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A B S T R A C T   

Land use planning regulates surface hydrological processes by adjusting land properties with varied evapo-
transpiration ratios. However, a dearth of empirical spatial information hampers the regulation of place-specific 
hydrological processes. Therefore, this study proposed a Local Land Use Planning framework for EvapoTrans-
piration Ratio regulations (ETR-LLUP), which was tested for the developments of spatially-varied land use 
strategies in the Dongjiang River Basin (DRB) in Southern China. With the first attempt at integrating the 
Emerging Hot Spots Analysis (EHSA) with the Budyko framework, the spatiotemporal trends of evapotranspi-
ration ratios based on evaporative index and dryness index, from 1992 to 2018, were illustrated. Then, repre-
sentative land-cover types in each sub-basin were defined using Geographically Weighted Principal Component 
Analysis, in two wet years (1998 and 2016) and three dry years (2004, 2009, and 2018), which in turn were 
identified using the Standard Precipitation Index. Finally, Geographically Weighted Regressions (GWRs) were 
used to detect spatially-varied relationships between land-cover proportions and evaporative index in both dry 
and wet climates. Results showed that the DRB was consistently a water-limited region from 1992 to 2018, and 
the situation was getting worse. We also identified the upper DRB as hotspots for hydrological management. 
Forests and croplands experienced increasingly water stress compared to other vegetation types. More impor-
tantly, the spatial results of GWR models enabled us to adjust basin land use by 1) expanding and contracting a 
combination of ‘mosaic natural vegetation’ and ‘broadleaved deciduous trees’ in the western and eastern parts of 
the basin, respectively; and 2) increasing ‘broadleaved evergreen trees’ in the upstream parts of the basin. These 
spatially-varied land use strategies based on the ETR-LLUP framework allow for place-specific hydrological 
management during both dry and wet climates.   

1. Introduction 

Numerous studies have demonstrated the regulations of land use 
planning on the hydrological cycle, because of the varied evapotrans-
piration in different land properties (e.g., Liu et al., 2016; Li et al., 2017). 
Evapotranspiration can indicate the sum of water lost from the earth’s 
surface. The conversions from forests to shrubs and grasslands may 
cause higher evapotranspiration in the catchment (Sun et al., 2008). An 
increase in evapotranspiration may also occur when grasslands become 
croplands (Odongo et al., 2019). As a result, national policies and a 
series of land use planning guidance include the aim of hydrological 

management when proposing specific land use strategies. On the other 
hand, climate condition affects water availability in terms of precipita-
tion as well as energy provision for evapotranspiration, making it a key 
factor in hydrological cycles (Bierkens et al., 2008). In other words, 
incorporating the climatic effects, evapotranspiration ratio, instead of 
evapotranspiration, should be focused on hydrological regulation in 
land use planning. Evapotranspiration ratio refers to the partitioning of 
precipitation into evapotranspiration and runoff so that its value has 
already taken into account the varying climate conditions. Therefore, 
administering the types and proportions of land covers, according to 
their effects on evapotranspiration ratios, is needed for sustainable 
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regional water management. 
The varied evapotranspiration ratios based on the interaction of 

climate and land surface characteristics have been illustrated in the 
Budyko framework (Budyko & Miller, 1974). The Budyko frame is 
characterized by two dimensionless indices – evaporative index (EI) and 
dryness index (DI) (Donohue et al., 2007; Li et al., 2013). EI refers to the 
proportion of actual evapotranspiration (AET) to precipitation (P). EI 
values are controlled by the energy used for AET. Before EI values reach 
1, the basin is energy-limited with sufficient surface water resources. 
When all of the available water has been evaporated and transpired, the 
conversion from energy-limited to water-limited situation occurs, and 
then the evapotranspiration ratio is measured by DI. DI determines the 
water limitation by the ratio of potential evapotranspiration (PET) to 
precipitation (P). The details about the Budyko framework refer to Ap-
pendix A in the Supplementary Materials. 

Based on the Budyko framework, some studies presented the spatial 
variations in the evapotranspiration ratio using the long-term mean 
values of EI and DI (Stisen et al., 2021; Shen et al., 2017) or through 
modelling the seasonal variations in AET and Q (e.g., Chen et al., 2013). 
A limitation of these previous studies is that they did not include all 
evapotranspiration ratios in each time step and each spatial observation. 
A method to deal with this limitation is using Emerging Hot Spot 
Analysis (EHSA) (Harris et al., 2017), which is an Arc GIS-based tool to 
depict the spatiotemporal trends using continuous hydroclimatic data, 
allowing us to gain insight into historical hydrological conditions. In 
hydrological studies, EHSA is rarely used. To our knowledge, Fan et al. 
(2021) used this method to investigate the spatiotemporal changes in 
hydrological drought risk. This study is the first attempt to integrate the 
EHSA with the Budyko framework in the land planning field. 

In the Budyko framework, studies identified the roles of different 
vegetation types in evapotranspiration ratio due to their different bio-
logical characteristics, such as rooting depth (Zhang et al., 2018; 
Donohue et al., 2012). Also, vegetation coverage was found as a major 
factor in the evapotranspiration ratio, with a general positive correlation 
(Li et al., 2020; Voepel et al., 2011; Yang et al., 2009). Forest lands, for 
example, had higher evapotranspiration ratios than grassland and 
croplands (Zhang et al., 2004). Despite the investigations on land use 
effects on evapotranspiration ratio, Budyko framework has not been 
fully integrated into the land use planning practices for hydrological 
management, because existing evidence has been insufficient to inform 
how and where to adjust the proportions of various land covers. More-
over, the rare study reflected the local influences of land characteristics 
on the evapotranspiration ratio that vary by location in a basin. 
Place-specific hydrological management through land use planning is 
thus constrained. 

To capture spatial variations in hydrological responses to diverse 
land covers, a local model – geographically weighted regression (GWR) 
– is used in this study. Using EHSA, the Budyko framework, and the GWR 
models, this study suggests a Local Land Use Planning approach to 
regulating surface EvapoTranspiration ratio (ETR-LLUP) for hydrologi-
cal process and water resource management. This approach is tested for 
the Dongjiang River Basin (DRB) in southern China. The DRB is a crucial 
water source of several well-developed and densely-populated cities, 
such as Hong Kong Special Administrative Region, in the Guangdong- 
Hong Kong-Macau Greater Bay Area (GBA) which is an emergent re-
gion for rapid socio-economic growth in China. More than 35 million 
people in the GBA benefit from the water resource imported from the 
DRB. Adjusting the evapotranspiration ratio in the DRB by land use 
planning contributes to optimizing the basin surface hydrological cycle, 
allowing for continuous water provision and sustainable water resource 
management. This study is able to achieve four specific objectives by 
developing the ETR-LLUP framework: 1) to illustrate the spatiotemporal 
trends of evapotranspiration ratio as hot and cold spots based on the 
Budyko framework from 1992 to 2018; 2) to differentiate evapotrans-
piration ratio among land-cover types using the Budyko framework; 3) 
to describe the heterogeneous impacts of proportions of different land- 

cover types on the evapotranspiration ratios, at both basin and upper 
stream levels; and 4) to recommend spatially-varied land use strategies 
for hydrological management under different climate situations. 

2. Data and method 

2.1. Study area 

The DRB is a tributary of the Pearl River Delta that spans about 
35,340 km2 with a length of 562 km (Yang et al., 2018), most of which is 
located in Guangdong Province (Fig. 1(a)). The north part of the basin is 
characterized by natural lands, such as forests and croplands; while 
more urbanized lands are clustered in the south part (Fig. 1(b1)). A 
large-scale water reservoir – the Xinfengjiang Water Reservoir – is in the 
middle part of the basin, to store water resources and regulate hydro-
climatic conditions (Fig. 1(b2)). In recent decades, distinct land use 
changes are observed as an expansion of built-up areas (Gao et al., 2016) 
and increasing vegetation in the upper DRB (Peng et al., 2014). Ongoing 
changes in land use affect the evapotranspiration ratio in hydrological 
cycles. To present the effects of heterogeneous land use on the local 
evapotranspiration ratio, the DRB is subdivided into 256 sub-basins in 
this study (Fig. 1(b3)). These sub-basins are the smallest spatial units 
that collect precipitation to serve as basin water sources with similar 
land use characteristics. The general increases in EI and DI (Fig. 1(c)) 
need the hydrological regulations through adjusting land use in the DRB. 

2.2. Data sources 

Monthly gridded data of AET, PET, and P with a spatial resolution of 
0.1◦ were derived from ERA5 re-analysis datasets (cds.climate.coper-
nicus.eu/) and resampled into annual data for quantifying EI and DI in 
the DRB from 1992 to 2018. By comparing the runoff data from ERA5 re- 
analysis datasets to those from DRB observation stations, we validated 
that ERA5 re-analysis datasets were reliable for quantifying EI in our 
case based on R2 values greater than 0.71 (Appendix B, Figure B1). Also, 
annual precipitation data from ERA5 re-analysis datasets were used to 
calculate Standard Precipitation Index (SPI) for defining climatic 
wetness and dryness. When SPI >1, the risk of a flood event increases 
due to increased precipitation, whereas SPI < − 1 indicates a drought 
risk due to insufficient precipitation (Zhang et al., 2009). From 1992 to 
2018, the years 1998 and 2016 showed SPI >1, which were identified as 
the wet year, while 2004, 2009, and 2018 with SPI < − 1 were dry years 
(Appendix B, Figure B2). Also, the occurred drought and flood events in 
these selected years can be found in the Bulletins of the Water Resources 
Department of Guangdong Province (http://slt.gd.gov.cn/) in China. On 
the other hand, land-cover data with a spatial resolution of 300 m were 
obtained from the European Space Agency (ESA) Climate Change 
Initiative (CCI), describing 37 land types, such as rainfed cropland, 
urban, water, etc., and the details have been shown in Appendix B 
(Table B1). 

2.3. An analytical framework of ETR-LLUP 

The aforementioned hydroclimatic and land-cover data were used to 
develop an approach to Local Land Use Planning for regulating spatially- 
varied EvapoTranspiration Ratios (ETR-LLUP). This ETR-LLUP frame-
work includes three sections (Fig. 2). Firstly, to illustrate the evapo-
transpiration ratio in the basin hydrological process, Emerging Hot Spot 
Analysis (EHSA) was adopted to present the spatiotemporal trends of EI 
and DI values in the Budyko framework as hot and cold spots. Focusing 
on two wet and three dry years defined by SPI values, depicting various 
land-cover types in the Budyko space can help differentiate their effects 
on hydrological cycles. In both wet and dry years, the land-cover types, 
which represent the land use patterns in each sub-basin, were identified 
using Geographically Weighted Principal Component Analysis 
(GWPCA). Moreover, the GWR model was used to investigate the 
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Fig. 1. The location of Dongjiang River Basin (DRB) is shown in (a). The land covers and river systems of DRB are shown in (b1) and (b2), respectively. The DRB is 
subdivided into 256 sub-basins to present unique hydrological conditions locally (b3). Also, the temporal variations in the evaporative index and dryness index from 
1992 to 2018 can be found in (c). 
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spatially-varied coefficients between land-cover proportions and EI- 
based evapotranspiration ratio, for proposing place-specific land use 
strategies and local evapotranspiration regulation. 

2.4. EHSA-based hydrological cycle measurement 

Emerging hot spots analysis (EHSA) (Harris et al., 2017) is a geo-
spatial tool to integrate the temporal and spatial information to explore 
the statistically significant spatiotemporal trends of the Budyko 
framework-based hydrological process from 1992 to 2018. To perform 
the EHSA, space-time cubes were created by aggregating our yearly data 
in each geographical location. These space-time cubes were clustered, 
based on statistical significance analysis, as hot and cold spots that have 
statistically significant high and low values of data compared to sur-
roundings (ESRI, 2016). Here, using continuous spatiotemporal data 
with a yearly temporal resolution and a 0.1-degree spatial resolution, 
EHSA was mainly used to characterize the historical variations in EI and 
DI values and to illustrate the hotspots with high water stresses. 

2.5. GWPCA-based land-cover characteristics 

Principal component analysis (PCA) is commonly used to extract the 
most important data properties by reducing data dimensions (Demšar 
et al., 2013). However, the spatially homogenous statistical descriptions 
derived from PCA cannot interpret the spatial variations in land-cover 
types (Comber et al., 2016). Therefore, as a localized version of PCA, 
the GWPCA is used in this study, which reflects spatial effects based on 
geographical weights (Cartone and Postiglione, 2020; Harris et al., 
2015). Using GWPCA, land-cover data was clustered as several 

uncorrelated geographically weighted principal components (GWPCs). 
The first GWPC can indicate the most distinct pattern of land use in the 
basin, followed by the second and third GWPCs. The loading value in-
dicates the importance of each land cover in the overall land use pattern 
in that GWPC, and the dominant land type should have the highest 
absolute loading value. Overall, GWPCA characterizes the local land use 
patterns in our case into some dominant land-cover types as represen-
tations, which were then related to the evapotranspiration ratio in the 
Budyko framework. 

Although spatial effects distinguish GWPCA from PCA, Monte Carlo 
tests (Lu et al., 2014) were also required to support the GWPCA appli-
cation in this study. With an estimated p-value of 0.01, the results 
showed that land-cover data were inter-correlated and spatially clus-
tered (Appendix C). In other words, significant spatial heterogeneity in 
land use necessitated the use of a local model, indicating that GWPCA 
rather than PCA was required in this study. 

2.6. GWR-based local land use solutions 

The conventional regression model provides general statistical re-
sults of variable relationships based on an assumption that data are 
space invariant, which thus cannot handle the spatial variations in land- 
cover and hydrological data. Thus, the GWR model was used here, which 
can overcome the limitation of the conventional regression model by 
showing how local relationships vary with spatial changes (Fothering-
ham et al., 2003; Matthews and Yang, 2012). The GWR equation is as 
follows (Brunsdon et al., 1996; Fotheringham et al., 2001): 

Fig. 2. An Analytical framework for Local Land Use Planning to regulate spatially-varied EvapoTranspiration Ratios (ETR-LLUP).  
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yi = ai0 +
∑

k=1,m
aikxik + εi (1)  

where yi represents local estimation at location i, ai0 and aik are the 
intercept value and local coefficient of variable k at location i, respec-
tively. xik is the observed data of variable k at location i. 

Moreover, in the local estimation of the GWR parameter, a spatial 
weighting of point i is provided based on a spatial distance. Larger 
spatial weightings are assigned to observations closer to point i. By using 
spatial weighting to calibrate the GWR model, the spatial effects in 
measuring the local relationships between land-cover proportions and 
hydrological conditions are shown. 

3. Results 

Historical characteristics of hydrological conditions in the DRB were 
presented by combining the EHSA and the Budyko framework. Focusing 
on three dry and two wet years, the evapotranspiration ratios in the 
Budyko framework among land-cover types can be differentiated under 
wet and dry climates. Furthermore, we captured the spatial variations in 
the effects of land-cover proportions on EI values, which can provide 
empirical spatial information for specifying land use strategies and lo-
cations for local hydrological management. 

3.1. Characteristics of hydrological conditions and land use in ETR-LLUP 

3.1.1. Spatiotemporal patterns of EI and DI values in the Budyko 
framework 

Temporal variations in EI and DI values in the DRB based on the 
Budyko framework were depicted in Fig. 3(a). Throughout the DRB, 
increased evapotranspiration ratio, decreased surface runoff, and a 
severer water-limited condition can be observed from 1992 to 2018, 
because the EI and DI values in the early years (1992–2000) were lower 
than those in subsequent years (2000–2018) (Fig. 3(a)). The entire basin 
was always water-limited due to the DI values exceeding 1 consistently. 
Combined with spatial patterns further, the spatiotemporal trends 
revealed hotspots of both EI and DI in the north, i.e., the upper DRB, 
with higher statistically significant values than in the south over the 
time periods (Fig. 3(b1) (b2)). It means that the upper DRB was more 
water-limited and drier than other regions, because more precipitation 
is lost to evapotranspiration and thus less runoff infiltrates into the soil. 
Therefore, we defined the upper DRB as the hotspots for regulating 
hydrological cycles by land use planning. In detail, EI hotspots oscillated 
in the northeast part of the basin in intermittent time periods (Fig. 3 
(b3)), similar to the spatiotemporal patterns of EI across 27 years. 
Moreover, 2002 was the first year when EI hotspots appeared, and till 
2018, EI hotspots appeared in 12 years while EI cold spots appeared in 
only three years. This fact suggested that the DRB began to increase its 
evapotranspiration ratio in 2002 and maintained a high evapotranspi-
ration ratio from 2002 to 2018. 

3.1.2. Spatiotemporal variations in land use 
We have defined two wet years (1998 and 2016) and three dry years 

(2004, 2009, and 2018) according to SPI values from 1992 to 2018. 
During these five years, the dominant land-cover type in each sub-basin 
was presented (Fig. 4). Despite the similar land-cover types and distri-
butions, minor land use changes can be observed over five years. In the 
northern basin, croplands and trees predominated the land use patterns, 
while water bodies accounted for the most in the middle part of the basin 
due to Xinfengjiang Reservoir project over there. In the south, grassland 
was the dominant one in such an urbanized region due to the rapid 
urban sprawl. Overall, there were eight dominant land-cover types over 
the whole DRB, namely, ‘rain fed cropland’, ‘rain fed cropland with 
herbaceous cover’, ‘mosaic cropland’, ‘mosaic natural vegetation’, 
‘broadleaved evergreen tree’, ‘broadleaved deciduous tree’, ‘grassland’, 
and ‘water’. In the upper DRB, three dominant land-cover types were 

‘rain fed cropland’, ‘mosaic cropland’, and ‘broadleaved evergreen tree’. 

3.2. Bubyko-based hydrological conditions among land-cover types in 
ETR-LLUP 

To manage hydrological cycles in different land-cover types under 
wet and dry climates, the Budyko framework illustrated the EI and DI 
values across the basin in dry and wet years focusing on eight land-cover 
types derived from GWPCA results (Fig. 5). In wet years (1998 and 
2016), the basin had both lower EI and DI values than those in dry years 
(2004, 2009, and 2018). In wet years, only subtle disparities of EI and DI 
values between land covers can be observed, implying that, when 
available water resources are sufficient, evapotranspiration ratios in 
different land-cover types were very similar. Furthermore, in dry years, 
croplands and trees had higher water stress due to their higher EI and DI 
values than other land-cover types. The whole DRB was always water- 
limited as DI values of all land-cover types kept higher than 1 on 
average, particularly in dry years. 

3.3. Spatially-varied effects of land-cover proportions for local land use 
planning in ETR-LLUP 

Based on the varied hydrological processes among land-cover types, 
we quantified how the changes in land-cover proportion affect EI-based 
evapotranspiration ratio, in order to develop spatially-varied land use 
strategies that differ by locations for managing local evapotranspiration 
ratios. Firstly, the Pearson correlation analysis was conducted in these 
selected five years to define the land-cover types having statistical cor-
relations with EI values. The results showed that the proportions of 
‘mosaic natural vegetation’ and ‘broadleaved deciduous trees’ always 
had statistically significant correlations with EI values throughout the 
basin (3✕104 km2) in both dry and wet years (Table 1). Moreover, in the 
upper DRB (about 104 km2), only the proportion of ‘broadleaved ever-
green tree’ was related to EI in five years. By this step, we demonstrated 
the land-cover types that needed to be adjusted for evapotranspiration 
ratio management in both wet and dry climates as well as the entire 
basin and its upper stream. 

To identify the potential placements of the above-mentioned land- 
cover types, the GWR models were developed (Fig. 6). The impacts of 
land-cover proportions on EI were spatially-varied throughout the DRB 
(Fig. 6(a–g)). In general, the proportions of ‘mosaic cropland’, ‘mosaic 
natural vegetation’, and ‘broadleaved deciduous tree’ had negative re-
lationships with EI values in the west part of the DRB. At the same time, 
the negative relationships between ‘broadleaved evergreen tree’ pro-
portion and EI values occurred in most of the basin. In the upper DRB, 
the clear negative relationships between the proportions of ‘broadleaved 
evergreen tree’ and EI values can be observed (Fig. 6(i)). 

4. Discussion 

This study provides EHSA-driven spatiotemporal trends of the 
evapotranspiration ratio for the development of the ETR-LLUP frame-
work, based on continuous time and space steps. We also discuss the 
implications of this ETR-LLUP framework for researchers and practi-
tioners in facilitating spatially-varied land use planning taking into ac-
count local situations. 

4.1. Spatiotemporal trends of evapotranspiration ratio in ETR-LLUP 

This study demonstrates the spatiotemporal trends of evapotranspi-
ration ratio over recent decades, by depicting how the overall EI and DI 
values in the DRB move in the Budyko space from 1992 to 2018 (Fig. 3 
(a)) and illustrating EHSA-based spatial disparities between the north 
and the south (Fig. 3(b1) (b2)). The temporal changes in the evapo-
transpiration ratio in the DRB show increasingly higher EI values. From 
a perspective of runoff changes, Niu & Sivakumar (2014) reported that 
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Fig. 3. Spatiotemporal patterns of hydrological conditions based on the Budyko framework in the DRB, from 1992 to 2018. Temporal variations in EI and DI values 
are shown in (a). Their spatiotemporal patterns are presented as hot and cold spots in (b1) and (b2), respectively. The spatial patterns of EI in individual years are 
depicted in (b3). 
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around 3.5% of annual runoff can be reduced if 25% of grassland was 
transformed into forestland. A similar claim by Lin et al. (2015) was that 
the annual runoff in the DRB was predicted to decrease until 2050. It 
means that, with the current afforestation policy, additional forestland 
in the DRB causes less precipitation to reach the land surface in the form 
of runoff. As a result, the partitioning of precipitation to evapotranspi-
ration increases, which can explain the increased EI values in our 
findings. 

The EHSA-based spatial patterns indicate that hotspots in the upper 
part of the DRB have higher EI values than the south part, because of the 
faster evapotranspiration ratio of denser vegetated lands in the north 
(Yang et al., 2009). He et al. (2013) observed the effects of deforestation 
on increased runoff and thus decreased EI values in the DRB between 
1959 and 2008. It suggests that, due to the emergence of environmental 
awareness, afforestation replacing deforestation can be a factor in the 
higher EI values in the northern DRB. There has been little research on EI 
changes based on the Budyko framework, and some existing studies may 
not reach the same conclusions as ours. For example, Wu and Chen 
(2013) stated that the EI value in the northern DRB (i.e., the upper DRB) 
did not have a great difference from that in the south part, using aver-
aged AET and averaged P. Also, Xu et al. (2015) claimed lower EI values 
in the north than that in the south focusing on the precipitation (P), 
actual evapotranspiration (AET), and water yield (Q) in only five indi-
vidual years (1995, 2000, 2005, and 2010). These two studies did not 
use continuous temporal and spatial data. Thus, with the first use of 
EHSA in a Budyko framework-based hydrological study, we give more 
comprehensive features of hydrological cycles by revealing spatiotem-
poral patterns in each time step and space observation. In this way, the 

spatially explicit hot and colds of EI values allow for a better under-
standing of how the Budyko framework-based hydrological conditions 
changed over time in different geographical locations. 

4.2. ETR-LLUP framework implications for local hydrological 
management 

The roles of land-use heterogeneity in hydrological processes have 
been well investigated. Many studies have described different evapo-
transpiration ratios and hydrological processes among different land 
properties (e.g., Alemayehu et al., 2017; Freund and Kirchner, 2017). 
For example, Kim et al. (2014) used non-spatial statistical models to 
analyze the long-term evapotranspiration in various land surfaces. Gao 
et al. (2018) considered land cover as well as topography for developing 
hydrological models for runoff simulation. Compared to conventional 
studies, we not only describe the differences in evapotranspiration ratio 
between vegetation types (Fig. 5), but also reveal that land use is a direct 
cause of evapotranspiration ratio changes in statistics (Table 1). Our 
framework also reflects how the Budyko framework-based evapotrans-
piration ratio responds to the changes in land use patterns by illustrating 
the positive and negative correlations. Another contribution is that the 
ETR-LLUP framework emphasizes the specific local situations, such as 
locally unique land use patterns and the resulting varied surface hy-
drological processes. To our knowledge, rare studies combined local 
situations with Budyko framework-based hydrological management. 
With a spatially-varied insight into local land use practices, this 
ETR-LLUP framework provides empirical spatial knowledge for imple-
menting context-dependent planning principle. ETR-LLUP-driven land 

Fig. 4. The dominant land-cover types in five years are shown in (a)~(e). Sub-basins characterized by the same land-cover type are clustered and depicted in the 
same color. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Hydrological conditions based on the Budyko framework in DRB’s eight dominant land-cover types, in 1998, 2004, 2009, 2016, and 2018, respectively.  
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use strategies have potentials to deal with local evapotranspiration 
ratio-based hydrological issues, allowing for social equity in terms of 
water security. 

In practice, the ETR-LLUP framework suggests spatially-varied land 
use strategies based on the GWR models. We found that the proportions 
of ‘Mosaic natural vegetation’ and ‘broadleaved deciduous tree’ kept 
statistically significant relationships with EI in dry and wet climates 
(Fig. 6(d)(f)). These two land-cover types should be prioritized in the 
land use planning for adjusting hydrological processes. The positive 
coefficients between land-cover proportions and EI values imply that 
higher land-cover proportions lead to higher EI values and thereby 
higher evapotranspiration ratio. Because of the constant water-limited 
situations throughout the DRB in both dry and wet years (Fig. 5), 
decreased EI values for lower evapotranspiration ratio should be desir-
able in land use planning. Therefore, for decreased EI values and 
attenuated water-limited degrees in both dry and wet years, we 
recommend increasing the proportions of ‘Mosaic natural vegetation’ 

and ‘broadleaved deciduous tree’ in the west while decreasing them in 
the east. Furthermore, the land use strategy in the upper DRB is to in-
crease the areas of ‘broadleaved evergreen tree’ for lower EI values ac-
cording to their negative correlations (Fig. 6(i)), which has also been 
supported by Li et al. (2020) who found that, in the upper DRB, addi-
tional forest cover can increase surface runoff and mitigate drought in 
dry season. In summary, we discovered land-cover types that were 
correlated to EI-based evapotranspiration ratios across the basin as well 
as its upper stream. Importantly, the locations where the proportions of 
these land-cover types should be adjusted were also identified. 
Compared to traditional one-size-fits-all land use patterns, these 
spatially-varied land use strategies allow for the regulation of local 
evapotranspiration ratios and the facilitation of place-specific hydro-
logical process management. 

Table 1 
Correlation analysis for land-cover proportions and EI values in five years in the DRB and upper DRB. 
Notes: 1998 and 2016 in blue table cells are the wet years and 2004, 2009, and 2018 in red table cells are the 
dry years. * denotes the land-cover types having statistically significant correlations with EI values (p-value <
0.01). 
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5. Conclusion 

Integrating spatial analysis approaches (i.e., EHSA, GWPCA, and 
GWR) and the Budyko framework, we have developed a Local Land Use 
Planning framework for regulating spatially-varied EvapoTranspiration 
Ratios (ETR-LLUP). This framework provides methods to illustrate the 
spatiotemporal trends of the Budyko framework-based hydrological 
conditions in the DRB, and to elucidate the local patterns in terms of the 
land-cover proportions affecting the EI-based evapotranspiration ratio 
from 1992 to 2018. In detail, we demonstrate an increase in water- 
limited trends due to the rising evapotranspiration ratio across the 
basin in the recent 27 years. The upper DRB, with severer water-limited 
conditions than the south, is identified as the hotspot for hydrological 
process regulations. Our findings also indicate that croplands and trees 
are more water-stressed than other land-cover types in dry years. 
Moreover, throughout the basin, the proportions of ‘mosaic natural 
vegetation’ and ‘broadleaved deciduous tree’ correlate to the EI-based 
evapotranspiration ratio significantly in both dry and wet years. The 
proportions of ‘broadleaved evergreen tree’ also affect EI values in the 
upper DRB regardless of dry and wet climates. Importantly, we recom-
mend spatially-varied land use strategies for mitigating water stress in 
the basin through lowering the evapotranspiration ratio (i.e., EI values). 
In our case, we suggest 1) increasing the proportions of ‘mosaic natural 
vegetation’ and ‘broadleaved deciduous trees’ in the west while 
decreasing them in the east; 2) expanding the ‘broadleaved evergreen 
trees’ in the upper DRB. 

The ETR-LLUP-driven locally-specific land use strategies as well as 
their appropriate implementation locations are the major research 

outputs. The proposed ETR-LLUP framework not only theoretically in-
tegrates the Budyko framework and the EHSA into the land use plan-
ning, but also empirically complements the local land use practices for 
hydrological processes and water resource management based on 
spatially-varied land use and hydrological situations. 
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