
The Distributed Co-Evolution of an Embodied
Simulator and Controller for Swarm Robot

Behaviours
Paul J. O’Dowd

Bristol Robotics Laboratory
University of the West of England

Bristol, UK
Email: paul.odowd@brl.ac.uk

Alan F.T. Winfield
Bristol Robotics Laboratory

University of the West of England
Bristol, UK

Email: alan.winfield@uwe.ac.uk

Matthew Studley
Bristol Robotics Laboratory

University of the West of England
Bristol, UK

Email: matthew2.studley@uwe.ac.uk

Abstract—Embodied fitness assessment of robotic controllers is
slow but grounded, while assessment in a simulated environment
is fast but can run foul of the ‘reality gap’. We present a
distributed co-evolutionary method to adapt the environmental
model of an on-board simulator within the context of swarm
robotics.

I. INTRODUCTION
The design of robot controllers for swarm robotics is

recognised as non-trivial[11]. A robot controller must be coded
to sufficiently capture the dynamics of interaction between
robots and the robots and the environment, in order to lead to
the emergence of useful self-organised group behaviour[15].

Recent works in Evolutionary Swarm Robotics demonstrate
it is possible to automate the design process through the use of
simulation and evolutionary algorithms (EAs). The approach is
well suited to swarm robotics; a simulation provides access to
global metrics of group behaviour for EA evaluation[14][12].
The use of EAs and simulation has formed a simulate-and-
transfer method, terminating evolutionary development for a
real world demonstration.

Similarly to König et al[7] and Baele et al[1], we are
interested in running an EA on-board robots evolve swarm
robot controllers. An on-board EA has the advantage of being
an open-ended method of adaptation[10]. The work of Watson
et al[16] highlights the benefits of distributing an EA across
many real robots, to which swarm robotics seems well suited.

However, to retain the scalable, flexible and robust qualities
of a swarm[11], an on-board and distributed EA must be
decentralised. Therefore robots are constrained to perceive
only local information and thus an EA loses the global metric
advantageous to evolution in the swarm robotic context.

As a solution to the loss of global evaluative scope, we
propose that each robot in a swarm has an embedded simulator
to evaluate a local population of controller solutions, similar to
the Island Model[2]. Decentralised distribution is achieved via
local communication of controller solutions between robots.

An embedded simulator also presents an alternative to the
evolutionary robotics method of time-shared physical eval-
uation of an evolutionary population on one robot[5][13].
An embedded simulator could evaluate many controllers in

the time required to physically evaluate a single controller,
therefore avoiding periods of physical validation behaviour.

However a flaw is inherent to this proposal and forms the
subject of this paper. If the distributed evolution of robot con-
trollers evaluates only through embedded simulation, then the
proposal runs foul of the ‘reality gap’[6], where performance
outside the simulator is unknown.

The reality gap can be considered in three categories of
correspondence between simulation model and reality. First,
robot-robot correspondence refers to physical robotic aspects,
such as differences in morphology. Second, robot-environment
correspondence refers to differences in the dynamic interac-
tions between a robot and the environment, both sensory and
through actuation. The third case, environment-environment
correspondence relates the representation of salient features
of the environment. To stop an EA exploiting erroneous
representation, all three categories should be modelled with
sufficient fidelity or supplemented with sufficient noise[6].

The recent works of Bongard and Lipson[3] and Bongard[4]
investigate on-line adaptive self-models to address robot-robot
and robot-environment correspondence discrepancies. In the
swarm robotic context, decentralised mechanisms of self-
organisation make swarms particularly susceptible to changes
in the environment[12]. Therefore, we make the focus of this
paper a specific investigation of a swarm of robots to identify
discrepancy in environment-environment correspondence.

To serve this purpose, we work within an EA framework to
form a co-evolutionary approach for the on-line adaptation of
both robot controllers and embedded simulator environment
model. We aim to make good use of the swarm of robots
by distributing the evolution of the environment model across
all robots. Secondly, robots individually evolve a population
of robot controllers via the adaptable embedded simulator to
update the physical robot controller.

We hypothesise that a measure of environment-environment
correspondence of the embedded simulator can be gained
indirectly through the real-world performance of the robot to
complete a task. The evolution of the robot controller will
exploit features of the simulated environment, and therefore a

higher utility will be gained in the real world by a robot with
a stronger environment-environment correspondence.

This indirect evolutionary method of validating the environ-
ment model means that a robot does not need to spend time
explicitly assessing and validating features of the environment,
or directly relating the robot controller performance to the en-
vironment model. Instead, the variation of embedded simulator
models across the swarm, and each robots’ relative utility to
complete the designated task, should serve as a competitive
selection mechanism to collectively converge towards strong
environment-environment correspondence.

Whilst the simulator evolution is collective, we select a task
with no inter-robot dependency and keep the robot controller
evolution isolated between robots. In future research, we wish
to continue from the basis of this paper to research the
distributed evolution of self-organising robot controllers via
an embedded simulator.

We conduct our investigation with a series of experiments
with real robots to complete a foraging task. We test for
the ability of the swarm to evolve an embedded simulator
with good environment-environment correspondence varying
the real task environment. In Section II we provide greater
detail on the workings of the distributed co-evolved method. In
Section III we explain the experiment task and the algorithms
used. In Section IV we provide and discuss the results of
the experiments. Section V provides concluding remarks and
outlines how we would like to progress this research.

II. THE DISTRIBUTED CO-EVOLUTIONARY METHOD
The proposed co-evolutionary method has two evolutionary

components. One evolutionary algorithm is distributed across
the physical swarm and evolves the environment model. The
second evolutionary algorithm is local to each robot and is
dependent on the robot’s embedded simulator. The method
works within two time domains. The utility of the environment
model is evaluated as a function of real-time performance of
the physical robot. Controller evaluation is conducted virtually
within the embedded simulation at a rate faster than real time.

Each robot owns only one environment model which it can
communicate to adjacent robots, creating a distributed evolu-
tionary population. Each robot also has a private evolutionary
population of many robot controller solutions. Evolutionary se-
lective pressure is distinct; environment models relate to real-
world performance whilst robot controllers relate to simulated
performance.

Fig. 1 illustrates in higher detail the processes involved for
each robot. Three major processes happen in a synchronised
manner; the virtual evaluation of robot controller solutions,
the real-world fitness assessment of the instantiated controller,
and the reception of other robots’ environment model variants.

Each robot continuously communicates their environment
model variant and current real world fitness value as they
operate. Each robot constructs a temporary population of
received environment model variants from encountered robots.
At the end of a robot’s real world evaluation period, a new
environment model is selected and evolved from the con-
structed temporary population. The temporary population is

then cleared, starting the next environment model evolutionary
period. Further details are given in the following sections.

Fig. 1. Addressing numbered points: 1) A genetic algorithm evolves a local
population of controller solutions through the embedded simulator. 2) The best
controller from simulation is transferred to the real robot. 3) Food collected
by the real robot is used to measure the fitness of the embedded simulator. 4)
A robot transmits and receives embedded simulator genomes and real robot
fitness values. 5) Synchronised with the end of virtual controller evaluation,
the embedded simulator is evolved against the robots own perceived fitness
and any encountered robots’ fitness values.

The proposed co-evolutionary method works on the princi-
ple that many controller solutions can be evaluated virtually
within the time required to assess the real world performance
of the physical robot. The difference in the evaluation time
allows the environment model to maintain a degree of stability
whilst robot controllers are evolved virtually.

III. EXPERIMENTAL SETUP

This section provides a description of the experiment and all
parameters used to investigate the distributed co-evolutionary
method. We have constructed a simple experiment in order to
reduce the number of free variables in the experiment.

A. Task Description

We have selected the foraging problem, where robots must
search for food items and deposit them back at a designated
nest site. We vary the environment to alter the potential
efficiency of foraging. Robots are unable to identify their own
position, the location of any food, or the location of the nest
site. Robots can only search for food using a random search
movement. In order to test for adaptation, we construct our
experiments around variation of a significant light source in
the task environment which has the potential to be used as a
navigational landmark to deposit food.

We construct three basic environment scenarios (Fig.2); a
light source at the nest site (A), no light source (B), or the
light source opposite the nest site (C). If the swarm collectively
identify the environment scenario, phototaxis should provide
a means to improve the efficiency of a robot’s foraging. We
have combined the three basic environment scenarios into five
experiment cases; No Light Source, Light Fixed At Nest, Light
Fixed Opposite Nest, Light At Nest → Light Opposite Nest,
Light Opposite Nest → Light At Nest.

In the first three experiment cases, we test for a correct
initial adaptation and the ability to maintain the adaptation.
In the latter two experiment cases, the light source location is
moved half way through the duration of an experiment, and
we are testing for re-adaptation and continued foraging.

Fig. 2. The three environment scenarios (not to scale). Large circular outlines
represent the arena enclosure. Small shaded circles represent food. Large
shaded circle represents nest area. Shaded triangle represents light source
location (when present).

B. E-Puck & Linux Extension Board
We use ten open-hardware e-puck educational mobile robots

[9] (Fig. 3). We multi-purpose the infra-red proximity sensors
(IR) for obstacle avoidance, determining ambient light levels,
and for short range IR communication between robots.

Fig. 3. Ten e-puck robots, each with a Linux extension board, inside a
circular 1.2m diameter enclosed arena. Reflective markers are placed on top
of each robot for tracking. The black box with a white window in the top left
of the image provides the significant light source added to experiments.

IR communication is transmitted and received through all
8 IR sensors to a 20cm distance. Each robot is equipped with
a Wi-Fi enabled Linux Extension Board (LEB) developed at
the Bristol Robotics Laboratory [8], performing all processes
as multiple threads. The e-puck is driven in a master-slave
configuration from the LEB.
C. Wi-Fi Messenger Service

Local communication is considered important for decen-
tralised systems. We use the IR communication of the e-
puck robots to initiate a dialogue over Wi-Fi. Therefore
communication is constrained to the transmission distance of
IR but provides the superior bandwidth of Wi-Fi. After an
initial IR transaction, robots update and retrieve information
from a central authority. This mechanism appears local and
decentralised to the robots and provides us with the ability to
log all transactions.

D. Vicon Tracking System & Virtual Sensor
A vision tracking system from ViconTM is used to monitor

the positions of each robot. A robot position is identified by

a unique pattern of reflective markers placed on top of each
robot (see Fig.3). Position data has two uses; to provide data
for post-experiment analysis and to provide a virtual sensor
to each robot. Every 40ms an external program transmits over
Wi-Fi if a robot is located directly on a virtual food item or
the virtual nest site. Each robot updates its own control states
with respect to this virtual sensor.
E. Embedded Simulator

A minimal simulation has been written in the C program-
ming language which executes on the LEB. The simulation is
trigonometric where all entities are represented on a 2D plane
as points with a radius. The simulated robot is moved on the
basis of two-wheel differential kinematics and the dimensions
of the e-puck robots. The IR sensors are emulated from raw
sensor data that has been captured from the real robot sensors
to which uniform noise is added. The simulation is advanced in
40ms time intervals. A genetic representation (Section III-H)
determines one of three environment scenarios to simulate
(Section III-A), mirroring the possible real environment. For
each robot controller genome to evaluate (Section III-G), one
robot is simulated to forage for 60 virtual seconds.
F. State Based Behavioural Controller

To control the robot we implement a state-based behavioural
controller. Four hand-coded basic behaviours have been tested
to function both in the embedded simulator and real world:
obstacle avoidance, random search, positive phototaxis and
negative phototaxis. The robot controller tracks two states,
Food and Nest, which are either True or False. Using a virtual
sensor (Section III-D), a robot will pick up a food item
changing Food to True. A robot can only drop food when
Nest = True, returning Food to False. The same controller
method is used on a simulated robot and physical robot.

Value G0 (Food = True) G1 (Food = False)

[0.00 : 0.32] negative phototaxis negative phototaxis
[0.33 : 0.65] random search random search
[0.66 : 0.99] positive phototaxis positive phototaxis

Fig. 4. Genes G0, G1 mapping of state to behaviour selection, providing a
variety of possible responses to the state Food of the robot.

Regardless of state the obstacle avoidance and random
search behaviours are always active, providing a robot with
the ability to explore the environment with random motion.
A genetic representation selects positive phototaxis, negative
phototaxis or no additional behaviour, in response to the Food
state of the robot (see Section III-G).
G. Local Evolution of Robot Controller

Each robot operates a simplistic steady state genetic al-
gorithm (GA) to adapt a state-based behavioural controller
(Section III-F). The GA maintains a population of 10 genomes,
each composed of 2 genes (G0, G1) in the range [0.00 :
0.99]. G0 corresponds to state Food = True. G1 corresponds
to state Food = False. The values of G0, G1 are mapped to
select a behaviour, as per Fig.4.

Selection for reproduction is rank based and elitist. 40%
of the population is used to overwrite the lower ranking

percentage. Each gene of the child genome is subjected to a
20% chance of a random mutation on a Gaussian distribution
(mean = 0, s.d = 2). Mutation is the only mechanism to
introduce variation. The fitness of each genome is determined
by evaluating the performance of the controller phenotype in
the embedded simulator as summation of deposited food as a
function of time:

F =

DTotal∑
D=1

TMax − TD (1)

where F is the derived fitness metric, D is a deposited
food item, TMax is the evaluation time limit of 60 seconds,
TD is the recorded time to successfully deposit a food item.
Time has been used rather than quantity of food for stronger
differentiation between efficiency in solutions. When all 10
genomes have been evaluated in the embedded simulator, the
genome with the highest simulated fitness value is immediately
instantiated for use with the real robot.

H. Distributed Evolution of Simulator

The environmental model of the embedded simulator is
determined by the value of S0 (see Fig. 5). Each robot
maintains one value of S0 for the duration of a complete
generation of controller evaluation. S0 is evolved at the end
of controller evolution, updating the embedded simulator and
creating a periodically stable environment model.

Value S0

[0.00 : 0.32] Light Opposite Nest
[0.33 : 0.65] No Light
[0.66 : 0.99] Light At Nest

Fig. 5. Gene S0 mapping to the embedded simulator scenario.

As a real robot operates in the real world it transmits it’s
current S0 and current real world fitness value (FR), and
receives those of other operating robots. FR is determined as
the robot operates by the same equation used in simulated
evaluation (see equation.1). A temporary population of 10
encountered S0:FR pairs are stored and updated by each robot,
representing the variation and fitness of environment models
across the swarm. Selection from the S0:FR pairs is rank
based elitist and always subjected to a random mutation on
a Gaussian distribution (mean = 0, s.d = 2).

Importantly, an individual robot must compare its own
S0:FR pair against the S0:FR values encountered from other
robots. The evaluation, selective pressure and evolution of S0

is therefore distributed across the swarm. With fewer than two
robots, there is no selective pressure to direct the EA of S0. A
robots accumulated population of foreign S0:FR pairs and own
FR value are cleared at the update transition of controller and
environment model. We observed an average of 34 real-time
seconds to conduct a full generation of simulated controller
trials. We chose to pad controller evaluation time to 60 real-
time seconds to give a robot sufficient time to evaluate in the
real world and accumulate foreign S0:FR pairs.

I. Experiment Settings

We run the five experiment cases (Section III-A) 10 times,
each for a duration of 60 minutes. Any light source reloca-
tion occurs at the 30 minutes interval. The experiments are
conducted within an enclosed circular arena of diameter 1.2m
free of obstructions. A single circular nest site of radius 20cm
intersects the arena boundary (see Fig 2) and maintains the
same coordinates through all experiment runs. A food density
of 7 randomly placed items is maintained irrespective of col-
lected food items. We use a total of 10 robots, each randomly
positioned within the arena. All the robots are manually started
asynchronously in random order within seconds of each other.

For comparison, we also run three variations of fixed
optimal controllers (no evolutionary components) 10 time
each. The optimal controllers match the stable environment
situations No Light, Light At Nest and Light Opposite Nest,
combining the search behaviour with the appropriate photo-
taxis when a light source is present. These supplementary
trials are otherwise run with the same circumstances of the
main experiments.

IV. RESULTS & DISCUSSION

The following compiles the results of the 10 test runs for
each experiment case presented in Section III-A. First we
distinguish the overall performance of each experiment case
by the total food collected. We then investigate the efficiency
of foraging in each experiment by the time before and after
a change to the environment (if any). Finally, we discuss the
convergence of the swarm on the parameter S0 over time for
each experiment case which ultimately determines the swarm
behaviours.
A. Food Collected

Fig 6 shows the quantity of total food items deposited at the
nest site in each experiment. First, the fixed search controller
performed as poorly as the co-evolutionary method in the No
Light scenario. These cases are complimentary in that robots
were unable to perceive a light source, and sets a bench mark
for a worst case foraging efficiency.

The experiment case Light Fixed At Nest and the fixed posi-
tive phototaxis controllers both performed the most efficiently.
Compared to the absence of a light source, this indicates that
the swarm was able to realise a utility in the addition of a
light source to the environment.

The Light Fixed Opposite Nest experiment performed only
marginally better than the scenarios where a search behaviour
was the only viable solution. However, the fixed negative
phototaxis controller performed exceptionally well, which
indicates that either the swarm was unable to converge on
the environment scenario or evolve a competent controller.
Examining the S0 variable should provide more information.

In both experiments with an environmental change, the total
food collected does not match the better two fixed optimal
controllers. This inefficiency may be reasonable, given that
the swarm must converge on the environment model and
subsequently evolve a controller. The Light At Nest → Light
Opposite Nest experiment has bias in favour of the prior Light

At Nest scenario, whilst the Light Opposite Nest → Light At
Nest has a more balanced collection of food.

Fig. 6. The total food collected in each experiment case, showing average
and the distribution of results for all tests. A double shading separates the
food deposited before and after a relocation of the light source. The last three
bars represent success of the three optimal case controllers.

This may be a result of faster convergence on the Light At
Nest scenario allowing the robots a longer period of higher
foraging efficiency. This may be because moving away from
a light source is much more ambiguous than moving towards
a light source, and therefore converging on the Light Opposite
Nest would take longer. This process of convergence is absent
in the fixed optimal controllers.
B. Collection Rate

Fig. 7 plots the average time taken for the swarm to deposit
each food item at the nest site. Each experiment case has been
split at T < 30 minutes and T > 30 minutes to view changes
in the performance of the swarm with respect to any change in
the environment. A lower retrieval time indicates an efficient
foraging rate of food.

In the three fixed scenario experiment cases the distribution
of results decrease beyond T > 30 minutes indicating an
improvement in foraging efficiency. This is likely to be due
to successful robots propagating and reinforcing a good envi-
ronment model, and therefore increasing the parallel activity
by the swarm. The small distribution of data for Light At
Nest emphasises the efficiency of the scenario, where more
repeatable behaviour between robots reinforces the embedded
simulator, providing behavioural stability.

In both experiment cases with scenario change we see
that the swarm is able to re-optimise the foraging behaviour,
indicated by a continued average rate of foraging through T
> 30 minutes. However, both Light Opposite Nest → Light

At Nest and Light At Nest → Light Opposite Nest show a
significant growth in the distribution after the environment
transition. Initially this may seem surprising given that in the
Light Opposite Nest → Light At Nest case the environment
was altered to the more favourable light scenario.

Fig. 7. The time taken to return food to the nest in each experiment case,
showing the distribution of results for all tests before and after any change to
the environment.

The significantly larger spread in foraging efficiency for
the Light Opposite Nest → Light At Nest at T>30 minutes
can be explained through observation. A prior convergence
on negative phototaxis to locate the nest can incorrectly drive
the swarm to the opposite arena extremity. Any adapted robots
successfully foraging are likely to be using positive phototaxis
and working in relative seclusion at the other end of the
arena. This spatial segregation persists until the random search
behaviour can spatially transfer the correct adaptation to be
exploited by the whole swarm.

C. Embodied Simulator Gene, S0

Fig.8 shows the progression of the S0 gene through time for
each experiment case. The graphs are shaded into 3 horizontal
regions, corresponding to the 3 experiment scenarios that gene
S0 maps to (see Section III-A). Each box on the plot is a
sample of the average S0 value for that time period.

Both cases No Light and Light Fixed Opposite Nest show the
value of S0 fluctuating through all 3 horizontal regions during
the course of the experiments. The majority of the time is spent
in the middle region, which maps to a No Light scenario. The
correct convergence in the first case, but it demonstrates the
inability of the swarm to converge on the Light Opposite Nest
scenario in the second case. As a result, both experiments will
have evolved a controller based on the search behaviour, which
explains the similar food deposition totals. However, the first
half of Light Opposite Nest → Light At Nest is in conflict to
this observation, and highlights that convergence in the Light
At Nest scenario cannot be guaranteed.

The graph for Light Fixed At Nest shows a definite trend
for the value of S0 to occupy the upper region, signifying a
correct convergence on the Light At Nest embedded simulator.
Again, this matches the collection rate and collected food

for this experiment case, and produces the positive phototaxis
behaviour.

Fig. 8. Graphs of the sampled S0 gene value over time for each experiment
case conducted. Each graph has been shaded horizontally to highlight the
mapping of S0 to an environment model scenario variant (see Section 2). We
are interested in how the value of S0 changes between these horizontal regions
with respect to time. The bottom two graphs have a real world environmental
change at 30 minutes.

The last two graphs of Fig. 8 are the experiment cases
with a change in the environment at T = 30. In both cases,
convergence sustains for approximately 7 minutes after the
environment change at T = 30, confirming our assertion that
a period of re-adaptation would reduce foraging efficiency.

V. CONCLUSIONS & FUTURE WORK

In this paper we have outlined a distributed co-evolutionary
method to validate the environment-environment correspon-
dence of an embedded simulator. The method is fully decen-
tralised and working within the criteria for swarm robotics. We
demonstrated flexibility in swarm behaviour to changes in the
real world task environment by the virtue of the embodiment of
a simulator. The results also show an improvement in foraging
efficiency in stable environments.

The unreliability of convergence on the Light Opposite
Nest scenario is an interesting issue. There are many reasons
why this artefact may occur, but principally the environmental
differentiation of a light source is biased in its utility. With
this consideration, the mis-convergence of the swarm on the
environment model can be viewed as an adaptation to retain
a competitive level of activity.

In order to prove the principle the presented experiments
have made a number of simplifications. In particular, the
discrete simulator representations are an external classification
by the designer of the system. The feasibility of this aspect

needs further investigation. However, automated methods for
isolating environmental features could be integrated within the
distributed co-evolutionary method presented in this paper.

Whilst we highlight the evolutionary utility of global assess-
ment in swarm robotics and use this as a primary motivation,
the experimental task of foraging has no interdependency
between operating robots. In the future we intend to utilise this
methodology to investigate the possibility of a robot simulating
itself interacting with other encountered robots. In this way,
the embedded simulators will be collectively evolved, and the
swarm behaviour will be virtually evolved specifically in terms
of interacting robots. We tentatively hypothesise that when a
robot cannot accurately perceive the actions of another robot,
an embedded simulation may provide an alternative to develop
coordinated and cooperative robotic behaviours in real time.

REFERENCES

[1] G. Baele, N. Bredeche, E. Haasdijk, S. Maere, N. Michiels, Y. Van de
Peer, T. Schmickl, C. Schwarzer, and R. Thenius. Open-ended on-board
evolutionary robotics for robot swarms. In Evolutionary Computation,
2009. CEC ’09. IEEE Congress on, pages 1123 –1130, May 2009.

[2] Theodore C. Belding. The distributed genetic algorithm revisited. In
Proceedings of the 6th International Conference on Genetic Algorithms,
pages 114–121, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

[3] J Bongard. Exploiting multiple robots to accelerate self-modeling. In
Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, pages 214–221, New York, NY, USA, 2007. ACM.

[4] J. C. Bongard. Accelerating self-modeling in cooperative robot teams.
IEEE Transactions on Evolutionary Computation, 13(2):321–332, 2009.

[5] S. Elfwing, E. Uchibe, K. Doya, and H.I. Christensen. Biologically
inspired embodied evolution of survival. In Evolutionary Computation,
2005. The 2005 IEEE Congress on, volume 3, pages 2210 – 2216 Vol.
3, sept. 2005.

[6] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality
gap: The use of simulation in evolutionary robotics. In Advances in
Artificial Life: Proc. 3rd European Conference on Artificial Life, pages
704–720. Springer-Verlag, 1995.

[7] L. König, K. Jebens, S. Kernbach, and P. Levi. Stability of on-line
and on-board evolving of adaptive collective behavior. In Herman
Bruyninckx, Libor Preucil, and Miroslav Kulich, editors, European
Robotics Symposium 2008, volume 44 of Springer Tracts in Advanced
Robotics, pages 293–302. Springer Berlin / Heidelberg, 2008.

[8] Wenguo Liu and Alan F.T. Winfield. Open-hardware e-puck linux exten-
sion board for experimental swarm robotics research. Microprocessors
and Microsystems, 35(1):60 – 67, 2011.

[9] Bonani M. Raemy X. Pugh J. Cianci C. Klaptocz A. Magnenat S.
Zufferey J.-C. Floreano D. Mondada, F. and A. Martinoli. The e-puck,
a robot designed for education in engineering. In Proceedings of the
9th Conference on Autonomous Robot Systems and Competitions, pages
59–65, 2009.

[10] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. Cambridge, MA:
MIT Press/Bradford Books, 2000.

[11] Erol Sahin. Swarm robotics: From sources of inspiration to domains of
application. Swarm Robotics, pages 10–20, 2005.

[12] Valerio Sperati, Vito Trianni, and Stefano Nolfi. Evolving coordinated
group behaviours throughmaximisation of mean mutual information.
Swarm Intelligence, 2:73–95, 2008. 10.1007/s11721-008-0017-1.

[13] Yukiya Usui Takaya and Takaya Arita. Situated and embodied evolution
in collective evolutionary robotics. In In Proc. of the 8th International
Symposium on Artificial Life and Robotics, pages 212–215, 2003.

[14] V. Trianni, S. Nolfi, and M. Dorigo. Cooperative hole-avoidance in a
swarm-bot. Robotics and Autonomous Systems, 54 (2):97–103, 2006.

[15] Vito Trianni. On the Evolution of Self-Organising Behaviours in a
Swarm of Autonomous Robots. PhD thesis, Faculty of Applied Sciences,
Universite Libre de Bruxelles, Brussels, Belgium, 2006.

[16] R. Watson, S. Ficici, and J. Pollack. Embodied evolution: Distributing
an evolutionary algorithm in a population of robots. Robotics and
Autonomous Systems, 39(1):1–18, 2002.

