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Abstract

Weather forecasting is complex and not always accurate, moreover, it is generally defined by its very nature as a

process that has to deal with uncertainties. In a previous work, a new weather prediction scheme was presented, which

uses evolutionary computing methods, particularly, Genetic Algorithms in order to find the most timely ‘optimal’

values of model closure parameters that appear in physical parametrization schemes which are coupled with numerical

weather prediction (NWP) models. Currently, these parameters are specified manually. Our hypothesis is that the

NWP model forecast skill is sensitive to the specified parameter values. And thus, by finding ‘optimal’ values of these

parameters, we aim to enhance prediction quality. In this work however, the same scheme is extended by introducing

different ways of prediction evaluation during the process of searching closure parameter values. To verify our new

scheme, we show prediction results of an experimental case using historical data of a well known weather catastrophe:

Hurricane Katrina that occurred in 2005 in the Gulf of Mexico. Obtained results provide significant enhancement in

weather prediction.
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1. Introduction

Numerical weather prediction (NWP) models, as well as the atmosphere itself, can be viewed as nonlinear dynam-

ical systems in which the evolution depends sensitively on the initial conditions. Moreover, weather prediction is, by

its very nature, a process that has to deal with uncertainties. The initial conditions of a NWP model can be estimated

only within a certain accuracy. During a forecast, some of these initial errors can be amplified and result in significant

forecast errors.
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Besides initial-condition error, weather and climate prediction models are also sensitive to errors associated with

the model itself. In particular, the uncertainty due to the parameterizations of sub-grid-scale physical processes is

known to play a crucial role in prediction quality (e.g., [1]). Prediction errors caused by the uncertainty in physical

parameterizations is commonly referred to as model errors. Being that said, weather predictability errors are normally

subject to two kinds of errors, initial condition errors and model errors.

By figuring out the main sources of error in predictability of NWP models, many efforts had been focusing on

enhancing prediction quality, mainly on developing sophisticated and skillful next-generation NWP models (e.g.,

[2] and [3]), addressing the uncertainty of initial conditions by better estimation techniques, and also on developing

physical parametrization models or schemes which are nowadays coupled with NWP models and lead to improved

predictive skill.

Over the past 20 years or so, stochastic or ”ensemble” forecasting [4] became a practical and successful way of

addressing the predictability problem associated with the uncertainty in initial conditions. Ensemble forecasting is

conducted by better estimations of the atmospheric initial state (initial conditions) which is produced by data assimi-

lation (DA)[5] techniques, and then, initial state perturbations are computed and launched in different forecasts, each

is initiated by a perturbed initial state. Early on moreover, several weather prediction centers have addressed this

problem by developing operational ensemble prediction systems (EPS) (e.g., [6]). The Ensemble spread finally, is

used to indicate forecast uncertainty. However, and although it has been realized that there is a stochastic nature of

physical parameterizations in ensemble prediction (predictability is sensitive to variations in physical parameters), it

has not been straightforward to develop theoretically sound, and also practical, formulations for how to insert param-

eterization uncertainty into ensemble development [7, 8].

On the other hand, and in contrast to the dynamics of NWP models, which are based on fundamental physical

concepts, physical parameterizations, although partly are based on fundamental concepts of physics, involve empirical

functions and tunable parameters, which usually referred to as model closure parameters. Practically, all physical

parametrization schemes contain closure parameters and typically, expert knowledge and manual techniques are used

to define the optimal parameter values, based on observations, process studies, large eddy simulations, etc. Therefore,

some parameter value combinations score better than others, but it is very demanding to manually specify the optimal

combination.

In [9], it was shown how forecast skill is sensitive to a set of these closure parameters, and moreover, a prediction

scheme (G-Ensemble) that uses Genetic Algorithm (GA), to estimate ‘optimal’ values for these parameters for a cer-

tain forecast, in order to enhance forecast skill was presented. The proposed scheme showed significant enhancement

in prediction quality, and thus, we extend in this paper our proposal by a different implementation for forecast skill

calculation when evaluating the score of a set of parameter value combinations.

The rest of the paper is organized as follows: Section 2 gives a brief description of our previous work (G-Ensemble
scheme) for closure parameter estimation in NWP models. In section 3, the extended version of the G-Ensemble
scheme is presented and described. Section 4 discusses experimental results obtained with a test case. Finally,

conclusions and future work are described in section 5.

2. G-Ensemble

In this section, our Genetic Ensemble (G-Ensemble) approach [9] for prediction enhancement is briefly described,

as well as the set of the model closure parameters targeted for better estimation. The main objective of the presented

scheme is to enhance prediction quality by better estimating a set of NWP model closure parameters. Our study

focuses on finding optimal values of Landuse and Soil closure parameter (the land surface parameters and the impact

they have are described in [10]). The optimization of these parameters will serve as a prove of concept of our method,

which could be applied to other parameters. These parameters are found in land surface physical schemes (LSM)

(e.g.,[11, 12]) which are coupled to most NWP models.

The proposed scheme consists of two phases: Calibration Phase and Prediction Phase (depicted in Fig.(1)). Con-

sidering that ti is the instant time from which the meteorological variables are going to be predicted, i.e. prediction is

done within the period (ti-ti+n), Calibration Phase starts at a time prior to prediction time and ends at time 00:00 (ti)
of prediction period, i.e. calibration is done within the period (t0-ti).
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Figure 1: Two-phase prediction scheme; NWP is the a numerical weather prediction model. ti is time 00:00 of prediction process,
t0 is a time instant previous to Prediction Phase (initial time of Calibration Phase), ti+n is the future time to be predicted. ”OV” is
an observed meteorological variable at time ti, ”PV” is the predicted variable at the same time using a NWP model.

The process of closure parameter estimation in Calibration Phase proceeds as follows:

(i) at the beginning of Calibration Phase (time t0 in Fig. (1): a sample of the targeted parameter values from

ensemble proposal distribution is generated (perturbations in closure parameter values);

(ii) the generated parameter values are inserted to the ensemble prediction model;

(iii) an ensemble of forecasts (the prediction model is different for each ensemble member regarding the targeted

parameter values), is conducted to predict meteorological variables at time ti, where real observations are avail-

able;

(iv) evaluation of a fitness function for each ensemble member is done at time ti;

(v) genetic algorithm functions (selection, crossover and mutation) are used to generate a new ensemble distribution

from the set of combinations of closure parameters which score better predicting at time ti; and

(vi) the process is repeated iteratively until an acceptable error value, or a predefined number of iterations is achieved.

The used fitness function depends on the number of meteorological variables to be better predicted, as such, if

the G-Ensemble is used to enhance prediction for one single meteorological variable, we use the root mean square

error (RMS E) as the the fitness function for the GA to be minimized. This approach is referred to as Single-Variable
G-Ensemble. In contrast, as it is necessary to enhance prediction for a set of meteorological variables, the normalized

root mean square error (NRMS E) is used as the fitness function to be minimized during Calibration Phase, (see

equation (1)). This approach is called Multi-Variable G-Ensemble.

NRMS E =

√∑n
i=1(xobs,i−xpre,i)2

n

xobs(max) − xobs(min)

(1)

In NRMS E equation, xobs is an observed value of a variable x and xpre is the predicted value for the same variable.

The Normalized RMS E (NRMS E) is the value of RMS E divided by the range of the observed values of a certain

variable. NRMS E indicates the error percentage of the predicted value of a certain variable, compared to the range of

its observed values. In order to consider more than one variable at a time, the NRMS E is evaluated for all variables,

and then, the addition of all of them is considered as the Multi-Variable fitness function.
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For example, the NRMS E of an ensemble member that predicts Temperature (T ) and Precipitation (P) is the

percentage obtained by the summation of two percentages: NRMS E(T ) and NRMS E(P), as shown in equation (2).

Error = NRMS E(var1) + NRMS E(var2) = value% (2)

In spite of the fact that the objective in our scheme is to minimize the RMS E or NRMS E in Calibration Phase, as

the fitness function used for the evaluation of ensemble members, other fitness functions are applicable to be used in

the presented scheme. The GA could be oriented to minimize any other targeted fitness functions.

At the last iteration in the Calibration Phase, the values of closure parameters, which produced the least value of

RMS E or NRMS E, i.e. the ensemble member with the best forecast skill score at time ti, is selected to be used in

Prediction Phase. This ensemble member is called: Best Genetic Ensemble Member (BeGEM). Our hypothesis was

that, for short-range weather forecasts, if the forecast skill is improved in the Calibrations Phase by a set of a calibrated

closure parameters, then, the same closure parameter values will also improve forecast skill during Prediction Phase.

By now, in Prediction Phase, a deterministic forecast is used in our experiments, in other words, the BeGEM
which is the ensemble member having the calibrated closure parameter values is the single forecast to be conducted in

Prediction Phase. However, the produced BeGEM could be integrated in any type of EPS considering perturbations

in initial conditions during Prediction Phase.

3. Extended G-Ensemble

In this section, an extended version of the G-Ensemble approach is presented. Precisely, the main change is done

in the Calibration Phase, as such, it is supposed that evaluating ensemble members during Calibration Phase according

to one single observation for each meteorological variable is not that fair, basically, due to the stochastic nature of

NWP ensembles, some ensemble members may change their performance over time. Hence, to help the used GA

to take better decisions when selecting the set of ensemble members that will reproduce a consecutive generation

of ensemble members in each iteration, G-Ensemble scheme is extended such that it becomes capable to evaluate

ensemble members according to a window of observations rather than ‘one-point’ observation.

Back to Fig.(1), ensemble members are evaluated according to real observations available at ti. In contrast, the

extended version of our G-Ensemble (shown in Fig. (2)), ensemble members are evaluated according to observations

available in more than one point during Calibration Phase.

Calculate average error and Calibrate
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Figure 2: Extended Two-phase prediction scheme; NWP is the a numerical weather prediction model. ti is time 00:00 of prediction
process, t0 is a time instant previous to Prediction Phase (initial time of Calibration Phase), ti+n is the future time to be predicted,
tx and tm are time instants within the Calibration phase where real observations are available as in ti. ”OV” is an observed
meteorological variable and ”PV” is the predicted variable.
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If prediction is needed to take place from time ti to ti+n, Calibration Phase is to be conducted in the interval (t0-ti),
however, observations could be available at times tx, tm (any model time steps that fall within Calibration Phase), as

well as at time ti. Being these observations available, the GA fitness function considers the average error of the three

error values calculated at times tx, tm and ti, for each ensemble member according to the three observations available

at the same time instants.

The same process is done for Calibration and Prediction as described in the pervious section, however, the BeGEM
in the Calibration Phase of the extended version of the G-Ensemble is produced by evaluating its forecast skill accord-

ing to a window of observations rather than a ‘one-point’ observation.

In the next section, experimental results are discussed to verify prediction enhancement gained by the proposed

extended G-Ensemble scheme.

4. Experimental Evaluation

To test our approach, we used historical data of hurricane Katrina[13], which occurred on August 28, 2005 in the

Gulf of Mexico and unfortunately caused the death of more than 1,800 persons along with a total property damage

that was estimated at $81 billion (2005 USD). The objective of the experiments is to predict meteorological variables

evolution from time: 12:00 h. of the day 28/08/2005 to time 00:00 h. of 30/8/2005 (a period of 36 hours in which

the major effects of the hurricane were produced). The model is configured to predict the evolution of meteorological

variables each one hour and the spatial resolution of the domain was 12km. The used NWP model in our experiments

was the Weather Research and Forecasting (WRF) [2] and all Physics schemes were the same for all experiments.

To get the evolution of meteorological variables at 12:00 h. of 28/08/2005, we used initial conditions of the

atmospheric state in the zone three hours before, i.e. model started prediction from time 09:00 of 28/08/2005. For our

approach (G-Ensemble), the Calibration Phase started from time 00:00 of 28/08/2005 to time 09:00 of the same day.

The variables predicted in our experiments were: Latent Heat Flux LHF (W/m2), 2-meter Temperature (◦C), and the

Accumulated Precipitation RAINC (mm).
In the subsequent experiments, prediction errors (RMS E and NRMS E) produced during Prediction Phase of three

ways of prediction are compared;

(a) G-Ensemble approach, where Calibration considers ‘one-point’ observation, at time 09:00 of 28/08/2005

(BeGEM(1 − point))

(b) G-Ensemble extended approach, where Calibration considers a window of observations, at time 7:00, 8:00 and

09:00 of 28/08/2005 (BeGEM(window)).

(c) The EPS, which is useed to refer to the average error of an ensemble forecast conducted by the initial ensemble

members used in the first iteration of Calibration Phase (an ensemble forecast such that the prediction model is

different for each ensemble member regarding the targeted parameter values, these variables are not calibrated).

It should be mentioned, however, that all the subsequent results represent the average of a set of executions. This

is done to assure that the obtained results are reliable by avoiding the randomity which could be produced in GA

operations in some cases. Firstly, we show experimental results for two different cases: to predict Accumulated

Precipitation (results shown in Fig.5(a)) and to predict Latent Heat Flux (results shown in Fig.5(b)).

The Genetic Algorithm of the Calibration Phase was configured to iterate 15 times over an initial population size

of 40 individuals (initial ensemble size). Its three main operators were configured as follows: Selection: (best one of

two) and (roulette), Crossover: (probability=0.7, type: two points crossover), and Mutation: (probability= 0.2).

In both cases, with the same initial ensemble members used in the EPS case, a significant improvement in predic-

tion quality obtained by the G-Ensemble approach over the EPS. Additionally, it could be also observed that better

enhancements in predictions were obtained by the extended G-Ensemble approach.

The extended G-Ensemble approach is also used to enhance predictions of a set of meteorological variables at

the same time, by applying the Multi-Variable G-Ensemble and using the error NRMS E in Calibration Phase as the

fitness function of the GA. In this case, significant improvements in the prediction of a set of meteorological variables

at the same time were also obtained. Fig.(4) shows the results obtained in this case. Again, significant reduction of

the NRMS E was obtained in the prediction of a set of meteorological variables together and, the extended version of

G-Ensemble shows a better forecast skill.
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Figure 3: Single-Variable G-Ensemble ; (a): RMS E error in prediction of variable Acc. Precipitation and (b): variable LHF.
Results are of classical EPS, BeGEM(1-point) and BeGEM(window) for both variables.
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Additionally, it is observed that the reduction in the NRMS E of the three variables together, also provides an en-

hancement in the prediction of each meteorological variable alone. In other words, all variables were better predicted

when G-Ensemble oriented to reduce the NRMS E of those variables together. To illustrate these results, Fig.(5) shows

how the corresponding prediction error of each variable was reduced when G-Ensemble was oriented to reduce the

NRMS E of the three variables together.
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Figure 5: RMS E prediction error of: (a) Accumulated Precipitation RAINC, (b) Latent Heat Flux LHF), and (c) 2-meter Tem-
perature. Prediction using BeGEM (1-point) and BeGEM (window) produced after 15 iterations of the Calibration Phase of the
Multi-Variable G-Ensemble.

The results obtained in our experiments approve our hypophysis that, on one hand, better estimation of model

closure parameter values enhances weather prediction quality, and on the other hand, the proposed Calibration Phase

leads to better estimation of closure parameter values when it considers a window of observations rather than one

single point observation. Actually, we believe that the reason behind this is that, the used GA in the Calibration Phase

is better guided by more fairly error value when this error reflects an interval of time rather than one single point, to

evaluate the performance of each ensemble member which determines its probability to be selected for subsequent

iterations by the GA.
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Finally, it was shown in [9] that the proposed G-Ensemble approach is cost effective computationally compared

to the classical EPS over a parallel computing environment, many execution scenarios were tested over a cluster of

30 computing nodes, and the prediction quality was significantly enhanced, whereas, execution time was reduced in

comparison with a classical EPS run in Prediction Phase. Besides, in the extended G-Ensemble, no new computations

are introduced; fitness evaluation over more than one point is not computing intensive; that is, it involves simple

mathematical operations to calculate the average error regarding various observations.

5. Conclusions and future work

This work describes our ongoing investigation mainly focused on enhancing short-range weather forecasting by

estimating optimal NWP model closure parameter values, using an evolutionary computing method; genetic algo-

rithm. In [9], it is shown how forecast skill is sensitive to model closure parameter values, moreover, G-Ensemble
prediction scheme is presented, which aggregates a Calibration Phase to the prediction process, where these parameter

values are optimized to improve forecast skill. The G-Ensemble prediction scheme showed a significant improvement

in prediction quality.

In this paper, G-Ensemble is extended in a way in order to consider more than observation point in the evaluation

of forecasts during Calibration Phase. This addition enables the genetic algorithm which is used during Calibration

Phase, to make better decisions when selecting between forecasts through its iterations. By introducing this capability

to our scheme, it was shown by experiments, that forecast skill is improved while no computational cost is added.

Both the G-Ensemble and the presented extension, could be integrated in any operational EPS, that is, the produced

BeGEM with the calibrated closure parameters could be considered as a well-tuned model regarding its closure pa-

rameters. Hence, for a certain forecast to be conducted using an EPS (considering perturbations in initial conditions),

BeGEM provides a ‘physics’ well-tuned model to maximize EPS prediction quality.

These results encourage us to continue our research efforts by testing our scheme over larger sets of model clo-

sure parameters, as well, we are planning to design methods that handle real observations during prediction process

deciding their injection intervals at run-time in order to get more reliable meteorological predictions.
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