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Abstract. Memristors are used to compare three gathering techniques
in an already-mapped environment where resource locations are known.
The All Site model, which apportions gatherers based on the modeled
memristance of that path, proves to be good at increasing overall effi-
ciency and decreasing time to fully deplete an environment, however it
only works well when the resources are of similar quality. The Leaf Cut-
ter method, based on Leaf Cutter Ant behaviour, assigns all gatherers
first to the best resource, and once depleted, uses the All Site model
to spread them out amongst the rest. The Leaf Cutter model is better
at increasing resource influx in the short-term and vastly out-performs
the All Site model in a more varied environments. It is demonstrated
that memristor based abstractions of gatherer models provide potential
methods for both the comparison and implementation of agent controls.
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1 Introduction

1.1 Memristors

Memristors are an emerging technology with anticipated wide-spread applica-
tions in neuromorphic computing, artificial intelligence and green technology.
The memristor is the 4th fundamental circuit element predicted to exist in
1971 [1] and was only brought to wide-spread attention in 2008 [2]. A mem-
ristor differs from the resistor by being able to store a state ie. it possesses a
memory. Standard modern-day computers separate the processor and memory
to different physical places, whereas the memristor can be used as both. As this
is similar to how the brain works [3], it is thought that artificial intelligences and
A.I.-like systems would be easier to create with a memristor-based system [4].
Memristor-based systems have other advantages over transistor-based systems:
their memory is not volatile, and thus removal of the power source does not
erase data [5]. From a green computing point of view memristors only draw



power when accessed. Again, this is similar to the brain, and fits well with neu-
romorphic computing paradigms where we are concerned with the propagation
of spiking direct current signals rather than repeated A.C. clock cycles.

Thus far, we [6, 7] and others [8] have focused on utilising memristors in
spiking networks, using a bottom up approach to building memristor computers.
Such networks are often considered in terms of their use as control systems
for autonomous or distributed systems and accordingly we focused on path-
finding by a single autonomous agent. While the bottom-up approach is good
for increasing complexity of a single agent, we now present the complimentary
approach which has uses for a different class of problems.

Memristors can be used at a higher level of abstraction such as in a top-down
approach to model the environment. An example of this is maze-solving where
the maze is modeled as a grid of memristors [9] (note path-finding via grids of
resistors had been done prior to this [11, 10].). The maze can be solved in the
time taken for one memristor to switch, regardless of the length and solution
path. This method has only been simulated, but the real interest lies in using
the memristors in hardware to allow the laws of physics to solve the problem
very quickly.

Gathering as a process can be conceptually separated into two parts: firstly
finding the resource (resource location and path finding) and secondly harvest-
ing or gathering the resource (following laid-down paths and returning with
resources). Here we concentrate here on the problem of efficient gathering in
an environment in which the resources have been located. The gatherers under
study could be ants gathering food or autonomous agents mining useful resources
for a factory or collecting samples for scientific research.

1.2 Ants

The existence of pheromones and their use in guiding ants was first reported in
1880 [12] and positive reinforcement of ant trails was reported in 1962 [13].
Since then the picture has become much more detailed: there are several
pheromones [14] which last for different times [15] with some that reverse previ-
ous instructions [16] that together tell the ants where to go and there are addi-
tional geometrical cues to tell them where they are [18]. Nonetheless, the simpler
model of ants exploring their environment and responding by positively reinforc-
ing pathways has given rise to several different ant optimisation algorithms from
the original [19], to Ant Colony Optimisation for optimisation problems [20]
and extensions of that to the Ant Colony System [21] and Rank based Ant sys-
tem [22]. These algorithms have been successfully applied to various np-hard
problems such as the traveling salesman [23].

Given that study of ant searching behaviour has given rise to such a range
of useful computational techniques, we chose to ask what they can teach us
about harvesting. Different ant species have different behaviours, but in general
they seek to maximise the colony’s energy intake [24], usually focusing on energy
maximisation rather than harvesting time minimisation. For example, Solenopsis
germinata will preferentially go to the closer, bigger and higher concentration



food sources over the more distant, smaller sources [25]. The Leafcutter ants,
Atta, have a slightly different technique, they preferentially go to only the best
leaf site when they are in a resource rich environment and spread out to a greater
diversity of trees/sites when in a resource poor environment[26].

Some ants separate the finding of resources from their gathering. For example,
once seed-gathering ants have found a food source, they will return to search
that area, completely ignoring any seeds placed near their path [27]. Similarly,
Leafcutter ants will create trails which the gatherer tend to stick to. Thus, it
is valid to concentrate on the behaviour of gatherers once the environment has
been explored.

The dynamics of ant colonies are non-linear, which makes memristors, as
non-linear devices, well suited to model them. To demonstrate the usefulness
of memristors as an environmental model, we look at the problem of the most
efficient gathering techniques in two very different situations, that of a resource
rich and resource poor environments. We will focus on three different models of
behaviour: 1, the Sequential Gathering technique where all the gatherers go to
each food source in turn, starting with the best; 2, the All Sites model where
the gatherers are split between all the food sources; and 3, the Leafcutter model
where all the ants deplete the best resource and then spread out amongst the
rest.

2 The Memristor Model of the Environment

2.1 The Model Memristor

Memristance M , relates charge, q and magnetic flux ϕ by ϕ = M(q)q. As M
is a function of q, the memristance is controlled by the amount of charge on
the memristor, this is related to the current that has passed through it, and so
q the memory of the device. q is a function of time, t, and at any instant in
time the memristor acts like an Ohmic resistor in that V = RI, where R is the
instantaneous resistance, and memristance is the time-varying resistance.

Memristors have physical limits to the possible resistance values: the lower
limit Ron and the upper limit Roff . The first model of memristance to relate it
to physical measureables [2] gave the memristance as

M(q) = Roff −RoffRonβq, (1)

where β is µv

D2 . This model refers to the Strukov memristor [2] where two
different forms of titanium dioxide (with differing resistivities) are interconverted
based on the drift of oxygen vacancies, as governed by the oxygen vacancy ion
mobility, µv, across a thin-film of thickness D. However, for our current model,
we can view β as a parameter which varies based on the material properties of
the device (for a discussion on the effect of varying this parameter, see [7]).



2.2 Methodology

Using Memristors to Model the Environment The test environment is five
different food sources different distances from the nest which is modeled by five
memristors in series with a 5V potential difference applied across them. The total
voltage drop does not change and relates to the number of available gatherers in
the system. The memristors are set to the ON state (the low resistance mode) so
that an increase in charge will eventually switch the device into the OFF state.
Thus, for ease of use, the memristance is modeled as M(q) = Ron +RoffRonβq,
which is equivalent to the equation above if we include the boundary condition:
Ron ≤M(q) ≤ Roff .

At the start of the simulation, each memristor is charged to a different degree,
ie M(t = 0) varies, and this number encompasses the amount of resource, and
the length and difficulty of the path (the more resources present and the easier
the path, the lower the value of M(t = 0)). This is done by changing Ron in
the model, in the lab this would be done by charging the memristor up by a set
amount before the start of the experiment. β is set to 1 in this model for all
memristors, and it represents the difficulty getting resources from the site. The
memristor equation gives a curve, and β controls the curvature [7] and due to the
non-linearity of the curve this includes the law of diminishing returns whereby,
because gatherers get in each other’s way, each additional gatherer at a resource
gives a smaller productivity gain as the number of gatherers at a resource rises.
M increases as the food is removed, until it hits Roff , at which point the resource
is considered depleted (the amount of resources at the start can vary, but when
depleted, it is depleted no matter how much there was to begin with). As M
has a hard top limit, the resources are scaled to start in different places. The
sum of the current is the rate of resource influx at the nest. In this situation, a
real memristor system would not have a limited current, but the total amount
of resources in a test environment should be the same, thus we use

% of gathered resource on stepn =

t=n∑
t=0

I(t)

I(D)
(2)

where I(D) is the current on the step where the environment is entirely
depleted.

For the rich environment, the memristors are set to: M1(0) = 1Ω, M2(0) =
2Ω, M3(0) = 0.5Ω, M4(0) = 15Ω and M5(0) = 4Ω. The poor environment
contains one very good site M1(0) = 0.5Ω, and the rest are set to 60Ω, 70Ω,
80Ω and 90Ω respectively (the order does not matter). Although these are given
in terms of Ω for convenience, because β is a changeable parameter in this model
these are really reduced units.

Using Memristors to Model Different Gathering Techniques We simu-
lated a series circuit of 5 memristors to model the ants going to all the sites, and
this is the All Sites model. The conceptually simplest gathering technique, the
Sequential model, is to send all the ants to each food site in decreasing order of



their richness. To calculate this, each of the memristors was charged up individ-
ually until it reached Roff , whereupon the next memristor was charged. To make
it a valid comparison, the single memristors were left drawing current once they
had reached Roff as this could happen in the other two models (the value of this
current draw is small). The Leafcutter model is related to the All Sites model:
the best memristor is run singly, then when depleted, it’s left drawing a minimal
current whilst the All sites model is applied to the remaining 4 memristors.

3 Results

3.1 Example of how the Memristance and Voltage Operates in the
All Site Modeled Electronic System

This discussion uses a graph taken from the All Site model in the rich environ-
ment simulation, the same principles apply in the poor environment simulation.
The memristance starts at Ron and changes as a function of the integral of the
current passed through the system until it reaches Roff . In terms of the gathering
model, the lower Ron, the more resources available at that position initially. As
β is the same for each memristor in this example, the curvature of each memris-
tor is the same and hence the rate of increase in difficulty in resource gathering
is the same across all the sites. For this reason, the resistance change does not
effect the voltage under 500 steps (see figure 1), because the voltage is shared
between memristors in proportion to their relative resistances.

Figure 1 shows how the voltage drop across each memristor changes with time
step. Once the 4th food source has been depleted, its share of the workers drops
drastically, with most going to the next closest to being depleted, site 5, and
when this is depleted, most workers move to the next resource. This continues
with the number of workers assigned rising on the remaining resources as others
are depleted, until time step 992 when all the resources are depleted.

4 Comparison Between Gathering Approaches

4.1 Resource Rich Environment

As the maximum value of M is 100Ω, even the highest memristor starting value,
15Ω, still represents a good resource site. The rate of resource influx at the nest
is the normalised cumulative current which is plotted in figure 2.

The worst model, in our opinion, is the Sequential model: it takes longer than
the All Sites model, and although it beats it for resource influx in the short-term
this advantage is lost after a very short time. It depletes the total environment
quicker than the Leafcutter allocation method, but does not have that model’s
advantage of a high rate of initial influx.

To answer which is the best gathering method, we first need to ask what
we expect from the best method, the quickest influx of resources or the shortest



Fig. 1. The voltage across each memristor as a function of time. These curves show
how ants are spread between the food sites. All sites are depleted when the voltage
drop across all the memristors is equal.

time to completely deplete the surrounding environment. The Leaf Cutter model
has a clear advantage at short-times because the gatherers are concentrating on
the best resource in the system. This has a cost: the Leaf-cutter model takes
much longer than the other two, 2978 time steps, compared to 967 for the All
Sites model and 1274 for the Sequential model, which is 108% longer than the
shortest time. There is a finite amount of resources, but due to the diminishing
returns, it can take different amounts of time to get them all and the measure of
this difference is the differing efficiencies of the gathering techniques. In terms
of fully depleting the environment, the Leaf Cutter allocation method is less
efficient in this environment.

This fits perfectly with the entomological observation that ants aim to opti-
mise the maximum energy/resource intake rather than minimize the time taken.
Also, the Leafcutter method is based on the ant’s strategy when in rich environ-
ments, so we might expect this model to fare well in this simulation. In the wild,
there are advantages to gathering the best resource first, it prevents competitors
from taking it and mitigates against any change in the environment.

However, in a rich environment where the gatherers can expect to be rela-
tively undisturbed by competitors the All Sites model is the better approach as
it allows the gatherers to entirely deplete the environment in under half as much
time. Although the Leafcutter model is quicker at the start (taking 44 steps to
gather 50%), the All Sites is still fast having gathered 50% of the total resources
in under a 5th (17%, 173 timesteps) of the total time. Similarly, although the



Fig. 2. Comparison of three gathering models. The Leaf cutter model is better in the
short terms but takes 2978 time steps to reach 100% (all resource consumed), this is
not shown in this figure.).

Sequential model is quicker than the All Sites at the start, the productivity gains
trail off quickly (over 200 time steps).

Both the Leafcutter model and the Sequential model start with the best
resource site first. This may seem like an obviously good idea, and interestingly,
it is not how the All Sites model works. Instead the majority of gatherers go to
the worst resource site first! This is because the difficulty of gathering increases
with time as the ‘low-hanging fruit’ is taken. Thus, even the worst site yields its
best resource output to begin with, and the distance to it is compensated by the
high productivity at the other sites.

Once the worst resource site is depleted, that frees up workers to go to the
other sites and compensate for decreasing productivity at those. Thus, if the
resources are in an environment are known, it is more efficient to spread agents
out amongst all of them, (with more to the worse resources) than to deplete each
resource in turn. Even depleting the best resource first will delay the time taken
to gather from the rest due to diminishing returns. Note, if it is desirable to try
to regulate resource influx the All Sites model would be the best choice.

4.2 Resource Poor Environment

In this environment, the All Sites model is not very good, as it drastically slows
the time taken to deplete the good resource and the environment (both to 2801
steps), see figure 3. However, the Leafcutter and the Sequential models both do
much better by depleting the best source first, they get 90% and 68% in their ini-
tial surge (≈ the first 100 timesteps). The Leafcutter model beats the Sequential



Fig. 3. How different models fare in the resource poor environment. Despite being
based on ant behaviour in a rich environment, the Leafcutter ant model fares best.

model on the time taken to deplete the entire environment by 967 timesteps to
1321 and is overall more efficient. This is surprising as the Leafcutter model was
based on the ant behaviour in a rich environment. Real Leafcutter ants would
spread their focus amongst all the sites in a poor environment, this suggests that
in such a situation ants are allocated differently to All Site allocation model.

The Leafcutter allocation model is clearly better than the Sequential model
despite utilising the All Sites model over the latter time steps. This suggests
that when the food sources are all of a similar magnitude (the rich environment
was arguably close to this), it is better to send gatherers to all of them, weighted
to the smallest, easiest depleted sources. If the sites are similar to each other
this results in productivity gains whereby the slowing of productivity at one site
is compensated by the increase at another. When the resource sites are vastly
different, equalising the resource influx limits the best resource to the speed of
gathering from the worst.

5 Conclusions

There are a few competing considerations when deciding how to spread gatherers
around. More gatherers will get more resources from a single site, and the fewer
resource sites there are the more gatherers can be put on each one. Thus, deplet-
ing the smaller sites first will give more gatherers to the pool to be reassigned
to another resource site, increasing efficiency when the resources are similar in
size. However, the extra amount of work added per gatherer decreases with the



number of gatherers, so it makes sense to spread the gatherers around the sites.
Finally, the rate of output at each site changes as that site is worked due to
an increase in difficulty gathering and gatherer-gatherer interactions. Knowing
how best to allocate gatherers in a dynamically changing system is difficult: the
memristor based All Sites model can help balance out productivity and speed
up gathering when resources are similar and the ant and memristor based Leaf-
cutter model can be helpful in a mixed environment. Thus, these algorithms
may have some use in both work allocation and the study of social insects. ering
when resources are similar and the ant and memristor based Leafcutter model
can be helpful in a mixed environment. Thus, these algorithms may have some
use in both work allocation and the study of social insects.

Memristors can be synthesized and thus all of these calculations can be done
quickly in hardware and this is the main interest in using this technique. In this
paper a complex environment has been modeled with only one memristor per
path, making this a very lightweight model, so there is room for combinations
of memristors which could allow the modelling of more realistic scenarios.

The similarity between memristors and biological components has been well
observed. There may also be similarities between memristors and higher levels
of biological organisation. It is known that many ants can produce more com-
plex behaviour than study of a single ant might lead us to believe and study of
this phenomena has been extended to our own species [17]. Ant colonies have
short-term collective memories, their complex patterns of pheromones act as
stored information, so it is possible that memristors could be used to model
this institutional memory. A new model for the ant’s behaviour that focuses on
institutional memory might shed light on the more complex institutional mem-
ory which differentiates human societies and separates us from hunter-gatherer
societies.
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