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Role of splice variants in the metastatic
progression of prostate cancer
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Abstract
AS (alternative splicing) and its role in disease, especially cancer, has come to forefront in research over
the last few years. Alterations in the ratio of splice variants have been widely observed in cancer. Splice
variants of cancer-associated genes have functions that can alter cellular phenotype, ultimately altering
metastatic potential. As metastases are the cause of approximately 90% of all human cancer deaths, it is
crucial to understand how AS is dysregulated in metastatic disease. We highlight some recent studies into
the relationship between altered AS of key genes and the initiation of prostate cancer metastasis.

Introduction
Splicing was discovered in the late 1970s by scientists who
were comparing the adenoviral mRNA sequence with that of
its genome. They observed that particular genomic sequences
were unable to hybridize to the mRNA, looping out. They
had discovered the so-called intervening sequences now called
‘introns’. For this pioneering work, Phillip Sharp and Richard
Roberts received the Nobel Prize in Medicine in 1993. In
1980, it was observed that the single immunoglobulin gene
could produce two different protein products: a membrane-
bound antibody and an antibody that could be secreted [1,2].
This was one of the first examples of AS (alternative splicing).
The sequencing of the human genome has highlighted the
fact that the number of genes does not explain the observed
transcriptomic and proteomic complexity [3]. This apparent
paradox can be explained through AS; it allows multiple
mRNA variants to be produced from a single gene. Recent
studies that use high-throughput sequencing indicate that up
to 95% of human genes can generate multiple splice variants
from a single pre-mRNA [4,5]. AS is widespread across
eukaryotes, and understanding its nature and regulation has
become a key question in molecular biology.

AS and its regulation
Pre-mRNA splicing is achieved by a set of ribonucleoprotein
complexes, the snRNPs (small nuclear ribonucleoproteins),
which together form the spliceosome when fully assembled
on to pre-mRNAs. The U1 snRNP binds to 5′ donor sites (at
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the 3′-end of exons). The 3′ splice acceptor site is preceded by a
polypyrimidine tract at the 3′-end of introns; this tract follows
the branchpoint A. U2AF65 binds the polypyrimidine tract
facilitating the binding of U2 snRNP across the branchpoint
A; the U4/5·6 tri-snRNP then associates, the spliceosome
is fully formed and two transesterification reactions then
occur. In the first reaction, the branchpoint A attacks the
5′ splice site effectively cutting the 5′-end of the intron off,
forming a lariat; in the second, the upstream exon then joins
the downstream exon and the intron is fully detached [6–8].
Several types of AS exist, including (i) exon skipping; (ii) the
use of alternative 5′ or 3′ splice sites; (iii) mutually exclusive
exons; (iv) intron retention; and (v) alternative promoters
or 3′ processing sites [8]. The degree to which splice sites
conform to the consensus can contribute to the regulation of
AS. Auxiliary sequences help the recruitment of the snRNPs;
these are known as ESE/ESS/ISE/ISS (exonic or intronic
splice enhancers or silencers). These are recognized by
RBPs (RNA-binding proteins) known as splice factors. The
most extensively researched classes of splice factors include
the SR (serine/arginine)-rich proteins and the hnRNPs
(heterogeneous nuclear ribonucleoproteins) [9]. Apoptosis
is a well-studied example of a pathway that is regulated
through AS. Apoptotic genes, such as those for Bcl-2, Bcl-x
and caspase 9, can express pro-apoptotic or anti-apoptotic
variants [10].

It is increasingly clear that the dysregulation of AS can
produce huge consequences in relation to disease progression
[11,12]. Alterations in AS have been found in numerous
cancers, including lung, breast, ovarian and prostate [13–
16]. Although the extent of AS differs between tissue type,
collectively in cancer cells a number of key pathways,
including cell growth, apoptosis, cell signalling and cell
motility, have altered AS patterns when compared with
normal or benign samples. Thus it has become apparent that
aberrant AS patterns may play a crucial role in the initiation
and progression of cancer. However, it should also be noted
that, due to the complex nature of cancer progression, AS
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patterns and regulation can differ between primary tumours,
circulating tumour cells and metastatic sites.

The use of bioinformatic approaches coupled with the
analysis of expressed sequence tags, microarray data, and
more recently next generation sequencing has dramatically
increased the rate of discovery of new splice isoforms and
particularly cancer-specific AS [6,8,14,16–20]. Kim et al. [16]
demonstrated that cancers generally experience a reduction
in exon skipping but an increase in the use of alternative 5′

and 3′ splice sites and intron retention. The reduction in exon
skipping may be explained in part due to the observation
that SR proteins are more prone to nonsense-mediated
degradation in cancer [21]. Alterations in AS events may also
occur as a result of changes in the expression and activity of
RBPs. SR proteins are phosphorylated by kinases such as Akt,
Clk1, DYRK1a (dual-specificity tyrosine-phosphorylated
and -regulated kinase 1a) and SRPK1 (serine/arginine-rich
protein-specific kinase 1) or dephosphorylated by PPs
(protein phosphatases) such as PP1 and PP2A modulating
both intracellular localization and activity [22]. Interestingly
the EMT (epithelial–mesenchymal transition) programme
has been associated with a number of alterations in splice
isoform ratios and in the expression of splice factors. A recent
study identified several RBPs as being altered in cancer cells,
including the ESRPs (epithelial splicing regulatory proteins)
and members of the RBFOX, CELF, MBNL and hnRNP
families [23].

Metastasis in prostate cancer
The treatment of localized prostate cancer largely results in
excellent survival outcome. In contrast, metastatic prostate
cancer is associated with a decreased survival rate of 33%
[24]. Metastasis occurs as a result of a number of events [25–
27]. In the initial stages, tumour cells can undergo phenotypic
transformation changing from an epithelial to a mesenchymal
cellular phenotype. This is associated with the loss of E-
cadherin (a hallmark of epithelial cells that modulates cell–
cell adherence) and the gain of N-cadherin (expressed in
mesenchymal cells). This switch occurs in the so-called EMT
that is crucial in the process of development. EMT results in
loss of cell–cell adhesion and, as such, the cells can invade
the surrounding stroma and enter surrounding blood vessels
(intravasation). The degradation of the ECM (extracellular
matrix) surrounding the tumour is initiated by the MMP
(matrix metalloproteinase protein), and migratory cells often
have increased MMP expression. The mesenchymal nature
of the tumour cells increases the survival of the cells and
their ability to resist apoptosis in response to chemotherapy
through the release of fatty acids that protect the tumour cell
from undergoing apoptosis [25]. Motile mesenchymal-like
cancer cells are free to migrate and adhere to distinct sites of
metastasis. Prostate cancer cells most commonly adhere to
bone to form metastases, since the bone marrow and bone
microenvironment provide optimum conditions to support
the proliferation of prostate cancer cells [28,29]. A number of
factors appear to cause a high proportion of prostate cancer

cells to migrate to bone, including high expression of BMPs
(bone morphogenetic proteins) and TGFβ (transforming
growth factor β). Additionally, prostate cancer cells are
thought to bind to the bone marrow vasculature through
specific cell–cell interactions via integrin αvβ3 and protease-
activated receptors, allowing the tumour cells to invade the
bone marrow (extravasation) [30].

A number of cancer-specific splice variants [e.g. androgen
receptor, FGF (fibroblast growth factor) receptor, CD44,
pyruvate kinase, VEGF (vascular endothelial growth factor)]
involved in the metastatic programme have been discovered of
relevance to prostate cancer. We now highlight three recently
discovered gene variants that can modify metastasis and
possibly EMT (via E-cadherin) in prostate cancer and their
potential use as therapeutic targets.

Examples of AS in metastatic prostate
cancer

ERG (E26-related gene)
ERG is a member of the ETS family of transcription factors
and is the most consistently overexpressed gene in prostate
cancer [31]. ERG has the potential to regulate multiple
cellular pathways such as cell proliferation, differentiation,
inflammation and bone formation. ERG expression is largely
dysregulated as a result of a gene fusion event with
the adjacent androgen-regulated TMPRSS2 promoter on
chromosome 21 [32]. The presence of the TMPRSS2–ERG
fusion and ERG overexpression results in increased tumour
growth and invasive properties [33]. ERG overexpression
down-regulates β1 integrin and E-cadherin expression in
prostate cancer cell line, suggesting that ERG may play a role
in phenotypic alteration of cells to a more mesenchymal and
motile state [34]. In addition, ERG also has the potential to
directly regulate MMPs, the urokinase plasminogen activator
(PLAU) and osteopontin, all involved in metastasis [33,35].
This pinpoints ERG as a potentially important driving factor
in the progression of prostate cancer towards metastatic
disease.

Although most research has concentrated on total ERG
mRNA expression, recent studies suggest that the AS
of ERG may play a role in altering cellular phenotypes. The
ERG gene is composed of 17 exons, with multiple splice
variants being produced [36,37]. One of the most common
ERG splicing events observed is exon skipping/retention
of the 72 bp exon (exon 11) [36,38]. This exon encodes
amino acids in the CAE (central alternative exon) domain
of ERG. Variability in the CAE has the potential to modulate
the binding of ERG with transcriptional co-activators [36].
Wang et al. [36] found that the ERG variant containing the
72 bp exon resulted in increased proliferation and invasion of
prostate cancer cells compared with an ERG variant lacking
the 72 bp exon. These splice variants could potentially alter
the transcription of genes involved in metastasis.
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The PRLR (prolactin receptor)
Prolactin is synthesized in the pituitary gland and other
tissues such as the breast and prostate in which it acts in an
autocrine/paracrine manner. PRL initiates a signalling cascade
via the PRLR that in turn can regulate many cellular pathways
including cell growth, cell metabolism, angiogenesis and
apoptosis [39]. The PRLR gene comprises ten exons and is
alternatively spliced to express multiple variants [40]. The
commonest PRLR variants produced differ in the length
of the signal transducing intracellular domain. As a result
they are named LF (long form), IF (intermediate form)
and SFs (short forms; SF1a and SF1b) [40,41]. Studies have
shown that the SF1b variant amplifies signalling through
ERK (extracellular-signal-regulated kinase) pathway and
results in increased expression of the vitamin D receptor
and the cell cycle regulatory protein p21, leading to a
reduction in proliferation and cell cycle arrest [42]. A
PRLR-specific antagonist, S179D, decreases cell growth
and cell proliferation of prostate cancer cells in vitro and
in vivo via increased production of the SF1b variant
[43,44]. Constitutive overexpression of the SF1b variant in
prostate cancer cells, comparative to a long-term treatment
plan using S179D, results in decreased cell proliferation
and increased cell–matrix and cell–cell aggregation of cells;
this correlates with increased E-cadherin and decreased
MMP9 mRNA expression in SF1b-overexpressing cells.
Consequently S179D-treated prostate cancer cells (via up-
regulation of SF1b variant) show decreased invasive and
migratory properties. Therefore overexpressing SF1b variant
as a result of S179D treatment in the early stages of prostate
cancer disease may prevent EMT initiation and metastasis.

The EGFR (epidermal growth factor receptor)
EGFR is a member of the RTKs (receptor tyrosine kinases)
family of growth factor receptors involved in proliferation,
motility and cell survival. The EGFR gene is composed
of 28 exons and can produce numerous variants. Variants
with deletion in the extracellular domain result in increased
proliferation of cancer cells and increased malignancy and
subsequently correlate with a poor prognosis [45]. The most
common variant with an altered extracellular domain is
EGFRvIII, which is produced as a result of skipping of exons
2–7 and is ligand-independent and thus constitutively active.
This variant is specific for tumour cells. Inhibition of EGF
(epidermal growth factor) signalling in cancer cells restores
E-cadherin levels [46]. Clinical trials using monoclonal
antibodies and vaccines specifically directed against the
EGFRvIII isoform are in progress [47]. Preliminary results
using an EGFRvIII-targeted vaccine against malignant
glioma show increased survival in patients that received the
vaccine compared with control patients [47]. In vivo murine
models of cancer also show the efficacy of the vaccine in
decreasing tumour growth [47]. Therefore this vaccine may be
relevant in a number of cancers, including prostate. Recently
a new variant of EGFR in which exon 4 is skipped (de4
EGFR) was discovered in glioma, ovarian and prostate cancer

Figure 1 Aberrant splicing patterns can affect cellular phenotypes

Alterations in AS can affect the inclusion of exons within genes. For

example the inclusion of 72 bp exon 11 of ERG and exon skipping in

the PRLR and EGFR genes can confer a more mesenchymal phenotype

in tumour cells (potentially via a reduction in E-cadherin expression)

resulting in increased potential for migration and invasion. Studies

suggest that cells may return to a more epithelial phenotype (with

decreased metastatic potential) if aberrant splicing patterns can be

restored to wild-type patterns.

[48]. As with the EGFRvIII variant, the de4 EGFR variant
appears to be cancer-specific and is not found in normal or
tumour adjacent samples [48]. In vitro and in vivo studies
show that the de4 EGFR variant has increased metastatic
potential compared with wild-type EGFR [48]. Skipping
of exon 4 disrupts EGFR-binding activity. As a result the
de4 EGFR variants self-dimerize, leading to constitutive
tyrosine phosphorylation and activation of the receptor and
downstream signalling events. One effect is the up-regulation
of the MAPK (mitogen-activated protein kinase) pathway
and the down-regulation of E-cadherin; this is inversely
related to cell invasion. The increase in metastatic potential
observed in that study warrants further research to assess the
potential of the de4 EGFR variant in prognosis and as a novel
therapeutic target in metastatic prostate cancer.

Conclusion
The discovery that the AS of certain genes contributes to
the phenotype of cancer cells illustrates the importance
of further understanding the regulation of AS in disease
and its potential to provide new contexts for therapeutic
strategies. A number of cancer-specific splice variants (∼320)
have been identified so far [16,49]. However, a number of
gene variants that may play a role in EMT and metastasis
have become evident. Cancer-specific splice variants are
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highly attractive therapeutic targets, since only cancer cells
will be targeted, decreasing toxicity towards normal cells.
Importantly, as shown in the examples given here, there are
already promising therapies against cancer-specific variants
in metastatic prostate cancer. An attractive possibility with
the PRLR-specific antagonist and the EGFR therapies is
the potential ability to increase E-cadherin expression in
mesenchymal cells by changing the splicing patterns of
regulatory genes such as PRLR and EGFR (Figure 1). This
may then reverse the cells to a more epithelial phenotype
which is non-motile in nature. The concept of EMT reversal
has been described previously [50]. The reversal to a more
epithelial cellular phenotype may result in preventing initial
stages of the metastatic programme. In addition, manipulating
AS to alter the mesenchymal characteristics of prostate cancer
cells may also result in the increase susceptibility of these
cells to undergo apoptosis as a result of chemotherapy. Thus
combining these treatments may result in a better clinical
outcome for patients.
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