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Abstract— The process of weather forecasting produced
by numerical weather prediction (NWP) models is complex
and not always accurate. Moreover, it is generally defined
by its very nature as a process that has to deal with
uncertainties. In previous works, a new weather prediction
scheme, Genetic Ensemble (G-Ensemble), was presented,
which uses evolutionary computing methods. Particularly, it
uses Genetic Algorithms (GA) in order to find the most timely
’optimal’ values of model closure parameters that appear
in physical parametrization schemes, which are coupled
with NWP models. The presented scheme showed significant
improvement of weather prediction quality and, moreover,
the waiting time for an enhanced weather prediction result
was reduced by executing a parallel G-Ensemble scheme
over HPC platforms. In this work, however, we test the
same scheme with different GA configurations regarding
its Crossover type and ratio, and by variating its initial
population size in order to get better predictions. The main
concern behind this work is to provide a more detailed
study on how the GA used in G-Ensemble scheme could be
tuned depending on the available computational resources
in operational scenarios. Finally, experimental results are
discussed of a weather prediction case using historical data
of a well known weather catastrophe: Hurricane Katrina
that occurred in 2005 in the Gulf of Mexico. Obtained results
provide significant enhancement in weather prediction.

Keywords: numerical weather prediction; HPC; genetic algo-
rithm; ensemble prediction; parameter estimation.

1. Introduction
It is generally agreed that weather has a widespread

impact on people’s personal and social lives, including
their jobs, their recreation, their safety, and their property.
When the weather is bad, many activities become more
difficult to perform. Commercial transportation slows down
on the roads, on the waterways, and in the air. Businesses
of all kinds are interrupted by bad weather. Power plants
and energy traders rely on knowledge of the weather to
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operate their equipment and to deliver power to consumers,
government and business. Furthermore, accurate predicted
weather variables are critically needed for other environ-
mental modeling systems. For instance, wind direction and
velocity variables are needed as precise as possible to predict
the expansion direction and velocity of a fire propagation
disaster predicted by wildfire models.

Weather forecasting that predicts future weather state evo-
lution is realized mainly by Numerical Weather Prediction
(NWP) models that are commonly solved by means of
computing facilities. That is, a numerical weather prediction
is the process of guessing the future state of the atmosphere
based on current weather conditions. Mathematical models
are used to do the job, which treat the atmosphere as a
fluid. As such, the idea of numerical weather prediction is
to sample the state of the fluid at a given time and use the
equations of fluid dynamics to estimate the state of the fluid
at some time in the future.

On the other hand, from a computational point of view,
NWP models are considered as soft-real time large scale
applications. The importance of having a certain degree
of accuracy in the prediction in a certain time is a real
challenge. Many factors may determine the accuracy of the
predicted weather variables: the available computing power
for model execution, the model itself, and the input data.
Thus, ongoing research concentrates on methods to enhance
the process of prediction and get results of this process faster.

However, and as most simulation software works with
well-founded and widely accepted models, the need for
input parameter optimization to improve model output is
a well-known and often-tackled problem. Particularly, in
environments where correct and timely input parameters
cannot be provided, efficient computational parameter esti-
mation and optimization strategies are required to minimize
the deviation between the predicted scenario and the real
phenomenon behaviour.

With the continuously increasing availability of comput-
ing power, evolutionary and parallel optimization methods,
especially Genetic Algorithms (GA), have become more
popular and practicable to solve the parameter problem of
environmental models.

In [1], a study discussing the sensitivity of forecast skill to
a set of NWP model closure parameters (input parameters)
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is provided. Furthermore, G-Ensemble prediction scheme is
presented, which uses a GA to estimate ’optimal’ values
for these parameters for a certain forecast, in order to
enhance forecast skill. The proposed scheme showed signif-
icant enhancement in prediction quality. In this work, more
prediction results are presented and discussed regarding
different configurations and scenarios of the used GA in the
G-Ensemble prediction scheme. The aim of the presented
work is to show how better predictions could be achieved
by tuning the implemented GA in the G-Ensemble approach.

The rest of the paper is organized as follows: Section
2 gives an overview of NWP models, a NWP general
scheme, and a brief description of the Weather Research
and Forecasting Model (WRF), which constitutes the most
commonly used model for weather and meteorological pre-
dictions. Section 3 discusses the predictability sources of
error in NWP models and also describes the most widely
used methods for NWP enhancement in practice. In section
4, G-Ensemble) is described briefly. Section 5 discusses
experimental results obtained with a test case, where we
compare our proposal with other enhancement methods.
Finally, conclusions and future work are described in section
6.

2. Numerical Weather Prediction Mod-
els

Weather stems from the constant evolution of the at-
mosphere governed by physical laws. Using high-speed
computers to solve a complex set of mathematical equations
that represents the governing laws, NWP is a technique for
simulating the atmospheric evolution in order to delineate
the resultant weather changes. The variables involved in the
equations include wind, temperature, pressure and moisture
content. In principle, given the initial and boundary condi-
tions, the atmospheric variables can be numerically solved
as functions of time and form the basis of weather forecast.
That is, NWP is described generally as ”an initial-boundary
value problem”: given an estimate of the present state of the
atmosphere (initial conditions), and appropriate surface and
lateral boundary conditions, the model simulates (forecasts)
the atmospheric evolution. The more accurate the estimate of
the initial conditions, the better the quality of the forecasts.

Certain areas where atmospherical future conditions are to
be predicted are represented by three-dimensional uniform-
gridded-rectangles referred as domains or grids. The input
data, which describe an estimation of the actual state of the
atmosphere, are called initial conditions. Those initial condi-
tions are assigned to all points of the grid. The horizontal dis-
tance between grid points is referred as the spatial resolution
of both the initial conditions and prediction results. Regional
models (also known as limited-area models, or LAMs) allow
for the use of finer grid spacing (higher resolution) than
global models because the available computational resources

are focused on a specific area instead of being spread over
the globe. This allows regional models to resolve explicitly
smaller-scale meteorological phenomena that can not be
represented on the coarser grid of a global model. Hence,
a NWP model will predict the new values of the initial
conditions over future time scale.

The first step of a NWP process is to extract initial
conditions that are usually obtained from a global forecast-
ing. These initial conditions are assigned to the domain
grid points and, by means of the NWP model applied
over a time line, at each pre-defined time period, a new
3-dimensional domain is produced having new (predicted)
values of meteorological variables at all grid points.

The Weather Research and Forecasting model (WRF) [2]
is a widely-used numerical weather prediction system, which
is considered as a next-generation mesoscale numerical
weather prediction model designed to serve both operational
forecasting and atmospheric research needs.

WRF is composed of a variety of programs to facilitate
the prediction process. It includes modules for global terrain
data extraction, modules for real observation injection while
model integration, and modules for output post-processing.
It should be mentioned that although we have applied our
methodology to WRF, the proposed strategy is a model-
independent design, which could also be used with other
existing NWP models such as the PSU/NCAR Mesoscale
Model [3] known as (MM5).

3. Related Work
NWP models as well as the atmosphere itself can be

viewed as nonlinear dynamical systems in which the evolu-
tion depends sensitively on the initial conditions. Moreover,
weather prediction is, by its very nature, a process that
has to deal with uncertainties. The initial conditions of a
NWP model can be estimated only within a certain accuracy.
During a forecast, some of these initial errors can amplify
and result in significant forecast errors. Besides initial-
condition error, weather and climate prediction models are
also sensitive to errors associated with the model itself.
In particular, the uncertainty due to the parameterizations
of sub-grid-scale physical processes is known to play a
crucial role in prediction quality (e.g., [4]). Prediction errors
caused by the uncertainty in physical parameterizations is
commonly referred to as model errors. Weather predictability
errors are normally subject to two kinds of errors: initial
condition errors and model errors.

As it has been stated before, in the case of initial condi-
tions, input data is extracted from global forecasts. Normally,
global forecasts are conducted using domains of lower grid
resolutions (the distance between grid points is large). This
is due to the computational power needed if the whole globe
is to be predicted using finer grid spacing. As a result,
interpolations are needed to extract initial conditions from
lower resolution domains to assign them to local domains of
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higher resolution. Unfortunately, this process is not perfect
and the assigned values do not reflect the actual real state
of the atmosphere. This problem is generally referred as the
uncertainty of weather initial state.

On the other hand, physical parametrization is the repre-
sentation of sub-grid scale physical processes, that is, some
meteorological processes are too small-scale to be explicitly
included in NWP models. Hence, parametrization enables
the representation of these processes by relating them to
variables on the scales (the points of the gridded domain)
that the model resolves. For example, an important meteoro-
logical process is the surface flux of energy transmitted by
the terrain which helps in enhancing the prediction of other
important variables like near-surface temperature, sea surface
temperature and even near-surface wind velocity variables.
This process normally occurs in scales smaller than 1
kilometer, while NWP models predicts normally on domains
of grid-scales higher than 1 kilometer. Parametrization is
needed in such cases to represent this process on a certain
domain scale.

By figuring out the main sources of error in predictability
of NWP models, and over the past 20 years or so, stochastic
or ”ensemble” forecasting [5] became as a practical and
successful way of addressing the predictability problem as-
sociated with the uncertainty in initial conditions. Moreover,
several weather prediction centers have addressed this prob-
lem by developing operational ensemble prediction systems
(EPS) (e.g., [6]). The main idea behind an EPS comes from
the fact that the initial state of a certain variable should be
seen as a probability distribution and not as a unique value,
and thus, the ultimate goal of ensemble forecasting is to
predict quantitatively the probability density of the state of
the atmosphere at a future time. This is done by running
multiple forecasts, each of which is initiated with small
perturbations in the estimated initial conditions. Then, an
ensemble forecast is usually evaluated in terms of an average
of the individual forecasts (ensemble members) concerning
one forecast variable, as well as the degree of agreement
between various forecasts within the ensemble system, as
represented by their overall spread [7].

However, and although it has been realized that there
is a stochastic nature of physical parameterizations in en-
semble prediction (predictability is sensitive to variations
in physical parameters), it has not been straightforward to
develop theoretically sound, and also practical, formulations
for how to insert parameterization uncertainty into ensemble
development [8], [9].

4. G-Ensemble
In this section, Genetic Ensemble (G-Ensemble) approach

[1] for prediction enhancement is briefly described, as well
as the set of the model closure parameters targeted for better
estimation. The main objective of the presented scheme is
to enhance prediction quality by improving the estimation

of a set of NWP model closure parameters. The study
is focussed on finding ’optimal’ values of Landuse and
Soil closure parameter (the land surface parameters and the
impact they have are described in [10]). The optimization
of these parameters will serve as a prove of concept of
our method, which could be applied to other parameters.
These parameters are found in land surface physical schemes
(LSM) (e.g., [11], [12]) that are coupled to most NWP mod-
els. The proposed scheme consists of two phases: Calibration
Phase and Prediction Phase (depicted in Fig.(1)).

Considering that ti is the instant time from which the
meteorological variables are going to be predicted, i.e.
prediction is done within the period (ti-ti+n), Calibration
Phase starts at a time prior to prediction time and ends at
time 00:00 (ti) of prediction period, i.e. calibration is done
within the period (t0-ti). The process of closure parameter
estimation in Calibration Phase proceeds as follows:

1) at the beginning of Calibration Phase (time t0 in Fig.
(1): a sample of the targeted parameter values from
ensemble proposal distribution is generated (perturba-
tions in closure parameter values);

2) the generated parameter values are inserted to the
ensemble prediction model;

3) an ensemble of forecasts (the prediction model is
different for each ensemble member regarding the
targeted parameter values) is conducted to predict
meteorological variables at time ti, where real obser-
vations are available;

4) evaluation of a fitness function for each ensemble
member is done at time ti;

5) genetic algorithm functions (selection, crossover and
mutation) are used to generate a new ensemble dis-
tribution from the set of combinations of closure
parameters which score better predicting at time ti;

6) the process is repeated iteratively until a predefined
number of iterations, or an acceptable error value is
achieved.

The used fitness function depends on the number of me-
teorological variables to be better predicted.That is, if the
G-Ensemble is used to enhance prediction for one single me-
teorological variable, the root mean square error (RMSE)
as shown as shown in equation (1), is used to be the fitness
function for the GA. We refer to this approach as Single-
Variable G-Ensemble. Referring to equation (1), xobs is an
observed value of a variable x and xpre is the predicted one
for the same variable.

RMSE =

√∑n
i=1(xobs,i − xpre,i)2

n
(1)

In contrast, as it is necessary to enhance prediction for a set
of meteorological variables, the normalized root mean square
error (NRMSE), is implemented as the fitness function to
be minimized during Calibration Phase (equation (2)).
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Fig. 1: Two-phase prediction scheme; NWP is the a numerical weather prediction model. ti is time 00:00 of prediction process, t0 is a
time instant previous to Prediction Phase (initial time of Calibration Phase), ti+n is the future time to be predicted. ”OV ” is an observed
meteorological variable at time ti, ”PV ” is the predicted variable at the same time using a NWP model.

NRMSE =

√∑n
i=1(xobs,i−xpre,i)2

n

xobs(max) − xobs(min)
(2)

This approach is called Multi-Variable G-Ensemble. In
NRMSE equation, xobs is an observed value of a variable
x and xpre is the predicted value for the same variable. The
Normalized RMSE (NRMSE) is the value of RMSE
divided by the range of the observed values of a certain
variable. NRMSE indicates the error percentage of the
predicted value of a certain variable, compared to the range
of its observed values. In order to consider more than one
variable at a time, we evaluate NRMSE for all variables,
and then, we consider the addition of all of them as the
Multi-Variable fitness function.

Despite the fact that the objective in the presented ap-
proach is to minimize the RMSE or NRMSE in Calibra-
tion Phase, as the fitness function used for the evaluation of
ensemble members, other fitness functions can be applied in
the presented scheme. The GA could be oriented to minimize
any other targeted fitness functions.

At the last iteration in the Calibration Phase, the values
of closure parameters, which produced the least value of
RMSE or NRMSE, i.e. the ensemble member with the
best forecast skill score at time ti, is selected to be used
in Prediction Phase. This ensemble member is called: Best
Genetic Ensemble Member (BeGEM ). Our hypothesis is
that, for short-range weather forecasts, if the forecast skill
is improved in the Calibration Phase by a set of a calibrated
closure parameters then the same closure parameter values
will also improve forecast skill during Prediction Phase.

By now, in Prediction Phase, a deterministic forecast is
used in our experiments. In other words, the BeGEM ,
which is the ensemble member having the calibrated closure

parameter values is the single forecast to be conducted in
Prediction Phase. However, the produced BeGEM could
be integrated in any type of EPS considering perturbations
in initial conditions during Prediction Phase.

G-Ensemble scheme was extended in [13] to evaluate
ensemble members according to a window of observations
rather than ’one-point’ observation. Time windowing to the
optimization procedure was introduced and the performance
(prediction quality) of G-Ensemble was enhanced as the
used GA was better guided when more observation intervals
were considered in the evaluation of ensemble members.
Moreover, Parallel Multi-Level G-Ensemble was presented
in [14], where a multi-chromosome GA was implemented
in G-Ensemble scheme to optimize various sets of input
parameters and the whole scheme was paralleled using
Master/Worker paradigm and was tested on a HPC platform.

The obtained results showed significant improvements in
prediction quality and less execution times over classical
prediction scenarios. It should be mentioned, however, that
the implemented GA in G-Ensemble scheme was tested
in [1], [13], [14] using the same type of GA Crossover
and fixed Crossover and Mutation probability ratios. In the
next section, more experiments are conducted and discussed
regarding different execution scenarios, were different GA
configurations are introduced to G-Ensemble, in order to
evaluate the gained prediction quality in accordance to each
different configuration.

5. Experimental Evaluation
To test our approach, we used historical data of hurricane

Katrina [15], which occurred on August 28, 2005 in the Gulf
of Mexico and unfortunately caused the death of more than
1,800 persons along with a total property damage that was



estimated at $81 billion (2005 USD). The objective of the
experiments is to predict the evolution of a meteorological
variable from time: 12:00 h. of the day 28/08/2005 to time
00:00 h. of 30/8/2005 (a period of 36 hours in which the
major effects of the hurricane were produced). The model
is configured to predict the evolution of meteorological
variables every three hours; and the spatial resolution of the
domain was 12km. The used NWP model in our experiments
was WRF and all Physics schemes were the same for all
experiments.

To get the evolution of meteorological variables at 12:00
h. of 28/08/2005, we used initial conditions of the atmo-
spheric state in the zone three hours before, i.e. model started
prediction from time 09:00 of 28/08/2005. For our approach
(G-Ensemble), the Calibration Phase started from time 00:00
of 28/08/2005 to time 09:00 of the same day.

The predicted variable in the following experiments is the
Latent Heat Flux (LHF W/m2) using the Single-Variable G-
Ensemble approach. However, it must be pointed out that
any other meteorological variable could have been used
and similar conclusions would be obtained. Examples of
such variables can be find in [1], [13], [14], where both
approaches of the G-Ensemble (Single-Variable G-Ensemble
and Multi-Variable G-Ensemble) are tested to enhance pre-
diction for a set of meteorological variables. The presented
results explore the sensitivity of G-Ensemble forecast skill to
some variations in its GA operations. In particular, we study
the sensitivity to the GA Crossover type (one-point and two-
points), to the probability to the initial GA population size
(initial ensemble members size) and, finally, to the number
of GA generation iterations in the Calibration phase.

The goal behind these tests is to provide a more completed
insight of the scenarios and possibilities of how to configure
an operational G-Ensemble according to the time allowed for
prediction process and to the number of computing resources
available. In the subsequent experiments, prediction errors
RMSE produced during Prediction Phase of two ways of
prediction are compared:

1) Single Variable G-Ensemble approach, with different
initial ensemble sizes, Crossover type and ratio, and
different number of iterations in Calibration Phase.

2) The EPS approach, which is used to refer to the
average error of an ensemble forecast conducted by
the initial ensemble members used in the first iteration
of Calibration Phase (an ensemble forecast such that
the prediction model is different for each ensemble
member regarding the targeted parameter values, these
variables are not calibrated).

Firstly, Fig. (2) shows an experimental result for a clas-
sical EPS prediction of 40 ensemble members (each of
which has a different combination of the targeted closure
parameters) to predict (every 3 hours) the evolution of Latent
Heat Flux LHF. The evolution of the values of LHF variable
was notably under-estimated in this case. Thus, it could

be easily concluded that there is a significant margin of
enhancement in prediction which could be achieved.
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Fig. 2: Classical EPS prediction results compared to observed
values.

In Fig.(3(a)), prediction error is shown by using the G-
Ensemble approach with different initial ensemble sizes to
predict LHF variable compared to the classical EPS of the
same ensemble sizes. The prediction error of the G-Ensemble
approach is also depicted alone for the sake of clarity in Fig.(
3(b)).
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Fig. 3: RMSE of LHF pediction. (a): Single-Variable G-Ensemble
prediction error Vs. Classical EPS prediction error. Results are of
classical EPS(x) and the BeGEM(x), where x refers to the initial
ensemble size. (b): A snapshot of (a) to demonstrate RMSE of the
different BeGEM(x).

The Genetic Algorithm was configured to iterate 20
times over an initial population size of 40 individuals. Its



three main operators were configured as follows: Selection:
(elitism: best one of two), Crossover: (probability=0.7, type:
two points Crossover), and Mutation: (probability= 0.2). As
shown in Fig.(3), in all cases with different initial ensemble
sizes, G-Ensemble provides less error values in prediction
compared to EPS predictions with the same initial ensemble
members. A significant improvement in prediction quality is
always gained.

Additionally, it can be observed that increasing the size of
an EPS does not produce better results. Actually this happens
because EPS results represent an average of the predictions
of all ensemble members and, knowing that these members
are variated regarding their closure parameters in a random
way, using more members does not assure less average
error. In contrast, increasing initial ensemble size, which will
be calibrated iteratively by the G-Ensemble provides better
prediction results as observed in the same figure. That is,
by increasing the initial ensemble size in G-Ensemble, the
probability for finding better solutions through GA iterations,
also increases.

On the other hand, Fig.(4) shows the GA convergence in
the Calibration phase of G-Ensemble approach. As such, the
error of the best ensemble member through GA iterations
is depicted in the figure, using different initial ensemble
sizes. As it could be observed, the BeGEM produced after 10
iterations when G-Ensemble was conducted using an initial
ensemble size of 80 members, was equal or slightly better
than the same BeGEM, produced after 20 iterations when G-
Ensemble was conducted by 20 initial ensemble members.
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Fig. 4: Calibration phase: BeGEM performance through the Cali-
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Then, according to the availability of computing re-
sources, their number and the interval of availability, a
certain scenario of the combinations between initial en-
semble size and number of iterations, could be selected.
Execution times and G-Ensemble scalability on HPC systems
for different combinations regarding the number of iterations
during Calibration Phase could be found in [14].

We also tested the G-Ensemble approach to predict the
same meteorological variable (LHF) by changing the type

of the GA Crossover during Calibration phase (Fig. 5(a)),
and by changing the GA Crossover probability (Fig. 5(b)).
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Fig. 5: BeGEM RMSE in prediction of LHF produced in (a):
using 1-point and 2-point GA Crossover in the Calibration phase,
and (b): using 2-point GA Crossover but with different Crossover
probability ratios.

The obtained results show that when G-Ensemble used
2-points Crossover in its GA during Calibration phase, pre-
diction results were slightly better, and the same happened
when Crossover probability was higher.

That is, when configuring the GA implemented in the G-
Ensemble scheme on a relatively small size of initial en-
semble members, better prediction quality could be obtained
by 2-points Crossover and higher Crossover probability.
Actually, this is due to the size of the initial ensemble
size (initial population size): by using 2-point Crossover
and a higher probability of Crossover operations, more
variations in ensemble members could be obtained during
each iteration of the Calibration Phase. This enhances the
ability of the GA to look for better solutions over small
initial populations, which is normally the case of NWP
executions, where ensemble sizes are normally up to 50
ensemble members.

The results obtained in our experiments confirm our
hypophysis that, on one hand, better estimation of model
closure parameter values enhances weather prediction qual-
ity and, on the other hand, the proposed Calibration Phase
leads to better estimation of closure parameter values by
tuning the used GA. Additionally, different scenarios could



be applied in an operational G-Ensemble according to the
available computing resources by variating initial ensemble
sizes and the number of GA generation iterations.

We can conclude that G-Ensemble is a better choice
compared to classical EPS. As shown here, G-Ensemble
outperforms EPS in terms of parameter estimation but it
has been also shown in [1], [13], [14] that the proposed G-
Ensemble approach is cost effective computationally com-
pared to the classical EPS over a parallel computing en-
vironment. In those works many execution scenarios were
tested over a HPC environment, and the prediction quality
was significantly enhanced, whereas, execution times were
reduced in comparison with executions of classical EPS in
Prediction Phase.

6. Conclusions and future work
This work describes our ongoing research focused on

enhancing short-range weather forecasting by estimating
’optimal’ NWP model closure parameter values, using an
evolutionary computing method.

In [1], it was shown how forecast skill is sensitive to
model closure parameter values. Moreover, G-Ensemble pre-
diction scheme was presented, which aggregated a Calibra-
tion Phase to the prediction process, where these parameter
values were optimized to improve forecast skill. The G-
Ensemble prediction scheme showed a significant improve-
ment in prediction quality. Parallel Multi-Level G-Ensemble
was presented in [14], where a multi-chromosome GA was
implemented in G-Ensemble scheme to optimize various sets
of input parameters. Additionally, the whole scheme was
paralleled using Master/Worker paradigm and was tested
executing it over a HPC platforms. The obtained results
showed significant improvements in prediction quality and
less execution times over classical prediction scenarios.

In this paper, a complementary work is introduced by
conducting and discussing more experiments regarding dif-
ferent G-Ensemble execution scenarios, where different GA
configurations are introduced to G-Ensemble in order to
evaluate the gained prediction quality in accordance to each
configuration. As a result, it could be concluded that in
scenarios of limited number of the available computing
resources, where only small ensemble sizes could be applica-
ble, G-Ensemble scheme provides better weather predictions
by using 2-point Crossover in its GA, and also by using
higher Crossover probability ratio. On the other hand, in
scenarios where more computing resources are available,
and thus, larger ensemble sizes could be used, our results
showed that classical EPS does not enhance prediction

results by increasing initial ensemble sizes, whereas G-
Ensemble does. That is, forecast skill in weather predictions
could be enhanced almost linearly by G-Ensemble scheme
as the initial ensemble size increases.

These results encourage us to continue our research efforts
by testing our scheme over larger sets of model closure
parameters. And we are also planning to design methods that
handle real observations during prediction process deciding
their injection intervals at run-time in order to get more
reliable meteorological predictions.
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