OGMA: Visualisation for Software Container
Security Analysis and Automated Remediation

Alan Mills

Computer Science Research Centre
University of the West of England
Bristol, UK
alan.mills @uwe.ac.uk

Abstract—The use of software containerisation has rapidly
increased in academia and industry which has lead to the produc-
tion of several container security scanning tools for assessing the
security posture and threat of a container image. The variability
between tools often differ on the coverage of vulnerabilities, their
assessed severity and their output formats. It is also common to
find duplicate Common Vulnerabilities and Exposures (CVEs) in
their reporting which can often skew the risk assessment of a
container. These issues along with the lack of automated solutions
for maintaining up-to-date patching of container images are
currently open issues identified by the research community that
we address in this paper. We present OGMA, a visualisation tool
for improved analysis and assessment of container security issues
across multiple, often conflicting, scanning tools. In addition to
severity, our approach helps to examine attack vector and exploit
availability, while also removing duplicated CVEs, therefore
providing a clearer picture for risk analysts to understand the
threat posed by container deployment. Furthermore, we couple
this with a novel remediation scheme for updating vulnerable
containers whilst ensuring that functionality is preserved, and
show how our visualisation system can highlight the improved
security posture of the fixed container. Our results highlight
the existing security issues in pre-built container images and
the inconsistencies between scanning tools, whilst our proposed
approach helps to identify and mitigate such threats to improve
container security as part of the wider challenges of software
supply chain security.

Index Terms—Containerisation, Virtualisation, Software Vul-
nerabilities

I. INTRODUCTION

Docker [1] has gained widespread adoption for container-
isation, having initially been released in 2013. Specifically,
Docker Hub is a widely used platform, described as ‘the
world’s largest library and community for container images’,
with over 100,000 container images [2]. Whilst having readily-
available containers can offer great convenience for software
development teams, there is the wider issue of software supply
chain security that has increased in recent years, with notable
cases such as Solarwinds Orion that resulted in 18,000 of
their customer organisations being compromised through their
software platform. Therefore, how do we ensure that the
integration of pre-built containers can be managed in a safe
and secure manner? How do we ensure that we are not
unknowingly introducing additional attack vectors into our

Jonathan White
Computer Science Research Centre
University of the West of England
Bristol, UK
jonathan6.white @uwe.ac.uk

Phil Legg
Computer Science Research Centre
University of the West of England
Bristol, UK
phil.legg @uwe.ac.uk

operational environment, so that we can assess and manage
the associated risk of pre-built containers?

Various scanning tools have been proposed to examine the
security risks associated with a container to identify known
Common Vulnerabilities and Exposures (CVEs), including
Docker Scan [3], Dagda [4], Clair [S], Grype [6], Sysdig
[7], and Trivy [8]. However, our research and experimentation
with these tools shows that there is significant variation in
terms of the output and coverage reported when comparing
multiple scanners against the same set of containers (e.g.,
what CVEs are identified and the associated severity). The
output of the scanning tools is often a large, text-based format
that is time consuming to examine, and so there is scope for
more intuitive presentation of this information to aid human
analysis. Furthermore, outputs often contain many duplicated
CVEs (e.g., if the same CVE is registered against several
binaries or the same binary multiple times) which can result in
an inflated number of CVEs and a false representation of the
true security threat. Finally, it is often difficult to assess the
“real-world threat” based on the standard output of these tools,
and the manner in which the containerised application will be
deployed within the software supply chain. For example, a
critical CVE that requires local access may in reality pose
less of a threat than a medium-level remote access CVE.

In this paper, we introduce a visualisation approach for im-
proved assessment of containerisation security vulnerabilities
across multiple scanner tools. Our approach, that we refer to
as OGMA, provides a unified and holistic view of container
security that can aid human analysis and highlights key factors
such as attack severity, attack vector and exploit availability (as
informed by Exploit-DB [9]). Our approach enables analysis
on a per-scanner basis, or in a unified approach, as a means
to help inform decision-making around the introduction of
a container to a software stack. This allows an analyst or
developer to quickly and easily disseminate the containers
vulnerabilities, reducing the current burden required to create
useful reporting from existing scanner solutions. Furthermore,
we also introduce an automated remediation tool that we refer
to as BORVO, that can automatically update container images
where fixed binaries are available. Our initial experimentation
found that this can reduce the number of CVEs by as much
as 65% without impacting usability.



II. RELATED WORKS

A 2016 study by Shu et al. [10] presented DIVA (Docker
Image Vulnerability Analysis) framework which they used
to analysis over 350,000 container images. The framework
utilised the Clair scanner, and found on average 180 vulnera-
bilities across the official and community images tested, with
over 80% of these images having at least 1 high severity
vulnerability. They also noted an update delay of 200 days
for 50% of their test images (increasing to 400 days for 30%
of images). In a later study by Liu et al. [11] they found
similar delays in container patch management, with an average
delay of 422 days for patches to be applied to images. These
studies highlight that the requirement for automated patch
management has been long standing and continues to be an
ongoing problem in container security.

In [12] the authors expanded on an earlier thesis where they
analysed 2500 docker images from official, verified, certified
and community images. They compared the vulnerability find-
ings for images within each category. Whilst official images
were deemed to be secure, still they found 45.9% of images
to have one or more critical or high severity CVE, and only
17.8% containing no CVEs at all.

While analysis from [10]-[12] highlights the prevalence of
CVEs in docker images and the issues delayed patch man-
agement causes, they do not utilise a range of scanners, often
relying on a single scanning tool such as Clair or Anchore. It
is therefore quite possible that the output results presented in
these studies would have been different had multiple scanner
tools been used (and their combined outputs unified), as shown
in our evaluation.

Tundr-Onadele et al. compared static and dynamic analysis,
comparing Clair to multiple machine learning algorithms [13].
They found that Clair could only detect 3 out of 28 tested
vulnerabilities, compared to 22 out of 28 for dynamic analysis.
However, the combination of static and dynamic analysis
produced the best results with 24 out of 28. In [14] the
authors analysed 59 container images using three open source
container scanners (Clair, Anchore and Microscanner). Their
results highlight the differences in coverage and accuracy
between the tools analysed and advocates a combination of
static and dynamic analysis. While both studies evaluate the
performance of different scanning techniques, they do not
provide a comparative approach that our approach offers in
terms of the scanner capabilities, coverage and output.

The authors of [15] present a framework for use in Cloud
environments and deployed CI/CD (Continuous Integration /
Continuous Deployment) pipelines that combines static and
dynamic analysis which includes a threshold for CVE count
and score. They make use of both Clair and Anchore to
identify and categories vulnerabilities. Their system aims to
identify vulnerabilities, and restrict usage where a user-defined
vulnerability scoring threshold is met. However, this is still
limited in terms of analytical investigation of the threat, and
also does not provide any automated remediation to address
the vulnerabilities.

Scanners Output File(s)

Dagda — output.json

Docker Scan [— output.json

i Clair — output.json
Container puts data_formatter.py

Image Grype —»| output.txt

Sysdig —* output.csv(s)

Trivy —> output.txt

Node and Edge File(s)
Per Scanner

Dagda e
single_plot.py Docker Scan [+
Clair N
plot.html
Grype f—
sub_plots.py Sysdig
Trivy =

‘ vulnerability_output.csv }47

Fig. 1: OGMA workflow.

O O Xoar A
@ o © (@ (e)

Fig. 2: Glyph design: (a) Packages (b) Local CVEs (c) Re-
served CVEs (d) Remote CVEs and (e) Other Vulnerability.

In the work by Wong ef al. [16] they take a holistic view
of the threats and open security concerning containers and
container deployment. One issues raised within this work is
that “To date, there are many container image scanning tools
[...] but few research into their effectiveness, their gaps and
their impacts to the container’s security”. They also look at the
issues surrounding container patch management and identify
the current risk posed by delayed software updates and that this
creates an open security issues which needs to be addressed,
“[...] rapid patching is important to address vulnerability in
the container before an attacker gets into it [...] Therefore,
a reliable and rapid patching framework for containerized
application is a gap which should be tackled quickly” [16].
We believe that our work is able to address this need in a
scalable manner as highlighted in earlier research.

ITI. UNIFIED VISUALISATION OF CONTAINER SECURITY

For our experimentation, we analyse a variety of readily-
available containers from Docker Hub using six of the most
common scanning tools currently available: Docker Scan [3],
Dagda [4], Clair [5], Grype [6], Sysdig [7], and Trivy [8].
We wanted to first assess the variability in existing scanning
results, and secondly we wanted to explore how visualisation
can improve the presentation of multiple scanning results to
better assess both the initial vulnerabilities that may be present
within a container, and afterwards once automated remediation
has been performed. We focus our analysis on official images
within Docker Hub, since these tend to be packages that are
widely utilised to integrate within existing software stacks
and therefore receive a high number of downloads. Previous



Fig. 3: OGMA sub plot visualisation for comparison of scanner performance. (Elasticsearch:7.17.0). Top: Clair, Dagda, Docker

Scan. Bottom: Grype, Trivy, Sysdig.

OPOXZE O O 0 o =

Fig. 4: OGMA single plot visualisation for unified risk assessment of identified vulnerabilities. (Elasticsearch:7.17.0)

studies have found that official images tend to have a lower
number of vulnerabilities compared to verified and community
images [12], which would align with our expectation.

OGMA, referring to the mythological notion of “eloquence
and communication” [17], is a visualisation module that can
unify and plot the output of multiple scanning tools, providing
a more intuitive means of examining original and fixed security
issues relating to containers. Figure 1 shows the process,
whereby a container image is first scanned by all available
scanning tools, and their different output file formats are fed
to a data formatting script to prepare these for visualisation.
For the output file of each scanner, we extract the details
related to the vulnerabilities and the impacted binaries, along
with the attack severity (as defined by that specific scanner)
where available. If the attack severity is not reported, we call
the NIST (National Institute of Standards and Technology)
API [18] so that this lookup can be automated. We generate a
data schema for rendering a force-directed node-link diagram
for each scanner output, which can then be utilised to render

either a series of subplots, or a single unified plot that shows
the number of unique vulnerabilities, the severity, the attack
vector (remote, local) and whether or not an exploit is available
on Exploit-DB [9]. This is then accessible from the HTML
output document where the user can interact with the plot to
investigate the results further. Since some existing scanners do
not reliably provide information regarding attack vectors and
exploit availability, our process integrates additional lookups,
including CIRCL (Computer Incident Response Center Lux-
embourg) CVE search [19] and Exploit-DB, to further enrich
the scanner output and the effectiveness of the visualisation.
We use a five-point colour scale as the indicator of severity:
red (critical), high (orange), medium (yellow), low (green) and
unknown/negligible (grey), coupled with a glyph-based design
(Figure 2) for representing the packages, and the associated
attack vector of identified vulnerabilities (e.g., whether the
CVE can be exploited remotely or locally). The analyst can
either examine the complete set of sub plots (Figure 3) to
facilitate result comparison per scanner, or the unified singular



Critical High Medium Low Negligible Unknown

Scanner Vuln | EDB | Vuln | EDB Vuln | EDB Vuln | EDB Vuln | EDB | Vuln | EDB
Clair 0 0 3 0 13 0 7 0 50 1 11 0
Dagda 2 0 19 2 30 3 3 0 1 0 0 0
Docker Scan 0 1 3 0 5 0 78 0 0 0 0 0
Grype 4 0 6 0 13 0 8 0 48 1 5 0
Sysdig 0 0 14 0 24 0 7 0 176 17 13 0
Trivy 4 0 8 0 15 0 57 1 0 0 11 0

TABLE I: Tabular output of OGMA highlighting the number of vulnerabilities found per scanner and the number of these
vulnerabilities that have exploits available from ExploitDB (EDB). (Example for container image: Nginx:1.21.6)

[ USER root — If needed L T
o Vulnerable binaries —-— \
- 1 . [ ~
Originh | (fixed versions) Operating System specific | Remove fixe \
package manager:
Install fixed binaries

version installs
if they cause

errors /
</

| Container |

Nme /||

Operating System
RUNAS User
ENTRYPOINT CMD

USER: RUNAS User
CMD: ENTRYPOINT CMD

Scan updated image _L
(OGMA workflow) | ‘@dath
Container |
Image

-

-

| Updated_image.tar _

Fig. 5: BORVO workflow.

plot that shows the combined set of vulnerabilities (Figure 4).

For singular plots, where two scanners reported different
severity levels, the visualisation will default to the highest
level reported. Glyph size is also used within the unified
visualisation to show vulnerabilities that had the highest cov-
erage across multiple scanners, helping an analyst to identify
agreement (and disagreement) between the scanner results.
Whilst this doesn’t indicate which scanners may have omitted
a result, this information can be identified using the sub
plot view. Further to this, our tool also provides a CSV
output that provides numerical results in a consistent and
comparable format across all scanners for deeper investigation.
This also includes both the existence of exploits in Exploit-DB
(visually represented by a closed marker) and the severity of
the associated CVE (Table I).

IV. AUTOMATED REMEDIATION TO IMPROVE CONTAINER
SECURITY

During our investigation it became clear that many vulnera-
bilities in the pre-built containers have fixed updates available,
as identified by scanning tools. Clair, Grype and Trivy were
noted as particularly effective for identifying fixed updates,
and yet as identified by previous research [16] the delay in
resolving vulnerabilities in pre-built containers is high. We
therefore build upon OGMA to support automated remediation
of containers (referred to as BORVO, due to the association
with “healing” [17]).

Utilising the Python Docker API, we automated the pro-
cess of container inspection to obtain details such as the
underlying Operating System, the default user and the entry
point command. This was then combined with information

about the fixed binary to create an in-memory Dockerfile. This
would use the original container image as a base image, and
then install the available fixed binaries. Design considerations
included the ability to rollback if the fixed update caused
build errors, or where the default user does not have sufficient
privileges, such that the root user is required for installation.
The full process is illustrated in Figure 5. The workflow is
designed such that package updates can be carried out in a
fully automated manner as intended without modifying the
default container behaviour. The targeted installation of fixed
versions avoids updating software that is not required and
could introduce new vulnerabilities, whilst also minimising
‘container bloat’ by updating packages that are unwanted or
not used, as would be the case with a generic update and
upgrade process.

The output of our remediation process integrates with
the OGMA subplot visualisation, facilitating before-and-after
comparison between the original container and the improved
container having mitigated against reported vulnerabilities
(Figure 6). The updated container image is also saved as a tar
file to allow for validation testing, to ensure that the expected
functionality had not been compromised whilst also facilitating
deployment of the updated image.

V. EXPERIMENTATION AND RESULTS

We selected 25 popular images from Docker Hub offical
to provide a cross-section of commonly-used applications and
use cases. Each image was analysed using OGMA, and then
remediated using BORVO. Table II provides the full listing of
container images that we examined in this study including their
version numbers, as well as the total number of vulnerabilities
identified for each container image across each of the six
scanning tools. We also report the total number of unique
vulnerabilities in each case to highlight the issue of CVE
duplication. All analysis was conducted during February 2022
and March 2022, with each container image being scanned
concurrently across all six scanning tools utilised by OGMA,
to ensure that any differences in reporting was due to the
scanner performance rather than potential changes that could
occur over time in the container image.

Each container image was analysed by BORVO to auto-
matically remediate the identified vulnerabilities. In the cases
where binaries were updated, the container was then manually
analysed to ensure that the application or service worked as
would be expected, based on the available documentation, such



Fig. 6: BORVO visualisation to highlight CVE remediation across 3 scanners (Clair, Grype and Trivy). Top row: Beforehand
with 63 CVEs (2 High, 35 Medium). Bottom row: Afterwards with 22 CVEs (0 High, 7 Medium). (Mariadb:10.7.1)

as that provided by Docker Hub. It is noted that the analysis of
images created using BORVO followed our initial investigation
based on the scanning results from OGMA. However, we do
not consider this to be an issue since our results for OGMA
address the variability across different scanning tools, whilst
our example shown for BORVO addresses before and after
remediation on the same container image.

Table II shows the results of OGMA. Both Clair and Dagda
had relatively low CVE duplicate reporting, however they also
reported fewer CVEs overall in comparison to other scanners.
Docker Scan had the highest level of CVE duplicate reporting,
this is in part due to instances where the same CVE and same
binary are reported multiple times with the only difference
being the “from” section. With these duplicates instances
removed Docker Scan reported the second lowest average
overall for unique CVEs.

Our visualisation approach aims to improve the clarity
and presentation of this information over the traditional text-
based output, whilst unifying this across multiple scanners and
removing duplication. Furthermore, crucial information such
as attack vector and existence of an exploit is not included
in the traditional scanners, yet can be easily incorporated
within our visual schema. To elaborate on the conflict of
reported information provided by the scanners we can examine
CVE-2019-3843/CVE-2019-3844 as an example (based on Set
User ID/Set Group ID vulnerabilities). Grype and Trivy both
reported high, Clair and Sysdig both reported medium, Docker
Scan reported low, and Dagda reported neither CVE. This
difference is attributable to the source each scanner uses. NIST
use the Common Vulnerability Scoring System (CVSS) that
lists both as high severity, whilst Red Hat lists them as medium
severity and Snyk (used by Docker Scan) low severity. Both
CVEs also have verified exploits available from Exploit-DB
(EDB-ID 46760), which greatly increases the realistic security
threat posed by these CVEs since it lowers the barrier for entry
required for an attacker to exploit.

Our BORVO results revealed that this approach was able

to reduce the number of CVEs per image by approximately
27 while maintaining functionality. In some cases, such as
Joomla or Vault the reduction was minimal (1 CVE) while in
others the reduction was substantial, such as Mariadb where
the number of CVEs was reduced by approximately 65% from
63 to 22, which also resolved all high severity CVEs (2) and
28 medium severity CVEs. In a similar instance, the number of
CVEs for phpmyadmin was reduced by 174 (49%), from 353
to 179. This included 10 critical severity CVEs and 23 high
severity CVEs, including three with listed exploits; CVE-2019-
18276, CVE-2019-3843/CVE-2019-3844. While the results
from BORVO will be dependent on the output available to
it (i.e., the presence of a fixed binary to utilise) these initial
results do highlight that automated container image patch
management can be achieved in a manner that preserves the
use case of the original image whilst mitigating against a
significant number of prior vulnerabilities that may be present.
This enables end users to take ownership of their own patch
management in a fashion that has a low barrier to entry,
without reliance on the original authors of the container image.

VI. LIMITATIONS

OGMA as a framework can be expanded to include addi-
tional reporting input, either for more scanner tools or more
reporting types (such as .yaml). This was outside the scope of
the current work, but would ensure longevity for OGMA.

Further and more extensive testing of BORVO, specifically
the updated images it produces is required. Limited testing
was conducted to ensure that immediate and obvious breaking
changes had not been introduced in line with official guides
and instructions (where available). However this did not cover
all potential use cases and some specific or edge cases uses
may have been negatively impacted. Such extensive testing
was outside the scope of this paper.



Clair Dagda Docker Scan Grype Trivy Sysdig
Container Image All | Unique | All | Unique All Unique | All | Unique | All | Unique All Unique

aerospike:5.5.0.9 180 176 13 11 1409 176 410 176 410 179 709 341
centos:centos7.9.2009 | 31 20 382 301 783 522 691 461 775 518 993 543
chronograf:1.9.3 110 110 18 13 857 109 267 113 266 111 530 251
drupal:9.2-php7.4 194 194 64 59 970 102 381 188 380 189 962 574
elasticsearch:7.17.0 45 45 32 28 353 62 117 62 106 57 173 60
ghost:4.36.1 46 46 59 54 424 77 529 483 106 69 240 144
golang:1.16 208 208 60 55 921 97 391 202 390 203 949 563
groovy:4.0.0 31 31 36 32 243 32 102 33 66 31 108 34
httpd:2.4.52 61 61 59 54 371 61 99 61 99 62 279 188
influxdb:2.1.1 99 99 6 5 641 99 211 119 177 100 418 211
joomla:php8.0 193 193 64 59 964 101 380 187 378 187 967 579
jruby:9.3.3.0 161 161 74 66 406 65 241 170 230 160 685 482
kibana:8.0.0 53 53 17 16 331 53 133 91 105 66 0 0
logstash:8.0.0 37 37 17 16 352 44 168 102 89 37 126 63
mariadb:10.7.1 62 62 22 21 406 62 101 62 95 62 105 64
matomo:4.7.1 191 191 64 59 933 97 366 184 365 185 924 550
mongo-express:0.54.0 10 10 0 0 84 14 68 54 35 25 40 24
nginx:1.21.6 84 84 60 55 379 84 127 84 126 84 367 234
node:17.5 346 346 88 78 2686 234 937 341 914 341 2205 769
perl:5.34.0 304 304 88 78 2539 210 860 296 842 298 2136 732
phpmyadmin:5.1.3 192 192 64 59 943 99 367 185 366 186 927 552
postfixadmin:3.3.10 218 218 64 59 1022 107 408 212 406 213 949 561
python:3.9.10 349 345 89 78 2714 237 940 342 920 343 2764 831
tomcat:9.0.59 83 83 74 66 583 82 166 84 162 82 459 220
vault:1.9.4 1 1 4 4 3 1 11 11 3 3 0 0
Average 131 130 60 53 853 113 338 172 312 151 720 342

TABLE II: Analysed Images - OGMA results

VII. CONCLUSIONS AND FUTURE WORK

This research highlights the challenges associated with secu-
rity of software containerisation, notably that many publicly-
used containers carry security vulnerabilities, and that current
scanning tools often provide inconsistencies in their reporting
of these vulnerabilities. We therefore present two new tools
to help identify, investigate, and mitigate container security
vulnerabilities, and we have demonstrated their effectiveness
against existing academic and industry practice. OGMA pro-
vides unified reporting across multiple scanning tools to visu-
alise associated attack vector, attack severity and the exploit
availability across the complete set of identified vulnerabilities.
BORVO provides automated container patch management and
remediation. Our initial testing shows successful reduction
of vulnerabilities whilst preserving container functionality.
These tools help to address current, open security research
questions [14] [16] by facilitating “research into [container
scanner tools] effectiveness, their gaps and their impacts to the
container’s security” and introducing an automated solution
to provide “a reliable and rapid patching framework for con-
tainerized application”. Future work will involve a comprehen-
sive study into public container vulnerabilities, and developing
these initial concepts of risk-based container analysis further.

Both tools described in this paper are publicly-available un-
der the MIT license: https://github.com/amills157/tuatha_de.

REFERENCES

[1] Docker, “Home - docker,” https://www.docker.com/.
[2] ——, “Docker hub - docker,” https://www.docker.com/products/docker-
hub/.

[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]
[19]

docker, “scan-cli-plugin,” https://github.com/docker/scan-cli-plugin,
2022.
eliasgranderubio, “dagda,” https://github.com/eliasgranderubio/dagda,
2021.

quay, “clair,” https://github.com/quay/clair, 2022.

anchore, “grype,” https://github.com/anchore/grype, 2022.

sysdig, “Sysdig secure,” https://sysdig.com/products/secure/, 2022.
aquasecurity, “trivy,” https://github.com/aquasecurity/trivy, 2022.

O. Security, “Exploit database - exploits for penetration testers, re-
searchers and ethical hackers,” https://www.exploit-db.com/.

R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on
docker hub,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, 2017, pp. 269-280.

P. Liu, S. Ji, L. Fu, K. Lu, X. Zhang, W.-H. Lee, T. Lu, W. Chen, and
R. Beyah, “Understanding the security risks of docker hub,” in European
Symposium on Research in Computer Security. — Springer, 2020, pp.
257-276.

K. Wist, M. Helsem, and D. Gligoroski, “Vulnerability analysis of 2500
docker hub images,” in Advances in Security, Networks, and Internet of
Things. Springer, 2021, pp. 307-327.

O. Tunde-Onadele, J. He, T. Dai, and X. Gu, “A study on container
vulnerability exploit detection,” in 2019 IEEE International Conference
on Cloud Engineering (IC2E). 1EEE, 2019, pp. 121-127.

0. Javed and S. Toor, “Understanding the quality of container security
vulnerability detection tools,” arXiv preprint arXiv:2101.03844, 2021.
K. Brady, S. Moon, T. Nguyen, and J. Coffman, “Docker container
security in cloud computing,” in 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 2020, pp.
0975-0980.

A. Y. Wong, E. G. Chekole, M. Ochoa, and J. Zhou, “Threat mod-
eling and security analysis of containers: A survey,” arXiv preprint
arXiv:2111.11475, 2021.

M. Lurker, A Dictionary of Gods and Goddesses, Devils and Demons.
Routledge, 2015.

NIST, “API vulnerabilities,” https://nvd.nist.gov/developers/vulnerabilities.
The Computer Incident Response Center Luxembourg, “CVE-search,”
https://www.circl.lu/services/cve-search/.



