te_channel, re_channel=m_re_channel) where{ inst::inst_act
unifies c1::in_trig, c1::out_trig unifies c2::in_trig, c2::out_trig unifies
rcc::in_value}

 }
 }
 else
 {
 via ins_value send "role end false"
 done
 }
 } ! End of Role 2

 ! Following is the composition of roles and router role connector instances
 compose{
 r1 as Role1(rol_name="R1", raddress=r_address_channel, stop_chan=stop_chann)
 and
 rrc1 as router_role_connect(parent_role="R1", rname_chan=r_name_channel, mchannel=

r_maddr_channel)
 and
 r2 as Role2(rol_name="R2", raddress=r_address_channel, stop_chan=stop_chann)
 and
 rrc2 as router_role_connect(parent_role="R2", rname_chan=r_name_channel, mchannel=

r_maddr_channel) where{r1::channel_te_transf unifies rrc1::channel_te_transf,
r1::channel_re_transf unifies rrc1::channel_re_transf, r2::channel_te_transf unifies
rrc2::channel_te_transf, r2::channel_re_transf unifies rrc2::channel_re_transf }

 }
 done
 } ! End of Process_Controller abstraction

! Following is the Process_Engine_Enactment abstraction
value Process_Engine_Enactment = abstraction();{
 value running = location(done)
 value stop_channel = connection(string)

! Following abstraction enacts and links IRegistry_process with Process_Controller
value exec = abstraction();{

 running := compose{
 IRP as IRegistry_process()
 and
 PC as Process_Controller(stop_chann=stop_channel) where {

IRP::tuple_rec_channel unifies PC::tuple_rec_channel, IRP::role_channel unifies
PC::r_address_channel, IRP::role_name_channel unifies PC::r_name_channel,
IRP::role_add_channel unifies PC::r_maddr_channel, IRP::tuple_rec_channel1
unifies PC::tuple_rec_channel1, IRP::send_tuple unifies PC::tuple_rec_value,
IRP::addr_rec_channel1 unifies PC::addr_rec_channel1}

 }
 done
 } ! End of exec abstraction

 ! Following abstraction is used to stop the process execution
 value stop_abst = abstraction();{
 via stop_channel receive stop_signal
 if (stop_signal = "stop") then{
 value deco = decompose 'running
 done
 }
 else{
 done
 }
 } ! End of stop_abst

 compose{
 ex as exec()
 and
 st as stop_abst()
 }
} ! End of Process_Engine_Enactment

! Following is the application or enactment of the above process
Process_Engine_Enactment()

