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Abstract

We present a number of related novel methods for reducing the dimen-
sionality of data for the purposes of 2D and 3D face recognition. Results
from psychology show that humans are capable of very good recognition
of low resolution images and caricatures. These findings have inspired our
experiments into methods of effective dimension reduction. For experi-
mentation we use a subset of the benchmark FRGCv2.0 database as well
as our own photometric stereo “Photoface” database. Our approaches
look at the effects of image resizing, and inclusion of pixels based on per-
centiles and variance. Via the best combination of these techniques we
represent a 3D image using only 61 variables and achieve 95.75% recog-
nition performance (only a 2.25% decrease from using all pixels). These
variables are extracted using computationally efficient techniques instead
of more intensive methods employed by Eigenface and Fisherface tech-
niques and can additionally reduce processing time tenfold.

1 Introduction

Automatic face recognition has been an active area of research for over four
decades and a key part of this research is understanding how different data
representations affect recognition rates and efficiency. Digital images of faces
have a very high data dimensionality: a 200 x 200px image defines a point in
a 40000-dimensional space, making computation a slow and resource hungry
process. This is compounded when faces images are extended into 3D models.
Reducing the dimensionality of the data without discarding the discriminatory
information is the aim of this research. If a face can effectively be reduced down
from many thousands of dimensions of raw data to a few tens of dimensions as in
this paper, then storage needs become far less and processing becomes far faster.
This has obvious applications for industrial and commercial implementations.



In this paper, we prove the following contributions for both the FRGCv2.0
database [1] and our own photometric stereo database [2] captured using the
“Photoface” device [3]:

1. Optimal recognition results for close-cropped faces are obtained when the
resolution is reduced to a mere 10x10 pixels.

2. The exclusive use of just 10% of the data (chosen to be those pixel locations
with the greatest variance) is sufficient to maintain recognition rates to
within 10% of those rates that include all of the data.

3. When combining the above two contributions we perform recognition at
an accuracy of 96.25% for 40 subjects using only 61 dimensions (pixels).
This compares to 98% when the full 80x80 resolution is used on all data.

Ultimately we aim to compare dimension reduction techniques based on a
percentile and variance based inclusion principle (to exclude 90% of the data)
with a baseline condition containing all pixels.

Our own database, Photoface, provides over 3000 sessions of 457 individuals,
and scans are captured using photometric stereo [4] which results in estimated
surface normals at each pixel. Full details of the actual device used can be found
in [3] and an example of a scan can be seen in Fig. 1. The FRGCv2.0 database,
which we also use in this paper, does not provide the surface normals. They
can be calculated by numerically differentiating the point cloud data. We also
include experiments on the depth map images to rule out any errors introduced
by differentiation.

Using 3D data for face
recognition allows for pose
and illumination correction
which are two commonly
cited problems with conven-
tional 2D images.  Better
recognition rates have also :
been reported using 3D over 25 1)
2D data [5], although this is o

not always replicated [6]. One Figure 1: Examples of FRGCv2.0 (left) and

reason for .th1s may be the ppoioface (right) 3D scans. NB They are not
representation of the 3D data of the same person

used in the analysis. Gokberk
et al.[7] performed recogni-
tion experiments using numerous 3D representations. They concluded that
‘... surface normals are better descriptors than the 3D coordinates of the facial
points.” This is at odds with most research which uses the 3D point coordinates
as a starting point. Surface normals are used in the experiments performed in
this paper for this reason.

There are many mathematical techniques for dimensionality reduction, and
in particular the Eigenface [8] and Fisherface [9] (based on Principle Compo-
nents Analysis (PCA) and Fisher’s Linear Discriminant (FLD) respectively)




techniques are commonly used in face recognition. With an added dimension,
3D face models potentially compound the problem for large data storage. Recent
techniques such as sparse representation (such as non-negative matrix factor-
ization) and manifold learning (such as local linear embedding [10]) show that
effective methods of dimension reduction are a key topic. Methods that can
reduce the amount of data without discarding discriminatory information are
essential for faster processing and optimal solutions. There have been many at-
tempts in the literature to extend and generalise PCA, FLD and other methods
[11, 12, 13] in order to improve robustness to pose, illumination, etc, typically at
the expense of computational efficiency. The main contribution of this paper by
contrast, is to show that for the constrained case of frontal 2.5D data, then the
efficiency can be improved even compared to PCA by using more direct analysis
without the need to project into a new subspace.

Caricaturing essentially enhances those facial features that are unusual or
deviate sufficiently from the norm. It has been shown that humans are better
able to recognise a caricature than they are the veridical image [14, 15]. This
finding is interesting as caricaturing is simply distorting or adding noise to an
image. However this noise aids human recognition and this, in turn, provides
insights into the storage or retrieval mechanism used by the human brain.

Unnikrishnan [16] conceptualises an approach similar to face caricatures for
human recognition. In this approach, only those features which deviate from the
norm by more than a threshold are used to uniquely describe a face. Unnikrish-
nan suggests using those features whose deviations lie below the 5" percentile
and above the 95" percentile, thereby discarding 90% of the data. Unnikrish-
nan provides no empirical evidence in support of his hypothesis, so an aim of
this paper is to test the theory experimentally. We do this in two ways: the first
directly tests his theory, finding the thresholds for each pixel which represent
the 5" and 95" percentile values and only including those pixels in each scan
which lie outside them (outliers). The second is loosely based on Unnikrishnan’s
idea, and looks at the variance across the whole database to calculate the pixel
locations with the largest variance. Only the pixels at these locations are then
used for recognition.

An obvious method of reducing the amount of data is to downscale the im-
ages. A great deal of research has gone into increasing the resolution of poor
quality images (super-resolution [17, 18], hallucinating [19]) by combining im-
ages or using statistical techniques to reproduce a more accurate representation
of a face (e.g.from CCTV footage). By contrast, little research attempts to
directly investigate resolution as a function of recognition rates on 3D data.
Toderici et al.state that there is little to be gained from using high resolution
images [20], Boom et al.state that the optimum face size is 32 x 32 px for regis-
tration and recognition [21], a view which is reinforced by a more recent study
by Lui et al.who state that optimum face size lies between 32 and 64 pixels [22].
These experiments have used 2D images. Chang et al.use both 2D and 3D data
and conclude that there is little effect of decreasing resolution up to 25% on 2D
data and 50% on 3D [5] using PCA. In summary, the research suggests that
relatively low resolutions give optimum recognition (for the given recognition



algorithms). These findings are conducive to the fact that the same appears to
be true of human recognition [23].

2 Methods and data

This section details the datasets, preprocessing steps, and the methods used in
the experiments.

2.1 Data and preprocessing

Experiments were performed on 10 sessions of 40 subjects facing frontally with-
out expression on the FRGCv2.0 and our own photometric stereo database. 2D
and 3D data are used in separate experiments.

The FRGCv2.0 dataset comes in point cloud format which is converted to a
mesh via uniform sampling across facets. Noise is removed by median smoothing
and holes filled by interpolation. Normals are then estimated by differentiating
the surface. The depth map images are all normalized to have a minimum value
of 0.

Data is cropped for both databases as follows: the
median anterior canthi and nose tip across all ses-
sions are used for alignment via linear transforms.
The aligned images are then cropped into a square
region as shown in Fig. 2 to preserve main features of
the face (eyes, nose, mouth), and exclude the forehead
and chin regions which can frequently be occluded by
hair.

Our 2D experiments are based on data as follows:
the accompanying colour image for each FRGCv2.0
Figure 2: The cropped SCal is converted to greyscale, aligned ar-ld cropped in
region of a face. The the same way as the 3D scan. The 2D images in the
distance between the Photoface database are the estimated albedo images
anterior canthi (d) is which are also aligned and cropped in the same way
used to calculate the s the 3D data. Due to memory limitations, both the
cro};l)ped region. . QD and 3D data are fchen r.esmed to 80 x 80 px and are
reshaped into a 6400-dimension and a 12800-dimension (x and y components of
the surface normals are concatenated) vector respectively.

2.2 Calculating outliers and variance

The thresholds for each pixel are calculated which represent the 5t* and 95"
percentile values. We are interested in the norm across the whole dataset for
each pixel location rather than the norm for each image. For the 2D images,
percentile values are calculated for the greyscale intensity value for each pixel
location. There are 400 sessions, so there are 400 values for each pixel from
which we calculate the percentile thresholds. The same process is performed for
3D surface normal data, giving z and y surface normal component thresholds



for each pixel. Pixels which have a value between the 5" and 95" percentile
are discarded, leaving only the 10% outlying data. We shall refer to this as the
“percentile inclusion criterion”. Examples can be seen in Fig. 3.

The above method
extracts the least com-
mon data from each
session and that is
what is used for recog-
nition.  Alternately,
Figure 3: Examples of the y-components of the surface we can use the greyscale
normals that have values outside the 5" and 95 per- variance at each pixel
centiles for four subjects which are used for recognition. location as a mea-

sure of discrimina-
tory power. If a pixel shows a large variance across the dataset, then this
might make it useful for recognition (assuming that variance within the class
or subject is small). Therefore the standard deviation of each pixel is calcu-
lated over all the sessions. Whether or not a particular pixel location is used in
recognition depends on whether or not the variance is above a pre-determined
threshold. Examples of the use of different thresholds are shown in Fig. 4. We
refer to this as the “variance inclusion criterion”.
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Figure 4: Examples of the regions which remain for = (top row) and y-
components (bottom row) as the threshold variance is increased from left to
right. White regions are retained and black regions are discarded.

2.3 Image resizing

The effect of different resizing techniques on linear subsampling are investigated
in terms of their effect on recognition as a function of resolution. Resizing is
performed via the Matlab imresize () function using the deafult bicubic kernal
type and with antialiasing on, as these settings were found to provide the best
performance.

2.4 Recognition algorithm

Our experiments used to test recognition accuracy employ the leave-one-out
paradigm. This dictates that every session is used as a probe against a gallery
of all other sessions once. There are therefore 400 classifications per condition
of which the percentage correctly identified is shown.



As the purpose of this research is feature extraction efficiency, the actual
choice of classifier is not so important. We therefore implement Pearson product-
moment correlation coefficient (PMCC) as a similarity measurement between
a probe vector and the gallery vectors. The gallery session with the highest
coefficient is regarded as a match. Experimentally, we found that PMCC gives
similar performance on baseline conditions to the Fisherface algorithm but is
approximately eight times faster.

3 Results

3.1 Dimensionality reduction via the percentile inclusion
criterion

Unnikrishnan’s theory states that we should expect reliable performance using
only the data which lies outside the 5" and 95" percentiles [16]. Table. 1 shows
recognition rates on 2D and 3D data using both all data and the outliers only.
Note in particular that, for the 3D surface normal data, the rates drop by under
10% when using outlier data only. This effect seems limited to the surface
normal data and is not seen in either the 2D or depth map data. We have
included results from a fusion technique using the Photoface surface normal
data combined with the albedo image. There is a small decrease in baseline
performance and using only the outlying data leads to a severe decrease of
about 34%.

Baseline (All pixels) | Outliers (10% of pixels)
2D FRGC 90 73.75
Photoface 98 64
FRGC Surface normals 90.25 84.25
3D FRGC Depth map 71.5 23.25
Photoface 98.25 89.25
Fusion Photoface 2D + 3D 97 63.25

Table 1: Baseline versus outlier performance (% correct).

Fig. 5 shows a plot of recognition rate as a function of which percentile
range is used for recognition on 3D Photoface data. It should be noted that
similar patterns of results were found for all datasets (2D, 3D and FRGC). As
predicted, the figure shows that the best recognition performance is obtained
using the most outlying percentiles. As expected also, the recognition rate
reduces as the percentile ranges used tend toward the inliers. However, for the
most inlying data of all (i.e. percentiles 45-55) we find a significant increase
in performance. Contrary to Unnikrishnan’s theory, this implies that there is
discriminative data that is useful for face recognition in the most common data
as well as the most outlying.

In a related experiment, we used single 5% ranges of data for recognition
(i.e. [0th — 5th] [5th — 10!"] etc.) as shown in Fig. 6. Note that the increase in
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Figure 5: Recognition performance using pairs of percentile ranges for 3D data.

recognition performance for the most inlying data is not replicated. The slightly
lower performance compared with Fig. 5 is because only 5% of the data is used
instead of 10%.

Performance increases by combining ranges are not always observed. Con-
sider, for example, the 25 — 30" and 70 — 75" percentiles for the FRGCv2.0
data. Individually the two percentiles give a performance around the 50% mark
in Fig. 6, but when combined, the performance drops to around 40% in Fig. 5.
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Figure 6: FRGC and Photoface data show a marked symmetry across ranges of
percentiles.

3.2 Dimensionality reduction via the variance inclusion
criterion

One problem with the above method is that the outlying points tend to be scat-
tered across different parts of the images, making inter- and intra-comparisons
between individuals somewhat unstructured. For the next method therefore, we
use the same pixel locations in our recognition test for all images. Instead of



using the percentiles defined within a single image as an inclusion criterion, we
use the variance of a particular pixel across all subjects as explained in Sec. 2.2.

Fig. 7 shows plots combining the number of pixels which remain as we remove
those with least variance (bar plot) against the recognition performance (line
plot). It is apparent that we can achieve close to optimal performance while

losing a large proportion of the pixels.

We can discard approximately 75%

of the least varying pixels and observe a corresponding drop of less than 10%
Indeed, for Photoface data

in recognition performance on the FRGC data.

specifically, we only lose a few percent.
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Figure 7: Recognition (line) as a function of retained pixels (bar chart). The
pattern is shown in both sets of data (FRGC on the top row and Photoface on
the bottom). 2D (grayscale for FRGC and albedo for Photoface) on the left,

and surface normal data is shown on the right.

Table 2 shows a performance comparison of the two types of inclusion criteria
when only 10% of pixels are retained. It is clear that by discarding the data
that varies the least, we can maintain reasonably high recognition rates.

‘ Percentiles ‘ Variance

FRGC
Photoface
Processing time

84.25%
89%
800.64s

~ 79%
~ 92%
180.95s

Table 2: A comparison of recognition performance using percentiles and vari-
ance methods to select the most discriminatory 10% of the data. The processing
time includes the calculation of the outliers/most varying pixels and 400 classi-

fications

The processing time improvement for the variance approach is due to having

% Correct

% Correct



decreased the vector size by 90 %. This compares to 973.09s for the equivalent
Fisherface analysis which provides an accuracy of 99.5% so both methods offer
considerable time savings at a small cost to accuracy.

3.3 Optimisation of Image resolution

Finally the effect of image resolution on 3D recognition performance is shown
in Fig. 8. This clearly shows that a resolution of 10 x 10 px provides optimal
or close to optimal recognition performance (the result for 40 x 40 px is 0.25%
higher for FRGC) on both 3D datasets. The same pattern appears in the 2D
Photoface database, but there is a small decrease of just under 3% for the 2D
FRGC data. Nonetheless, if we take the 10 x 10 px as an optiumum size, this
figure is lower than often reported in the literature. This may be because the
data used in these experiments is already highly cropped, and other research
may be using other metrics such as the distance across the uncropped head.
Although not shown in the figure, not antialiasing the resampled images led to
poorer performance in all cases.
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Figure 8: The effect of resolution on 3D recognition performance. Recognition
rates for 10 x 10 px are 94.75% for FRGC data and 98.25% for Photoface data.

Combining the optimal resolution of 10 x 10 px with the variance method
above we can achieve virtually the same recognition performance as an 80 x 80 px
image but using only 64 pixels for FRGC data and 61 pixels for Photoface data.
Recognition rates of 87.75% and 96.25% are recorded (a loss of only 7% and 2%
respectively). The processing time is also reduced to 10.5s for variance analysis
and 400 classifications. The same analysis using the Fisherface algorithm takes
118s and achieves a comparable rate of 89.25%.

4 Discussion

This paper describes methods to effectively reduce data dimensions while main-
taining recognition performance. Computationally efficient methods using vari-
ance analysis and image resizing have been shown to be powerful means of
reducing data but maintaining discriminatory information. Table 3 compares



commonly used dimension reduction techniques of PCA and Fisherface with our
variance and percentile inclusion criterion techniques at different resolutions in
terms of classification accuracy and processing time. All experiments were car-
ried out in Matlab on a Quad Core 2.5GHz Intel PC with 2GB ram running
Windows XP. Only one percentile inclusion criterion result has been included
as performance (especially processing time) was not at the same level as other
conditions.

Res. (px) | Data Reduction | Classifier No. Dimensions | % Correct | Proc. time(s)
1. 10x10 None PMCC 200 98.25 12.02
2. | 10x10 VI PMCC 19 (10%) 82.75 12.52
3. 10x10 VI PMCC 61 95.75 13.02
4. 10x10 PCA Euc. dist. 21 94.5 92.47
5. 10x10 PCA PMCC 21 92.25 97.16
6. 10x10 61PCA Euc. dist. 61 96.25% 102.91
7. 10x10 VI — 15PCA PMCC 61 — 15 89.75 128.54
8. 10x10 VI — FF Euc. dist. 19 — 19 90.5 129.74
9. 80x80 None PMCC 12800 98.25 129.86
10. | 10x10 VI — 15PCA PMCC 19 (10%) — 15 79 132.56
11. | 10x10 VI — FF Euc. dist. 61 — 39 99 134.69
12. | 10x10 FF Euc. dist. 39 100 144.25
13. | 80x80 VI PMCC 1235 (10%) 92.25 180.95
14. | 80x80 VI — 15PCA PMCC 1235 (10%) — 15 85.25 331.40
15. | 80x80 VI — FF Euc. dist. | 1235 (10%) — 39 90.75 549.25
16. | 80x80 PCA Euc. dist. 61 96.75 573.52
17. | 80x80 PI PMCC 12800 89 800.64
18. | 80x80 FF Euc. dist. 39 99.5 973.09

Table 3: A comparison of our variance (VI) and percentile (PI) inclusion tech-
niques with PCA and Fisherface (FF) algorithms sorted by processing time.

The number of components which are used for PCA depends on the specific
test as follows: 61 components (61PCA, row 6 of Table 3) were chosen for a
direct comparison with the 61 variables of the variance inclusion criterion which
gave good performance in Fig. 7. 15 components (15PCA condition, rows 7,
10 & 14) were chosen arbitrarily as an extra step after the variance inclusion
criterion for its low dimensionality and relatively good performance. For other
tests using PCA, the number of components are chosen which describe 85%
of the variance. Some entries in the “No. Dimensions” column have (10%)
shown next to them. This is a reminder that only 10% of the data remains
after applying the variance inclusion criterion. Finally some of the rows contain
a “—” symbol representing a combination of processes eg Variance Inclusion
followed by Fisherface.

Generally resizing the image to 10x10 pixels gives a clear processing time
advantage with little or no compromise on accuracy. Without additional dimen-
sionality reduction we achieve a recognition rate of 98.25% (row 1). We are able
to reduce the dimensionality by a further % and only lose 2.5% performance by
additionally using the variance inclusion criterion to select 61 pixel locations
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(row 3). This appears to give the best compromise in terms of the number of
dimensions, processing time and accuracy . The Fisherface algorithm gives ex-
cellent performance (10x10 Fisherface gives 100% accuracy, row 12) but at the
cost of processing time.

These results only apply to the simplest case in face recognition — the frontal,
expressionless face. The variance inclusion algorithm would be unlikely to pro-
duce similarly good results if expressions were present in the dataset, as these
are likely to produce areas of high variance which will not be discriminatory.
Nonetheless these could be used for the purposes of expression analysis instead
of recognition or alternatively areas which change greatly with expression could
be omitted from the variance inclusion criterion.

It is clear that effective dimensionality reduction can be achieved via more
direct, psychologically inspired models in contrast to conventional mathematical
tools such as PCA. Processing speed is also drastically increased — if we perform
recognition by the Fisherface algorithm on 80 x 80 pixel images, it takes 973.09s.
Using 10 x 10 pixel images, processing time drops to only 13.02s using our
proposed variance inclusion method to extract 61 pixel locations with only a
3.75% drop in performance.

5 Conclusion

We have presented a number of important findings that affect face recogni-
tion performance regarding the effects of optimum image size and the use of
different variance measures to select discriminatory data. The findings have
implications on real-world applications in that they point to computationally
attractive means of reducing the dimensionality of the data. Empirical sup-
port of Unnikrishnan’s hypothesis [16] regarding the use of outlying percentile
ranges is provided on both the FRGCv2.0 database as well as our own pho-
tometric stereo face database. One of the most promising results comes from
resizing the original 3D data from 80x80 pixels to 10x10 pixels and applying the
variance based inclusion approach yielding an accuracy of 95.75% using just 61
dimensions and the fact that this heuristic was inspired by the human process
of caricaturing. Using this combination of techniques, processing speeds can be
also be increased tenfold over the conventional Fisherface algorithm.
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