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Abstract We describe a new class of decentralised control algorithms that
link local wireless connectivity to low-level robot motion control in order to
maintain both swarm aggregation and connectivity, which we term “coher-
ence”, in unbounded space. We investigate the potential of first-order and
second-order connectivity information to maintain swarm coherence. For the
second-order algorithm we show that a single β parameter—the number of
shared neighbours that each robot tries to maintain—acts as an “adhesion”
parameter. Control of β alone affects the global area coverage of the swarm.
We then add a simple beacon sensor to each robot and show that, by creating
a β differential between illuminated and occluded robots, the swarm displays
emergent global taxis towards the beacon; it also displays interesting global
obstacle avoidance properties. The chapter then extends the idea of β het-
erogeneity within the swarm to demonstrate variants of the algorithm that
exhibit emergent concentric or linear segregation of subgroups within the
swarm, or—in the presence of an external beacon—the formation of horizon-
tal or vertical axial configurations. This emergent swarm morphology control
is remarkable because apparently simple variations generate very different
global properties. These emergent properties are interesting both because
they appear to have parallels in biology, and because they could have value
to a wide range of future applications in swarm robotics.

1 Introduction

This chapter investigates robot swarms that combine sensing, locomotion
and morphological adaptivity. We develop wirelessly connected robots in
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which the wireless network becomes the “glue” physically connecting the
robots. Previous work studied the possibility of gathering sensory data across
an ad hoc wireless connected network of mobile robots with range-limited
communication and was focused on randomly moving robots in a bounded
space [34]. Here we extend this idea to an unbounded space, controlling the
behaviour of the robots in order to form a dynamically connected stable
swarm, which we call a “coherent” swarm. Working primarily in simulation,
but with partial confirmation of results with real-robot experiments, we show
that with only an omni-directional wireless and collision avoidance device we
can achieve coherence in an unbounded environment, i.e., the swarm forms
a single connected communication network. Adding a simple beacon sensor,
we also demonstrate emergent directed swarming (taxis) towards a beacon,
then extend our approach to allow emergent swarm morphology control.

Swarm robotics is the study of artificial or embodied systems based upon
the principles of swarm intelligence [9]. In swarm robotics a number of rel-
atively simple robots, each with limited sensing, cognition and actuation,
collectively work together. Robotic swarms are fully distributed systems that
typically exploit emergence or self-organisation, rather than direct control, to
achieve an overall task [12]. Some tasks may be biologically plausible, such as
cluster sorting [6], co-operative wall building [20], or collective foraging [18]. A
fundamental property of robot swarms is that they are physically distributed
and it follows that flocking and formation control have been the subject of
much research:

• Flocking is the task of forming a group of robots when the actual shape of
the group is not important, [26, 19]. When the group is formed because of
mutual attraction or because the group is attracted by a common source,
such as a beacon, it will be referred to as swarming. Hayes et al. introduce
the idea of secondary swarming where individuals relay the signal of the
beacon, which makes the robots move as a group [14].

• In their study of formation control, Balch and Arkin state that research on
formation control can be divided into unit-center-, leader- or neighbour-
referenced control [4]. In most cases, the task for these robots is to move
in the same direction while trying to maintain constant relative distances.
This typically involves a constrained number of robots. Relevant to this
chapter is the work presented in [5] where the use of a neighbour-referenced
algorithm allows for scalability. Weßnitzer et al. describe an example of
formation control using wireless communication [33].

Robot-robot communication is clearly an equally important property of
robot swarms. A number of models employ stigmergic communication, in
which robots communicate indirectly via the environment: one robot changes
the environment and another senses the change and alters its behaviour ac-
cordingly. In their study on multi-robot communication, Balch and Arkin
show that stigmergy can be sufficient to complete the task, but that direct
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communication is able to increase efficiency [3]. The work of this chapter
employs direct robot-robot communication but adopts the framework of sit-
uated communication proposed by Støy: it applies when “both the physical
properties of the signal that transfers the message and the content of the
message contribute to its meaning” [29]. Also of relevance to our work is the
field of sensor networks with mobile nodes [25].

Since this chapter involves morphology control, i.e., regarding the entire
swarm as a single entity, it also concerns the field of reconfigurable robots.
Such systems typically consist of elementary robots that physically assemble
to form a bigger entity [17], or modular robots whose morphology can be eas-
ily changed [32]. The design of reconfigurable robots raises complex problems
of distributed control and communication, but the main challenge is without
doubt the physical design of an individual robot. An example of distributed
control of articulated modules that can be reconfigured on-the-fly can be
found in [31]. The SwarmBot project considers mobile robots able to physi-
cally attach to each other to behave as a single multi-robot system [21, 13].
Perhaps closest to the topic of this chapter is a swarm of physically but
flexibly connected robots that demonstrate emergent swarm taxis [28].

The remainder of the text is organised as follows: Section 2 describes our
experimental method, Section 3 presents the different algorithms that were
developed to achieve coherence, with a study of the behaviour of the most
successful one: the β-algorithm, Section 4 develops and investigates an emer-
gent taxis behaviour relying on the dynamic differentiation between robots
within the swarm, Section 5 investigates the potential of static and dynamic
differentiation to actually control the global shape of the swarm, and overall
conclusions are drawn in Section 6.

2 Methods

The experimental approach of this work has been to design and test swarm
robotic algorithms in simulation, validated—where possible—by experiments
with laboratory robots. Our simulation does not attempt to model the dy-
namics of the robots. We would argue that dynamical simulation is not nec-
essary for modelling swarm systems in which velocities and accelerations are
modest and where robots do not come into physical contact. Our simula-
tion does, however, aim to model the kinematics, sensors and actuators with
reasonable fidelity so that we have a valid basis for comparison between sim-
ulation and real-robot experiments.

Robot architecture We model the kinematics, sensors and actuators of
the Bristol Robotics Laboratory’s Linuxbot, a wheeled differential-drive robot
(Fig. 1). In the simulation, it is assumed that the robots are able to move with
a precision ranging from perfect to errors of 10% on the distance travelled
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or angle turned, that they have short-range infra-red avoidance sensors with
range ra, and that they are equipped with a radio device with a limited range
rw, where ra < rw.

Fig. 1 The Linuxbots at the Bristol

Robotics Laboratory (BRL).

The robots’ control system, for
both simulation and real-robot experi-
ments, is designed as a finite state au-
tomaton. A robot will be in one of sev-
eral mutually exclusive states, and can
switch between them according to en-
vironmental cues. In this chapter the
messages coming from other robots are
considered as a part of the robot’s
environment. The control architecture
can be divided, following [11], into two
layers: avoidance and communication.
The goal of the avoidance layer is to
steer the robot away from any obstacle
that it detects (in a Braitenberg fashion [10]), while the communication layer
responds to messages from neighbours (as will be described in Section 3). It
is important that when the robot is performing control actions dictated by
the avoidance layer, it does not take account of information from the commu-
nication layer. In Brooks’ terminology, the avoidance layer “subsumes” the
communication layer, because of its priority for the robot’s safety. For a full
account of the control architecture, see [22].

Communication An idealised model is used to simulate radio communica-
tion between the robots. We assume that the wireless antenna is omnidirec-
tional and that the receiver is not able to detect any message if the transmitter
is located further away than a distance rw, the communication range. We do
not attempt to simulate buffer overflow or any other real phenomena such as
signal decay, and we consider that a robot can send a message to all neigh-
bours within range rw. Noise is modelled as loss of the entire message with a
constant probability. This probability was chosen to range from zero to 10%
(which represents a very poor signal-to-noise ratio).

The situation depicted in Fig. 2a shows a group of robots together with
each of their ranges of communication. In this example, Robot 1 can com-
municate with Robot 2, and the latter with Robot 3. Robot 4 cannot com-
municate with the other robots. This situation can be formalised using an
undirected graph G = (V,E) where V is a set of points, the vertices, repre-
senting the robots, and E is a set of lines, the edges, connecting one vertex
to another, representing the possibility for the two robots to communicate.
It is then possible to draw the graph G, hence the situation of Fig. 2a can be
formalised as in Fig. 2b.

In order to avoid simulation artefacts, the states of the robots are updated
following a pseudo-random sequence that changes at each step of the sim-
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(a) (b)

Fig. 2 Four numbered robots shown (a) with disks of communication ranges in 2D, and

(b) as an undirected graph.

ulation, and the internal clock state of the robots is periodically randomly
altered to avoid any unintended synchronicity.

3 Swarm Coherence

The goal of swarm coherence is to guarantee that the network created by
the wireless connected robots of the swarm forms a single connected compo-
nent, and our aim is to ensure this coherence while using minimal exchange
of information. In our proposed swarm, the only relative positional infor-
mation available to a robot is inferred from the interplay of the short-range
avoidance behaviour and the longer, but still limited-range, wireless com-
munication. Thus a robot can minimally classify the range of its neighbours
according to whether they are “close” (within wireless range), “too close”
(within avoidance range) or “away” (outside wireless range). We now show
how the exchange of messages between the robots is critical to transform this
crude data into sufficient information to achieve coherence.

Fig. 3 Basic algorithm: a robot is shown

as a circle and its heading as a short line.

Consider the case of two robots
(Fig. 3). Assume that the robots are
initially in communication range, mov-
ing forward with random headings
(A). Unless they have parallel or cross-
ing trajectories (the former situation
being undetrimental to the connection
and the latter being dealt with by the
avoidance behaviour) they will eventu-
ally lose contact (B). In order to check
whether this is the case or not, the al-

gorithm uses a send/listen mechanism: with a certain periodicity each robot
broadcasts a message and then listens for incoming messages. If no message
is received within a certain time, each robot assumes it is out of range (B)
and reacts immediately by turning 180◦ in order to reconnect (C). Then, as
soon as it reconnects, each robot chooses a new random heading (D). As no
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global time is implemented, the robots should react asynchronously. How-
ever, if each robot has the same range of communication then both reactions
should occur within a short time, depending on the periodicity of the calling
messages. We refer to this periodicity as cadence, and we choose a default
value of 100 time steps.

This behaviour leads to the two robots maintaining themselves in range
as if they were attached with an elastic connection. The choice of a random
heading when reconnection occurs makes the pair follow a random walk. It is
important to observe that the reciprocity of reaction, even though it does not
have to be simultaneous, is crucial to retaining the connection. Homogeneous
robots have equal velocities and the reaction of only one robot could lead
to an endless pursuit. We formally define coherence of a wireless connected
swarm as follows: The swarm is considered to be coherent if any break in the
overall connectivity of the network lasts less than a time constant C. Clearly,
the constant C is related to the periodicity of the calling messages (cadence).
In the results that follow we have chosen C = 10 ∗ cadence; for any runs in
which a break in connectivity exceeds C, the swarm is declared disconnected
and the run unsuccessful. The default values of parameters for the simulation
and real-robot experiments of this section are given in table 1.

Table 1 Default parameter values for swarm coherence.

α coherence β coherence β area coverage β real-robot

swarm size 20 or 60 20 20 7
cadence 100 100 100 100

random noise 2% 2% 2% –
α or β value 6 2 or 5 2 or 5 2
time steps 50,000 100,000 100,000 variable

runs 10 10 10 10

3.1 Connection degree algorithm: the α-algorithm

Fig. 4 30 simulated robots aiming
for a complete graph.

Applying this basic algorithm to a greater
number of robots by making each robot re-
act to every loss of connection leads to an
over-reactive swarm which clumps together
(Fig. 4). To react to every loss of connection
is equivalent to aiming towards a complete
graph where each vertex is connected to ev-
ery other, which is not our aim.

So the problem for the robot is choosing
when is an appropriate time to react to a loss
of connection. A candidate algorithm con-
sists of giving each robot a threshold α on
the number of connections, called the con-
nection degree, and making the robot react if
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this number falls below α. This is close to the approach adopted in Støy’s
algorithm [30], although it relies on differences in the number of neighbours
without the help of thresholds. Thus, in his case, while robots stay together
more than random movement alone would allow, the coherence of the net-
work is not assured.

Results of α-algorithm simulation Fig. 5a shows the global degree of
edge- and vertex-connectivity with increasing values of the α threshold for
swarms of 20 and 60 robots. The most striking feature is the fall in connec-
tivity between a swarm of 20 robots and a swarm of 60. Note that only the
runs ending with a succesfully connected swarm were retained. The propor-
tion of successful runs is 85% for 20 robots and 66% for 60 robots. In order
to investigate more closely the drop of connectivity between swarm size, the
parameter α was also fixed to the value of 6 while the size of the swarm varied
(Fig. 5b). There, the drop of connectivity can clearly be followed as the size
increases. Again these results are from successful runs only.

(a) (b)

Fig. 5 Global degree of α-algorithm connectivity. (a) Increasing α under swarm sizes

n = 20 (‘*’) and n = 60 (‘+’). (b) Increasing swarm size under α = 6.

These results show that, for the α-algorithm, the coherence of the network
is more or less maintained—but not guaranteed—for thresholds α = 6 or
above. Note that there exist network configurations that must be avoided in
order to assure the coherence of the swarm. For example, when a robot (or
a group) is linked to the rest of the swarm by a single communication link,
the danger lies in the possibility of a robot not reacting to the loss of such a
connection essential to global connectivity, because the number of remaining
connections is above the threshold. In graph theory, an edge representing
such a singular connection is known as a bridge (Fig. 6a). Another example
is a single vertex essential for connectivity, which is called a cutvertex : in
such a situation a robot failure would lead to the disconnection of a larger
graph component (Fig. 6b).
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(a) (b)

Fig. 6 Extreme connectivity states presenting single points of failure. (a) Examples of

singular vertices, called “bridges”. (b) Example of a singular vertex, called a “cutvertex”.

Thus we have an explanation for the drop in connectivity observed: the
measures of edge- and vertex-connectivity are global measures. This means
that a single change in the network topology can potentially lead to a de-
crease in the connectivity value. With an increasing swarm size, the prob-
ability of the occurrence of such situations increases. In fact, the connec-
tivity measures represent the resilience of the network to component fail-
ure: the edge-connectivity value is the number of connections—regardless of
which ones—that can be lost without disconnecting the network, whereas
the vertex-connectivity value represents the number of nodes that can be re-
moved without disconnection (a node removal will happen, for instance, in
the case of a robot communication failure).

3.2 Shared neighbour algorithm: the β-algorithm

To avoid the extreme configurations of Fig. 6, we make use of the graph
theory concept of clustering : instead of considering only its own degree of
connection, each robot will receive from its neighbours their “adjacency ta-
ble”, i.e., their neighbours’ lists, in order also to check whether a particular
neighbour is shared, that is whether a particular neighbour is the neighbour
of other robots.

Fig. 7 Shared neighbour.

The algorithm works as follows: for each
lost connection, a robot first checks how
many of its remaining neighbours still have
the lost robot in their neighbourhood. If this
number is less than or equal to the fixed
threshold β, the robot executes the 180◦ turn
of Fig. 3; or, if its number of connections is
rising, the robot chooses a random heading.
Consider the situation of Fig. 7: Robot A,
when losing the connection with Robot B,
checks its other neighbours and finds that
Robots C and D share Robot B as neighbour.
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Hence Robot A will react and turn back only if the threshold β is set equal
or greater than two. The algorithm tries to maintain the triangulation ob-
servable in Fig. 7, therefore avoiding the extreme states. Note that Robot B
may also react to the loss of connection with Robot A; this reciprocity is
desirable. Pseudo-code for the β-algorithm of each robot is listed in Fig. 8.

Create list of neighbours for robot, Nlist

k = number of neighbours in Nlist

i = 0

loop forever {

i = i modulo cadence

if (i = 0) {

Send ID message

Save copy of k in LastK

Set reaction indicator Back to FALSE

k = number of neighbours in Nlist

Create LostList comparing Nlist and OldList

for (each robot in LostList) {

Find nShared, number of shared neighbours

if (nShared <= beta) {

Set reaction indicator Back to TRUE

}

}

if (Back = TRUE) {

turn robot through 180 degrees

}

else if (k > LastK) {

make random turn

}

Save copy of Nlist in Oldlist

}

Steer the robot according to state

Listen for calls from robots in range

Grow Nlist with neighbours IDs and connection info

i++

}

Fig. 8 Pseudo-code for the β-algorithm.

Simulation confirms that the β-algorithm does indeed increase swarm co-
herence, and a value of β = 2 is enough to achieve coherent spread. Of course,
the communication bandwidth of the whole process is somewhat increased
compared to the α-algorithm, as well as the processing power needed for
the robot. More sensitivity to the message content (semantics) is also intro-
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duced. However, communication remains situated, and hence message loss or
misinterpretation only leads to over-reactivity without loss of robots, as the
introduction of noise into the simulation confirms. Furthermore, the increase
in bandwidth does not affect the scalability of the algorithm as it concerns
only exchanges between neighbouring robots; messages are not propagated
beyond more than a single hop in the network.

If M is the maximum number of neighbours, then the length of a transmit-
ted message will not be greater than M2 robot identification numbers (IDs)
(M neighbours each with M neighbours). An approximation for M is given
as follows:

M =
⌈Acomm

Abody

⌉
− 1

where Acomm is the robot’s communication area, Abody is the area of the
robot’s body and d.e is the upper rounded integer function.

It is worth stressing that the significant benefits gained from the increase
of information exchange needed by the β-algorithm could not be achieved in
the framework of the α-algorithm. The second-order information, about the
neighbours of a neighbour, is crucial to detect bridges and cutvertices before
they form. This follows from the fact that the first-order information of one
robot connected to another is not sufficient to determine the nature of this
connection in terms of the connectivity of the neighbouring network.

3.2.1 β-algorithm simulation results

Fig. 9 shows the variation of the edge-connectivity with an increase in β
threshold and swarm size. The drop in connectivity observed in the results
of the α-algorithm is no longer seen. With the β-algorithm, in contrast, con-
nectivity is more constant against swarm size increase. Fig. 9a also shows
that the connectivity increases sharply with increasing β, then levels out at
β values between 5 and 10.

(a) (b)

Fig. 9 β-algorithm edge-connectivity under (a) increasing swarm size, (b) n = 7 and 20.
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The reason for this leveling is due both to the avoidance behaviour that
comes into action when robots are close together, and the fact that with high
values of β, aggregation takes some time to complete. The typical mid-run
configuration is a highly connected swarm with a few satellite robots that
need some time to aggregate with the rest of the swarm. Because of the
global nature of the connectivity measure these satellites can lead to a slight
underestimate of the connectivity, which we would not observe with much
longer runs. Also, smaller swarms seem to present a slightly lower perfor-
mance, especially with higher values of β. The reason is the higher dynam-
icity of smaller swarms that gives them a more brittle behaviour (Fig. 9b).
The vertex-connectivity measure, almost equal to the edge-connectivity, is
not shown for readability.

Fig. 10 Edge-connectivity against noise

in the β-algorithm with n = 20.

We now test the β-algorithm with
increasing levels of noise, and the re-
sults are shown in Fig. 10. Note that
this curve has been obtained with in-
creasing levels of noise in communica-
tion, proximity sensors and actuators
simultaneously. This is by no mean re-
alistic, as there is no reason that the
amount of noise in actuators should be
proportional to communication noise.
It does, however, provide a worst case
evaluation of the effect of noise. A drop
in connectivity with increasing noise
can be observed, but it is small in the case of β = 2.

The introduction of noise directly decreases connectivity due to the loss
of messages. With increasing noise, a robot experiences more disconnection
and as a result its reactivity increases, which maintains the connectivity for
β = 2 (Fig. 10). With a higher threshold value β = 5, a swarm is more
reactive, hence the potential to absorb the decrease of connectivity due to
noise is lower, and the expected drop in connectivity at higher noise is clearer.

Spatial Coverage We now test the precise role played by the threshold
coefficient β and how the area coverage can be controlled through it. Area
coverage is defined by the radius of communication of each robot within the
swarm. Regions covered by several robots are counted only once, and robots
disconnected from the swarm do not contribute to the measured area. We
estimate area coverage using the method of “square bisection”. The plane
is subdivided into squares; for each square if it falls completely within the
coverage radius of a connected robot then it is added to the area coverage
estimate; if only part of the square is within the coverage radius then it is
bisected into four equal squares and the process repeated for each of those
four squares. The depth of recursion determines the precision of the estimate.
Fig. 11 shows that differing β values do influence swarm spatial coverage.
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(a) (b)

Fig. 11 Examples of area coverage with (a) β = 1 and (b) β = 4.

Fig. 12 shows the area covered by a swarm of 40 robots when the β thresh-
old is stepped from β = 1 to β = 20 and vice-versa, which confirms that the
threshold value can indeed be used to control the area coverage. It is also
interesting to note that swarm spreading is much faster than swarm aggre-
gation: when β is raised, the area coverage is slowly reduced to reach an
equilibrium in around 100,000 time steps, whereas the swarm only needs
about one quarter of this time to return to its initial area.

β changes from 1 to 20
?

β changes from 20 to 1
?

Fig. 12 Transitions in area covered between β = 1 and β = 20.
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When the mean area covered by the swarm is plotted against β for different
swarm sizes, we obtain the family of curves of Fig. 13a. Here, the potential
of the β threshold to control the area is clear, and control is effective up to
a value of β = 10. Beyond this value, the contraction of the swarm takes
longer than the length of the run, and is therefore not measured. But in any
case, the contraction is limited firstly by the low-level avoidance behaviour
and secondly by the physical size of the robot body. What is also significant
is the linear increase of the area when increasing the size of the swarm. This
increase can also be modulated by the β threshold without compromising its
linearity. This shows that there is no leveling of the action of the algorithm
and we can therefore potentially control the area of any swarm size.

(a) (b)

Fig. 13 Area coverage against β and swarm size (a) absolute area (b) normalised area.

The swarm area divided by the number of robots gives the mean con-
tribution of a single robot to the coverage (Fig. 13b). For all swarm sizes,
the slope of the decreasing normalised area is strikingly similar. This confirms
that the effectiveness of the β-control is independent of the number of robots.
Of course, the effect on the whole swarm area is greater with larger swarms
(Fig. 13a). The decrease of the contribution for increasing swarm sizes is due
to overlapping communication areas: for larger swarms, a greater proportion
of robots are situated within the swarm. Because of overlaps, these robots do
not contribute as much as robots at the boundary to the whole swarm area.
As expected, this decrease levels out with increasing swarm size.

Fig. 14 Area coverage vs. noise.

The influence of noise on area cov-
erage is shown in Fig. 14. These re-
sults have been obtained with increas-
ing levels of noise in connection, prox-
imity sensors and actuators simulta-
neously. The normalised area coverage
remains constant for β = 2 but shows
a clear increase, with increasing noise,
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for β = 5. The increase corresponds to a drop in connectivity which suggests
that an increase in noise could lead to a more brittle swarm. Nevertheless the
fact that the area shows such a small variation with a large increase in noise
is a clear strength of the algorithm.

3.2.2 Real-robot experiments

Experimental details The Linuxbots are equipped with an IEEE 802.11b
wireless LAN device for TCP/IP communication both to allow robots to be
started, stopped and monitored from fixed workstations, and for direct robot-
robot wireless communication, as described in [36]. However, the WLAN de-
vice has a range of a few hundred metres. A much shorter range of the order
of one metre is required. We therefore simulate this requirement by measuring
distances between robots using the robots’ infra-red (IR) tower and allowing
them to communicate only if within range, a method referred to as virtual
sensing [7]. The IR tower consists of a circular array of eight IR emitters
under a circular array of IR receivers. In order to maintain the same ratio
between avoidance range and communication range as in the simulation, the
robots were calibrated with a range distance of 1.2 metres. The IR tower
used is actually very noisy and the resulting virtual sensor does not corre-
spond exactly with the idealised model of the simulation (see Section 2). In
particular, the IR signal is not omnidirectional as the range is different in
asymmetrical directions around the robot, resulting in a non-circular area of
communication.

The Linuxbots’ obstacle avoidance IR sensors are situated as follows: two
mounted symmetrically at the front and one at the rear, each with a range of
approximately 50cm. In all real-robot experiments the physical environment
is a 9-metre wide powered-floor octagon delimited by white edges suitable for
IR reflection. Each experiment starts with the robots randomly grouped near
the centre of the arena and lasts until the group is obviously disconnected.
This approach was necessary because of the restricted size of the arena which,
if permitted, would allow a lost robot to return to the swarm by reflecting
back from the arena boundary, thus negating the basic assumption of an
unbounded environment.

Each measured quantity was recorded every time a message was sent and
has been averaged over the whole run. For a number of values of swarm size,
β, and cadence, an average of 10 runs have been performed and the result
given is the mean over these runs with its standard deviation. Unless varied,
the default values for the remaining parameters are as shown in Table 1.

Real-robot coherence For real-robot experiments, the physical resources
(number of robots and arena size) did not allow experiments with more than
7 robots. Despite this limitation, and the use of the IR tower to emulate
the range-limited wireless communication, the qualitative behaviour seen in
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the real-robot experiments does not differ significantly from that observed in
simulation (see Fig. 17 for pictures of 7 robots running the β-algorithm).

Investigating the performance of the β-algorithm with different real-robot
swarm sizesm, we obtain Fig. 15. A much lower connectivity than in the simu-
lation with a swarm of 7 robots is observed, even in the presence of 10% noise.
However, the length of the runs is much shorter: in simulation, the runs were
arbitrarily stopped after some time, while the real-robot experiments were
halted because of robots disconnecting themselves from the swarm (typically
after 2 minutes). The number of exchanged messages was 1000 in a successful
simulation run and only 35 for the average length of a real-robot run. As a
result, the β-algorithm has not been definitively proven to lead to swarm co-
herence on the experimental platform that was used. Note that measurement
of connectivity presents some difficulties: as the real robots are asynchronous
finite-state real machines, there is no global “clock” to allow for a meaningful
sample of the topology of the network. The measures were recorded on board
each robot, but the inevitable drift between the robots’ processing cycles
weakens the accuracy of the connectivity measure.

(a) (b)

Fig. 15 Edge-connectivity in β-algorithm real-robot experiments vs. simulation, as a func-

tion of (a) swarm size, and (b) β value.

In fact, the lower connectivity observed in real-robot experiments is not,
as one might expect, due to the difference between the non-ideal IR-tower
virtual communication and the idealised communication model of the simu-
lation. It is largely due to interference between the short-range IR avoidance
sensors, which operate on the same frequency. This interference triggers a
proportion of false-positive sensor readings, causing robots to unnecessarily
initiate avoiding actions. The influence of the β threshold on the behaviour
of the swarm is seen in Fig. 15b: high variability is again observed. Despite
this, the potential of the β-algorithm to tune the real-robot connectivity is
clearly apparent.

Real-robot spatial coverage The results of real-robot experiments on the
β-algorithm area coverage are shown in Fig. 16. Note that the correspondence
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in area values between real-robot experiments and simulations is computed
through a geometrical transformation that does not consider lens distortion—
the effect of which is that the area coverage for real-robot experiments is
somewhat underestimated, especially for smaller values of β. The comparisons
in the figures are thus more qualitative than quantitative. An increase in
swarm size shows a decreasing curve for the normalised area, similar to the
simulation results (Fig. 16). This behaviour is also due to communication
overlaps, as described in Section 3.2.1.

(a) (b)

Fig. 16 Area coverage with (a) increasing swarm size (β = 2), (b) increasing β (n = 7).

When parameter β is varied, a decrease in the normalised area coverage
is noticeable (Fig. 16b), although the range of this decrease is not as large
as that seen in simulation. The reason could be the lack of connectivity.
Indeed, such values in connectivity are in simulation translated into larger
area coverage. Fig. 17 shows typical dispositions of real robots running the
β-algorithm with differing β values.

Fig. 17 Real-robot experiments with β = 2 and β = 6.

4 Swarm Taxis

This section extends the β-algorithm to allow the swarm to move toward a
beacon while retaining coherence. Choosing light as our exemplar beacon (al-
though it could be any point source capable of being occluded), we equip the
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robots with minimalist sensors and enhance the environment with the beacon
and possible obstacles. We then evaluate the performance of the swarm taxis
behaviour, with and without obstacles, and in the presence of noise.

4.1 Behaviour Description

Sensing We equip each robot with a simple omnidirectional on-off beacon
(light) sensor with a range of, effectively, infinity. This sensor is placed on the
robot such that the presence of another robot in its line-of-sight to the beacon
occludes the sensor. This binary sensor is either illuminated if it can “see”
the beacon (at any range), or not-illuminated if it is occluded. Furthermore,
beacon sensing is independent of the direction of movement of the robot.

Fig. 18 An illuminated swarm of 30 sim-
ulated robots.

In order to give the necessary
tropism to the swarm, a beacon is in-
troduced into the environment 1000
units north of the initial position of
the swarm. We now have a swarm that
senses the beacon (with some noise)
only on its side facing the beacon
(Fig. 18). Note that there is no mea-
sure of signal strength that gives an
estimate of the distance. Real robots
need only react to a threshold value
that discriminates between ambient
light and direct beacon illumination.
Thus a single robot is not able to gen-
erate an approximation of the direc-
tion of the beacon. Nevertheless, the illuminated side of the swarm provides,
as a whole, a direction to follow. We now show that this is sufficient to facil-
itate swarm beacon taxis.

Movement Let the illuminated robots enter a new state that we label as
“red”. We now modify the shared neighbour behaviour such that a robot
always reacts if the lost connection involved a red robot, regardless of β. Thus
a robot must broadcast its “red” state to its neighbours so that they can
react appropriately. (Communication bandwidth utilisation will be slightly
increased by a number of bits per message equal to the number of the robot’s
neighbours.)

It was noted in Section 3 that swarms with a higher β threshold tended
to remain in the same place, while smaller β values allowed for more fluid
movement. In fact the “red” state corresponds to setting the β value to in-
finity for illuminated robots. This results in the red robots trying to build
complete graphs among themselves, reacting to each loss, clumping together
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and therefore restricting their global movement. Meanwhile, other robots are
drawn towards the red ones, surrounding them and hence themselves becom-
ing illuminated. As the current red robots build their complete graph, they
occlude the red ones that happen to stand inside. This leads to a configura-
tion similar to that at the start, but, importantly, the restricted movement
of the red part of the swarm has “pulled” the other robots slightly toward
the beacon. The process then repeats itself and we have a steady movement
of the swarm toward the beacon.

Thus taxis is not implemented through direct coding. It is a swarm
behaviour that emerges from the interaction of the illuminated and non-
illuminated robots. We simply add the following conditional statement into
the for loop of the pseudo-code of Fig. 8:

if (color of robot == red) {

Set reaction indicator Back to TRUE

}

Parameter values for the taxis and shape control algorithms, in this and the
following sections, are given in Table 2.

Table 2 Parameter values for taxis and shape control algorithms.

β taxis β segregation β axis formation

swarm size 20 20 or 60 20 or 60

cadence 100 100 100

random noise 2% 2% 2%
β value 1 or 2 (7, 3, 1) 2

time steps 1,000,000 500,000 500,000

runs 5 5 5

4.2 Swarm Taxis Simulation Results

Without obstacles To measure progress towards the beacon (with or with-
out obstacles), we use the y-coordinate of the position of the swarm’s centroid
at the end of the run as an indication of the speed of taxis. Using this metric,
Fig. 19a shows this progression without obstacles, increasing swarm sizes and
change in β parameter. First, we see that there is movement of the swarm in
the direction of the beacon. We observe that a value of β = 1 is not enough to
guarantee the cohesion of the swarm as almost all runs finish disconnected.
Thus the good performance of the few runs that completed cannot be consid-
ered as conclusive. On the other hand, with values β = 2 or 3, the proportion
of good runs increases and a net movement in the direction of the beacon is
clearly measured. The shape of the curve suggests the presence of an optimal
swarm size near n = 20 and an optimal value β = 2.

The difference of performance when changing β is explained by the
fact that the process relies on differentiation between illuminated and non-
illuminated robots. By raising the β value for the non-illuminated robots,
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Fig. 19 Progression for taxis behaviour (a) without obstacles, and (b) with obstacles.

the differentiation is lowered and hence the taxis performance degrades. The
optimum performance of swarm size n = 20 suggests that the proportion
of differentiated robots within the swarm is an important factor. In small
swarms, almost all robots are illuminated while the reverse is true in larger
swarms.

Any discussion of performance needs to acknowledge that the speed of the
swarm taxis is very slow. The length of each run is 1,000,000 steps and, in this
time, a lone robot going in a straight line can travel 10,000 distance units.
This means that in the best swarm taxis case, a robot spends roughly 1/25th
of its time moving towards the beacon. Actually, the interesting feature of
this algorithm is not the speed of swarm taxis but the fact that taxis takes
place at all, and without any directional sensing. The reduced performance
with larger β values or larger swarm sizes is counterbalanced by confidence
that the swarm will eventually reach the beacon, even though we have non-
directional sensors and no potential gradient.

Fig. 20 A broken swarm of 60 robots.

With obstacles We now introduce three
beacon-occluding obstacles into the envi-
ronment (Figs. 20 and 21). Progress to-
ward the beacon for a range of β val-
ues and swarm sizes is shown in Fig. 19b.
While a value β = 1 shows the same brit-
tleness as in the previous section, it can
be seen that swarms of 10 and 20 robots
with β = 2 are able to move through the
obstacles. But in the case of β = 3, for
a size greater than n = 7 for instance,
the requirements on connectivity of the β-
algorithm do not leave enough malleabil-
ity in the swarm to let it “ooze” through
the obstacles. In this case, the disposi-
tion of obstacles represents a trap for the
swarm as the attraction draws the swarm
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towards a gap that it cannot go through. This is of course dependent on the
size of the gap. Nevertheless, the ability of the swarm to find its way between
the obstacles is impressive, sometimes showing very interesting behaviours as
in Fig. 21.

(a) (b)

(c) (d)

(e)

Fig. 21 Taxis progression through the obstacles for a swarm of 30 robots.

The case of n = 7 with β = 3 is interesting as it shows better performance
with obstacles than without. An explanation is that the obstacles prevent
over-illumination of the swarm, while the small number of robots can easily
pass through the gap. Larger swarms with β = 2 tend to disconnect them-
selves in the presence of obstacles. The attraction on the part of the swarm
that has already passed between the obstacles is stronger than the connec-
tivity “glue” of the β-algorithm. Fig. 20 shows a disconnected swarm of 60
robots experiencing this problem.



Emergent Swarm Morphology Control of Wireless Networked Mobile Robots 21

The interplay of the local avoidance abilities of the robots with the taxis
behaviour gives the swarm the ability to travel around or between occluding
obstacles, while maintaining coherence. This behaviour is not coded in the
algorithm and is thus emergent. When it is situated behind an occluding
obstacle, the swarm actually functions as a distributed sensing network. It
spreads, moving randomly, until one of its bounding robots is beyond the
shade of the obstacle and becomes illuminated by the beacon, starting the
taxis process in the direction of this lighted area, and ultimately the beacon.

Influence of noise We assess the influence of noise on the swarm taxis
process in two stages. First, noise is increased on all possible sources simulta-
neously, namely on actuators, avoidance sensors, communication device and
beacon sensor. Second, noise on communication is fixed at a level of 2% and
only the remaining sources are varied. The results are shown in Fig. 22.

(a) (b)

Fig. 22 (a) Taxis progression vs. noise, (b) with communication noise fixed at 2%.

When noise is increased on all sources at the same time the degradation
of performance is serious (Fig. 22a), with 10% noise leading to the possi-
bility of negative movement, i.e., away from the beacon. Nevertheless with
intermediate levels of noise, swarm taxis still takes place, thus demonstrat-
ing the robustness of the algorithm. Also, the difference in performance with
differing swarm sizes appears to be reduced as noise increases. As already
suggested, swarm taxis results from differentiation between the illuminated
and non-illuminated robots. This differentiation lies in an increase of the β
threshold, leading to a greater reactivity of the illuminated robots. The rise
in noise increases the reactivity of all robots indiscriminately, which levels
down the differentiation, hence the decrease in performance.

When the level of noise on the communication device is fixed at 2%, the
degradation of performance is greatly reduced (Fig. 22b), which shows that
noise-induced degradation is mainly due to noise on the communication de-
vice. Considering that the loss of 2% of messages represents, by current stan-
dards, a very poor communication channel, there is good confidence that such
a signal-to-noise ratio is achievable on real robots. This shows the robustness
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of the algorithm. Indeed the algorithm is strikingly insensitive to an increase
in noise on the beacon sensor, a factor which may be of considerable value
to potential applications.

Fig. 23 Amoeba-like

enclosure of the beacon.

Taxis is possible through differential cellular
adhesion It has been demonstrated that cellular ad-
hesion plays a crucial role in the Dictyostelium dis-
coideum slug migration [27]. And as suggested in Sec-
tion 3, the β threshold value can be considered as
an adhesion value between the robots. In introduc-
ing the environmental cue together with the extension
of the original β-algorithm, this adhesion is differen-
tiated over the swarm according to an external incen-
tive, which provides the swarm with both direction
and movement at the same time.

A further emergent property of our swarm taxis,
which is suggestive of the behaviour of an amoeba, is
that when the swarm reaches the beacon the interplay
of the avoidance behaviour and beacon attraction gives
rise to beacon enclosure, similarly to the phagocyte be-
haviour of the amoeba (Fig. 23). This behaviour could
be of considerable interest for real-world applications.

5 Swarm Shape

This section investigates the potential of the β-algorithm to control of the
overall swarm morphology. We first explore spatial segregation by introducing
predefined heterogeneities into the swarm, leading to both concentric and
linear segregations. We then modify the swarm taxis algorithm to allow axial
formations.

5.1 Spatial Segregation

Concentric segregation We now make use of the threshold β, in order to
investigate how robots with different β values self-organise. This algorithm
simply consists of assigning different β values to the robots belonging to
different groups and will be referred to as the concentric β-algorithm. It
follows that robots with higher β values are more sensitive to the quality and
the number of connections in their neighbourhood. They react more to losses
of connections and tend to stay in the same locale. Therefore, they group
together while the robots with lower β values simply surround them. Fig. 24
shows an example of such a 2-group concentric segregation.
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Fig. 24 2-group concentric segregation (initial and resulting pattern).

Fig. 25a shows group distances from the swarm’s centre of mass for a 3-
group partition. The group with an intermediate β value presents a mean
distance to the centre of mass in between the groups with maximal and mini-
mal β value. The difference between the intermediate and the maximal-value
group levels down as expected with increasing β of Group 1. Fig. 25b con-
firms that the concentric segregation property scales with increasing swarm
size.

(a) (b)

Fig. 25 3-group concentric segregation with (a) n = 20, and (b) different swarm sizes n.

We observe that the process of segregation is quite slow, typically requiring
hundreds of thousands of time steps. This is because each robot must discover
neighbours with stronger bonds by random movement while the requirements
of coherence restrict freedom of movement within the swarm. Notwithstand-
ing this drawback, we have shown that heterogeneities in β values across
the swarm are sufficient to concentrically segregate the groups with differing
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values, with greater β values closer to the center of mass. Thus we see an
example of global shape control through local rules.
Linear segregation To obtain linear segregation, each robot applies a dif-
ferent β value depending on the group membership of the lost robot. In
other words, each group of robots has preferences, unlike the concentric β-
algorithm. In terms of β thresholds, for a group A to prefer another group
B means that robots belonging to group A will apply a β threshold larger
for robots in group B than for other robots. This new algorithm is named
preferred β-algorithm. It results in a group being more reactive to losses from
one particular group and less reactive to losses from another, while being
specially reactive to the robots belonging to its own group.

To test this algorithm swarms are divided into three groups of equal sizes.
The preferences are as follows: robots in Group 0 prefer robots of Group 1,
robots from Group 2 prefer robots from Group 1, and robots from Group 1
prefer robots in Group 0 and robots in Group 2. The topology of the pref-
erences is depicted in Fig. 26. The aim is to show that the underlying linear
nature of the preference topology translates into a linear segregation in the
simulated swarm.

Fig. 26 Topology of the differing groups’ β-thresholds.

Fig. 27 shows the evolution of the swarm from its initial random state to
3-group linear segregation, with intermediate stages. The topology of group
preferences is clearly reflected in the emerging structure of the swarm. The
chosen topology assigns a central role to Group 1 that can be directly ob-
served: the linear nature of group preferences leads directly to the formation
of a “linear” swarm structure.

The mean minimum distance between individuals in different groups is a
measure of the distribution of those different groups. Thus for groups G and
G′, where d(Ri, Rj) is the Euclidian distance between robots Ri and Rj :

dmin =
1

|G|
∑
Ri∈G

min
Rj∈G′

(d(Ri, Rj))

dmin is compared to a default (non-segregated) value, which is the mean of
all pairs of groups over 10 measures at the beginning of the run, when the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 27 Sequence of 3-group linear segregation process (5,000,000 time steps).

groups are randomly mixed. Fig. 28a shows the mean minimum distances
between the different groups as compared with the non-segregated case. The
Group 0/Group 2 pair clearly exhibits larger minimum distances than the
other pairs, while all group pairs differ qualitatively from the non-segregated
case, approaching it with increasing intermediate β value.

Fig. 28a shows that the difference in minimum distance between neigh-
bouring pairs and the Group 0/Group 2 pair is conserved for swarm sizes
above 40. The time needed for larger swarms to reach the desired equilib-
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rium explains the better performance of smaller swarms and suggests longer
simulation runs are needed to investigate if the performance at the equilib-
rium is dependent on swarm size. However, single long runs of 3-group linear
segregation (Fig. 27) show very good performance with large swarms.

(a) (b)

Fig. 28 3-group linear segregation with (a) n = 60, and (b) different swarm sizes n.

Fig. 29 Vertical axis
formation with speed
ratio = −10 (beacon

toward north).

Thus with a simple algorithm and, more impor-
tantly, without increasing robot-robot information ex-
change, control of the global structure of the swarm is
again demonstrated. However, this process needs sev-
eral million time steps to reach equilibrium: the slow
speed is simply because each robot tries to maintain
connections for the sake of coherence, thus diminishing
its mobility within the swarm.

5.2 Axis Formation

To achieve axis formation we use the swarm taxis al-
gorithm described in Section 4, but introduce a veloc-
ity differential between illuminated (“red”) and non-
illuminated robots. This variant of the β-algorithm will
be referred to as the axis β-algorithm. A velocity ratio
is defined as follows: if it is positive, the “red” robots
move with a speed equal to 1/ratio, while the others
move with a speed equal to 1. If the ratio is negative,
the “red” robots move with a speed of 1 and the others with a speed equal
to 1/|ratio|. The value 0 corresponds to no speed differential.

The differential velocity has a significant impact on the morphology of the
swarm. A negative velocity ratio has the effect of elongating the swarm in
the direction of the beacon. By contrast, with a positive velocity ratio (in
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which the group of “non-red” robots moves faster), the robots that become
illuminated slow down and are overrun by fast robots that soon become il-
luminated. The result is a swarm growing in both directions perpendicular
to the direction of the beacon. Fig. 29 shows an example of vertical axis
formation. Fig. 31 shows the evolution of a horizontal axis formation, with
intermediate stages.

Swarm size and β threshold variation First, the influence of increasing
swarm size and increasing β parameter are investigated. We measure the
axial ratio as follows: if we choose a frame of reference such that the swarm
centroid is located at x = 0, y = 0, with the beacon on the y-axis, then for n
robots

ratioaxial =

∑n
i=1 (Rix)2∑n
i=1 (Riy )2

where Rix and Riy are respectively the x- and y-coordinates of Robot Ri.
The influence on the vertical/horizontal ratio can be seen in Fig. 30a. The
top surface corresponds to a speed ratio value of −10; the lower surface to a
value of 10. Clearly, a separation is observable between the behaviours with
different speed ratios. We note a drop in performance with increasing swarm
size and increasing β threshold. The former is mainly due to the restricted
length of the run, as the self-organisation of the swarm takes more time with
increasing swarm sizes, especially where the speed of a group of robots is
slowed. The latter drop corresponds to the fact that the algorithm needs a
high differential between the “red” robots and the others; increasing the β
threshold reduces this differential.

Speed ratio Now consider the change of behaviour of the swarm with vary-
ing velocity ratio values. The behaviour of the axial ratio with increasing
velocity ratio values is suggestive of a phase transition (Fig. 30b). For both

(a) (b)

Fig. 30 Axial ratio for (a) speed ratio = 10 and −10, (b) increasing speed ratio values.
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swarm sizes n = 20 or 60, though to a different extent, the axial ratios for
negative and positive speed ratio values are qualitatively extremely different.
The behaviour of the swarm stays at a relatively high ratio value for nega-
tive values and sharply decreases to reach the state of the swarm for positive
values. The neutral speed ratio value stands at the mid-point between these
two different states.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 31 Horizontal axis formation sequence with speed ratio = 10 (beacon to the north)

6 Conclusions and Further Work

This chapter has presented a number of new and potentially valuable results
in swarm robotics, first and foremost that decentralised control can lead to
global coherence of a wireless connected robot swarm based only upon range-
limited communication. Section 3 verified this and showed, through both
simulation and real-robot experiments, that second-order information (infor-
mation on the neighbours’ neighbours) is needed to guarantee coherence. It
was shown that the β-algorithm (Section 3.2) was scalable and robust to high
levels of noise, and that it could be implemented on real robots, despite im-
portant differences between the robotic platform used and the assumptions
of the simulation. This algorithm involves only local broadcast of neighbours’
information, and can be considered as fully distributed and thus arbitrarily
scalable. The algorithm allows area coverage control by tuning the β thresh-
old. This area control is closely linked with the ability of the β threshold to
control the edge- and vertex-connectivity of the network, which are global
metrics that relate to the resilience of the network to component failure. The
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ability of this fully distributed algorithm to influence global features of the
underlying network is of particular interest.

Although the α-algorithm has been presented in this chapter as a stepping
stone toward the β-algorithm, the latter has the drawback of requiring each
robot to have a unique ID. The minimalist α-algorithm does not suffer this
drawback and should, for this reason, be regarded as a potentially useful
contribution in its own right.

Secondly, in Section 4, extension of the β-algorithm to include beacon sens-
ing led to the development of a truly emergent taxis behaviour, with the addi-
tional emergent properties of swarm avoidance of beacon-occluding obstacles
and beacon enclosure. The β-taxis algorithm relies on subtle robot-robot in-
teractions, and dynamic equilibrium between those (illuminated) robots that
sense the beacon and those (occluded) robots that do not. Although the
aim of this work was not to investigate biologically plausible solutions, the
emergent swarm taxis is highly suggestive of the social amoebae slime mould
Dictyostelium discoideum [16, 23].

Thirdly, in Section 5, we presented the potential for fixed and dynam-
ical heterogeneities between robots within the swarm to allow control of
the overall swarm morphology. With these results the potential of the β-
algorithm and its variants to exhibit complex behaviours through the tuning
of a small set of parameters has been powerfully demonstrated. Again, these
behaviours are suggestive of biological examples of morphogenesis, ranging
from Dictyostelium to the development of different types of symmetry in the
embryo [24]. We also see a parallel with the size-matching model of concentric
segregation seen in fish schools [15].

Finally, we should note that the α- and β-algorithms, and their exten-
sions for swarm taxis and shape control, are all dimensionally independent.
The swarm properties that we have described are defined primarily by the
connectivity of the swarm and are therefore completely independent of the di-
mensionality of its physical environment. Although the robot vehicles would
necessarily be very different, implementation in a 3D environment requires
essentially no change to the basic algorithms.

The primary assumption of the work in this chapter is in the idealised
disk-model of communication of both simulation and real-robot experiments,
in contrast to real-world communication links, which have complex proper-
ties including asymmetrical signal strength patterns, fading and multi-path
effects. Further work is certainly needed to study the effect of such proper-
ties. However, we contend that the dynamics of communication, counter-
intuitively, are not critical to the basic performance of the α- and β-
algorithms. This is because robot actions are determined by the presence
or absence of messages and, for the β-algorithm, local information sharing.
The random motion of robots and relative infrequency of messages (cadence)
means that coherence is insensitive to the timing of messages. Furthermore,
departures from the ideal model tend to increase the connectivity of the
swarm, as our results have shown. Indeed, the stochastic nature of the swarm
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systems described in this chapter is an essential characteristic; without the
random mixing (ergodicity) of robots we would not see the emergence of the
interesting swarm morphologies described in this chapter.

6.1 Further Research Directions

Real robot experiments An area for further work is to extend the real-
robot implementation to include β-taxis and the shape control algorithms
of Section 5 in order to confirm the validity of the simulation results. The
recent appearance of very lower power radio standards such as IEEE 802.15.4
(Zigbee) and hardware implementations with tunable range that can be lim-
ited to the order of a metre [2], gives us confidence that verification of the
full set of behaviours can be achieved in the near future. Such work would
additionally allow us to study the impact of real-world communication noise
and propagation effects.

Ad-hoc and sensor networks The β-algorithm has shown its ability to
tune the connectivity of the communication network, and it is of great interest
to study the communication properties of the resulting dynamic network. For
instance could we achieve, despite the constant reorganisation of the physical
network topology, global multi-hop routing with only the help of the infor-
mation already provided by the β-algorithm? Further, is it possible to link
the routing protocol to the behaviour of the robots in order to self-organise a
reliable dynamical communication network? This advance could lead to ap-
plications in large-scale mobile sensor arrays which could, as demonstrated,
exhibit adaptation of their shape to provide appropriate sensing.

Parameters, adaptation and evolution The behaviours presented need
further investigation to determine the precise role of the different parameters:
for instance, the influence of randomness, communication range/avoidance
range ratio, obstacles’ sizes or different topologies of the radial β-algorithm.
We have investigated differential β values to control swarm morphology.
These results strongly suggest that we should also investigate the potential for
(a) introducing differential values in other parameters, (b) variable (adapt-
ing) parameters, such that the swarm can continuously adapt its morphology
in response to external cues or environmental changes, and (c) evolutionary
approaches (i.e., the genetic algorithm) toward exploring and optimising the
parameter space of the coherent swarm.

Modelling We have argued that tools for modelling and analysis are crucially
needed in the field of swarm robotics [35]. For modelling, the most successful
approach to date is the probabilistic method developed by Martinoli (see for
instance [1]), and indeed we have applied this approach to develop a promising
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model of the α-algorithm in [37]. We have also modeled the reliability and
scalability of a variant of the β-algorithm in [8]. The application of such an
approach to the problems presented in this chapter would be of remarkable
interest: our results strongly suggest that some fundamental properties are
involved that would benefit from formal analysis.
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SWARM-BOTS project. In: E. Şahin, W. Spears (eds.) Swarm Robotics Workshop:
State-of-the-art Survey, no. 3342 in Lecture Notes in Computer Science, pp. 31–44.

Springer-Verlag, Berlin Heidelberg (2005)



32 Julien Nembrini and Alan F.T. Winfield

14. Hayes, A., Martinoli, A., Goodman, R.: Comparing distributed exploration strategies

with simulated and real robots. In: Distributed Autonomous Robotic Systems, vol. IV,
pp. 261–270 (2000)

15. Hemelrijk, C.K., Kunz, H.: Density distribution and size sorting in fish schools: an

individual-based model. Behavioral Ecology 16(1), 178–187 (2005)
16. Hogeweg, P.: Computing an organism: On the interface between informatic and dy-

namic processes. BioSystems 64, 97–109 (2002)

17. Kotay, K., Rus, D.: Locomotion versatility through self-reconfiguration. Jour. of
Robotics & Autonomous Systems 26, 217–232 (1999)

18. Krieger, M., Billeter, J.B.: The call of duty: Self-organised task allocation in a popu-
lation of up to twelve mobile robots. Jour. of Robotics & Autonomous Systems 30,

65–84 (2000)

19. Mataric, M.: Designing emergent behaviours: From local interactions to collective in-
telligence. In: From Animals To Animats, pp. 432–441 (1992)

20. Melhuish, C., Holland, O., Hoddell, S.: Collective sorting and segregation in robots

with minimal sensing. In: From Animals to Animat, vol. 5, pp. 465–470. MIT Press
(1998)

21. Mondada, F., Bonani, M., Magnenat, S., Guignard, A., Floreano, D.: Physical connec-

tions and cooperation in swarm robotics. In: P. Groen, et al. (eds.) Proc. Int.Conf. on
Intelligent & Autonomous Systems (2004)

22. Nembrini, J.: Minimalist Coherent Swarming of Wireless Networked Autonomous Mo-

bile Robots. PhD Thesis, University of the West of England, Bristol, UK, download
at http://swis.epfl.ch/people/julien (2005). URL http://swis.epfl.ch/people/julien

23. Nishimura, S., Sasai, M.: Inerta of ameobic cell locomation as an emergent collective
property of the cellular dynamics. Physical Review E 71 (2005)

24. Nusslein-Volhard, C.: Gradients that organise embryo-development. Scientific Ameri-

can August, 38–43 (1996)
25. Poduri, S., Sukhatme, G.: Constrained coverage for mobile sensor networks. In: IEEE

International Conference on Robotics & Automation, pp. 165–172 (2004)

26. Reynolds, C.: Flocks, herds and schools : a distributed behavioral model. In: Computer
Graphics, vol. 21, pp. 25–34 (1987)

27. Savill, N., Hogeweg, P.: Modelling morphogenesis: From single cells to crawling slugs.

J. of Theor. Biol. 184, 229–235 (1997)
28. Shimizu, M., Ishiguro, A., Kawakatsu, T.: Slimebot: A modular robot that exploits

emergent phenomena. In: IEEE int. Conf. on Robotics & Automation, pp. 2982–2987.

Barcelona, Spain (2005)
29. Støy, K.: Developing a solution to the foraging task using multiple

robots and local comunication. In: IEEE CIRA2001 (2001). URL
www.mip.sdu.dk/ kaspers/publications.html

30. Støy, K.: Using situated communication in distributed autonomous mobile robotics. In:

7th Scandinavian Conf. on AI, pp. 44–52 (2001). URL citeseer.nj.nec.com/425017.html
31. Støy, K.: Controlling self-reconfiguration using cellular automata and gradients. In:

P. Groen, et al. (eds.) Proc. Int.Conf. on Intelligent & Autonomous Systems, IAS-8,

pp. 693–702 (2004)
32. Takahashi, N., Yu, W., Yokoi, H., Kakazu, Y.: Amoeba like multi-cell robot control sys-

tem. In: P. Groen, et al. (eds.) Proc. Int.Conf. on Intelligent & Autonomous Systems,
IAS-8. IOS Press (2004)

33. Weßnitzer, J., Adamatzky, A., Melhuish, C.: Towards self-organising structure forma-

tions: A decentralised approach. In: Proceedings of ECAL 2001, pp. 573–581. Springer

(2001)
34. Winfield, A.: Distributed sensing and data collection via broken ad hoc wireless con-

nected networks of mobile robots. In: Distributed Autonomous Robotic Systems,
vol. IV, pp. 273–282 (2000)



Emergent Swarm Morphology Control of Wireless Networked Mobile Robots 33

35. Winfield, A., Harper, C., Nembrini, J.: Towards dependable swarms and a new disci-
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