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Abstract:  

Material characteristics such as Young modulus, yield and ultimate stresses are often considered as 

fundamental material parameters. Determination of material characteristics using the instrumented 

indentation test has been gained interests among many researchers.  The output of a spherical 

indentation test is usually the load-penetration (P-h) curve which is used to determine the 

Hollomon’s equation coefficients. Ideally, the elastic deformation of the sphere is to be excluded 

from the total displacement. However, the available techniques to omit the elastic deformation of 

the sphere are difficult-to-use and time consuming. 

In the present work, a noticeably simplified method is proposed preserving the required accuracy. 

The coefficients of Hollomon’s equation were determined using the spherical indentation. The 

proposed method has also the ability to specify the unloading curve at each point of interest, even if 

the experimental data of the unloading procedure at that point is not available. Finally, by training a 

Neural Network and extracting the weights of its layers, an equation governing the network is 

presented explicitly. This expression made the neural network easy to use. Furthermore, the 

proposed method was verified using the experimental results and very good agreements were 

observed.  
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Nomenclature 

P   Force (N) 
h  Displacement (mm) 
σ  Stress (MPa) 
E  Young Modulus (MPa) 
ε  Strain 
a  Contact radius  

iν  Poisson ratio of indenter 

sν  Poisson ratio of sample 
*E  Reduced Young Modulus 

iE  Young Modulus of indenter 

sE  Young Modulus of sample 
S  Slope  

iph  Real amount of penetration 

0ph  Superficial amount of penetration 

R  Radius of indenter 
1p ph hδ = −

o
 Difference between real and superficial amount of penetration  

tW  Plastic energy 

iα  Output for the i th cell 

jX  Input For The i th cell 

ijW  Weight 

jt  Target output 

jO  Corresponding output 

IW  Weight in the first layer 
LW  Weight in the second layer 
b  Biases 

 

1 Introduction: 

Tensile tests are usually carried out to characterize the material parameters. Preparing the standard 

coupons for the tests is destructive, expensive and difficult. A cheap and simple non-destructive 

method to determine the material characteristics, which has been widely developed in the literature, 

is the instrumented indentation test also known as hardness test [1, 2 and 3]. The instrumented 
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indentation test provides an accurate load (P) versus penetration depth (h) curve. The P–h curve is 

sensitive to variety of different test details. However, it is mainly influence by the uniaxial stress–

strain curve of the material. It may also be used in order to determine some parameters of the work-

hardening behavior of the material. Hollomon isotropic work-hardening law is the most commonly 

used stress-strain curve and is defined as:  

)1(  1 n n n
y Eσ σ ε−= 

where E, yσ , n and ε, are the Young modulus, the yield stress, the work-hardening exponent and the 

strain respectively. Researchers have used the slope of the P–h curve during loading process to 

estimate plastic flow properties and deduced the Young Modulus from the unloading slope [4, 5]. 

Pharr and Oliver [5] obtained E* from an indentation test using Equation (2):  

)2(  *2dPS E a
dh

= = 

where a is the contact radius, *E  is the reduced Young modulus and defined as:  
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where ν  is the Poisson ratio, Es and Ei are the Young modulus of the sample and the indenter 

respectively. They performed a comparison between the numerical and experimental results and 

showed that equation (2) did not lead to a very accurate estimation of the contact radius. However, it 

predicted the trend of the contact radius alterations. This can be a result of using the simplified 

material properties in the numerical simulations that did not correspond to the real material 

behavior. Furthermore, equation (2) did not take into account the radial displacements of material 

under the indenter [6]. Hay and Wolff [7] then introduced a factor of γ  and the contact stiffness 

equation became: 
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For an elastic spherical indenter, the factor of γ  was defined by the following equation: 
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Knowing the fact that the sphere was deformed during the penetration, the real amount of 

penetration (hpi) was different with the superficial one (hpo) as shown in Figure (1). Therefore, it was 

essential to substrate the deformation of the sphere from the total deformation to calculate the real 

amount of penetration. 

Location of Figure1 

 

Collin and his co-workers [6] proposed an empirical procedure to deduce both the indenter 

deformation and the contact radius using the indenter and sample elastic properties and several 

loading-unloading and reloading cycles. They introduced an equation [8] that omitted the 

deformation of sphere and resulted in the real amount of penetration. Their equation was defined as 

Equation (6): 

 

 )6(  

1

2 2 22 2 2 2 2

2 2 2 2 2 2
1 1 1 1 1

p p

i i i i i

i i i i i

h h

P P P P P PR A B C D E F
E E E E ER a R a R a

δ

ν ν ν ν νδ
π π π π π π

= −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − −⎜ ⎟= + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

o

 

where the constant coefficients A to F were found by means of the numerical study and introduced 

as: A=-1.6517e-5, B=3.6242, C=0.2003, D=-7784.7622, E=-15.3689 and F=649.4548. P, υ, R, Ei 

and a are the force, Poisson ratio, the radius of the sphere, Young modulus of the sphere and the 

contact radius, respectively. hp0 and hp1 were illustrated earlier in Figure 1. 
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Two approaches may be used to extract mechanical properties from the indentation test. The first is 

based on the inversion of models established from a numerical study and is called a “reverse” 

analysis. The second is based on an “inverse” analysis. In the reverse analysis, a set of data is 

achieved from numerical simulations. A reverse relation is then obtained by correlating the data 

acquired from the p-h diagram and the stress-strain curve of the sample. Different information is 

extracted from the p-h diagram depending on how the loading trend appeared. For instance in cyclic 

loading, information such as changes in elastic and plastic energy and force changes versus changes 

in the amount of penetration could be extracted. Collin et al. [9] presented a reverse method to 

determine the stress-strain curve of the sample by finding the relationship between the data from the 

P-h diagram of cyclic loading and the stress-strain curve. They cyclically loaded the sample up to 

200N and determined the changes of plastic energy versus h. Finally, coefficients A and B were 

specified by fitting the equation (7) to the data. 

)7(  * 3 exp( )
A

tW h B
RE R

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

Having coefficients A and B calculated, the work-hardening exponent and the yield stress of the 

material in the Hollomon’s equation is determined by fitting equation (8) to the numerical data.  

(8)  
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k j  i  h  g  F  e  d  c  b  a    
- 2.1066  468759.

1  
−19375.6920  212.8758  0.7832  5.1262  1096080  −45734.4050  526.624 1.9315 For 

A 
−192.336
3 

−215.923
4 

2.2474 −1.8652  −14009.3360 −4573.9157 −11.3579 −0.6645 392.1503 405.2397 5.7879 For 
B 

Table 1: Coefficients A and B in equation (8). 

Tyulyukovskiy and Hobber [10] employed finite element analysis of the spherical indentation and 

neural networks to determine the plastic and visco-plastic properties of the sample. They also 
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corrected the P-h diagram obtained from the experiments using neural networks [11]. However, 

their technique only provided appropriate results for bulk materials and thin films. 

In the present work, a new technique that considerably simplified the current methods to eliminate 

the elastic deformation of the sphere is proposed. Material properties were then determined from 

the p-h diagram using neural networks. Finally, for explicit use of the results, a relation based on the 

neural networks weights is introduced. The neural networks theory is detailed next as it was 

employed to determine the parameters in this research. 

2 Artificial Neural Networks 

The neural networks are essentially connectionist systems in which neurons are connected to each 

other. A neuron can provide an output signal if it receives one or more input signals. The number of 

signals would depend on processing function involved. Based on weights specified between network 

layers, the output is transferred to other neurons with different intensities. The outputs of neurons 

of a layer are inputs to the neurons of the next layer. The first layer, namely input layer, receives the 

data from the user and the last layer, which is called output layer, prepare the output data for the 

user. The middle layers are called hidden layers. The presence of hidden layers provides complexity 

for the network architecture and this complexity is employed for modeling nonlinear relationships. 

Depending on the presence or lack of feedback in the architecture of a neural network, there are two 

separate types of networks, namely with feedback or feed forward architectures. In a feed forward 

architecture, there is no returning connection from output neurons to the input neurons [12]. A 

network with feed forward architecture was employed in the present study.  

In general, there are two different methods for training the network. There are supervised and 

unsupervised learning techniques. In supervised learning, an input data is related to a specified 

output i.e. the learning process is performed with the pairs of data. Unsupervised learning method is 
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used where the output or target values are unspecified [13]. Selection of the best and fastest learning 

algorithm for solving a problem, is very important and difficult. One of common algorithms for 

adjusting the weights is back-propagation algorithm. This algorithm, which is a sort of supervised 

learning techniques, is employed in the current work. 

A network starts working with a set of initial weights and then, gradually modifies the weights in a 

training cycle until the desired weights are achieved. The desired weights perform the input-output 

mapping with the least error. The trained network is then examined with a set of data. If the testing 

error is greater than the training error, it can be claimed that the network possesses excessive over-

fitting on the data. For a network with good over-fitting, the testing and training errors are 

reasonably close to each other. Now the trained neural network can be employed for estimating the 

outputs using a new set of data. Figure 2 shows the data processing carried out by a typical neuron 

of a neural network. Based on the output for the i th cell, Equation (9) is defined as: 

1
( )

n

i j ij
j

f X Wα
=

= ∑  
(9)

The activation functions generally involve linear or nonlinear relationships.  The most important 

step in using a neural network is the training stage. 

Location of Figure2 

 

Some statistical methods such as root mean square (RMS) error or mean square error (MSE) are 

employed for validation of the results. During the training stage, the error is specified by root mean 

square error or mean square error. In the latter case MSE is calculated by the following equation: 

2

1

1 ( )
n

j j
j

MSE t O
n =

= −∑  (10)
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In which jt  is the target value for the j’th output data, jO  is the corresponding output value and n is 

the number of data. A two layer neural network is presented schematically in Figure 3. In order to 

train the neural network a set of numerical analyses were carried out. Details of the simulations are 

available next. 

Location of Figure 3 

3 Numerical Analyses 

The finite element simulation of the sphere indentation was carried out using ABAQUS finite 

element code [14]. An axisymmtric model of the sphere and the block of material was made. The 

finite element mesh was formed of 14380 CAX4R 4-noded bilinear axisymmetric elements. The 

finite element model and the mesh are shown in Figure 4. The material properties of two aluminum, 

Al7075 and Al6060, were used for this simulation with a Young’s modulus of 72 GPa and a yield 

stress of 534 MPa for Al7075 and Young’s modulus of 74 GPa and a yield stress of 302 MPa for 

Al6065. The Poisson ratio for both cases was considered equal to 0.3 [15]. The stress-strain curves 

of two aluminums are shown in Figure 5(a) [15]. Elastic-plastic properties were assumed with 

isotropic linear hardening. Hollomon’s equation was employed to characterize the two materials 

behavior in the plastic region (see equation 1). The coefficient n in equation (1) was considered equal 

to 0.061, 0.071 for Al 6065 and Al 7075 respectively. All nodes on the lower boundary of the mesh 

were constrained so that they were free in the radial direction and fixed in the axial direction. 

Uniform axial loading was applied to the top surface of the sphere.  

The sphere was simulated using 9620 CAX4R 4-noded bilinear axisymmetric elements with 600 GPa 

Young modulus and 0.3 Poisson ration (corresponding to Tungsten material properties). The sphere 

radius was 1 mm and the block of material had 60mm radius and 40mm height as illustrated in 

Figure 4.  
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Location of Figure 4 

The outcomes of finite element simulations were compared with the experimental data from [15] in 

the form of load-penetration curves as indicated in Figure 5(b).  It can be seen that the comparison 

showed a very good correlation between the experimental data and those predicted for both alloys. 

Location of Figure 5 

Gaining confidence on the finite element results, a series of simulations were carried out to cover a 

wide range of different materials. The simulations were repeated using material properties with yield 

stresses of 150, 450, 720, 1000, 1400, 2200 and 3000 MPa. Furthermore, a wide range of coefficient 

n in the Hollomon’s equation was employed equal to 0.02, 0.08, 0.15, 0.22, 0.28, 0.34 and 0.4. In 

total 49 analyses were performed. These simulations were utilized to train the neural network and 

will be discussed later. Available methods in the literature to separate the elastic deformation of the 

sphere from the P-h curve are discussed in more details next. 

 

4 Determination of 
1pP h−  curve from 

0pP h− curve 

4.1 Available procedure in the literature 

As mentioned earlier, the elastic deformation of the sphere that causes the true penetration is 

different from the measured one which corresponds to the displacement of the sphere centre. 

Therefore, it is essential to work out the sphere elastic deformation in both loading and unloading. 

This deformation is then subtracted from the displacement of the sphere centre to achieve the true 

penetration. Collin and his co-workers [6 and 8] introduced a procedure in which the corrected 

sphere displacement was achieved using cyclic loading and unloading. They then subtracted the 

sphere elastic deformation from the raw data. The sequence of their method is as follow; first they 

estimated an arbitrary a-h diagram (contact area versus penetration curve). Second, the equivalent 



 10

radius, ( )eqR a , was determined using a-h diagram as the indenter never had the exact spherical shape. 

Next, ( )pP h
o

, eqR  and a-h curves and the amount of penetration, δ-a, was found as a curve using 

equation (6). The 1( )pP h  curve was then calculated using δ-a data and the equation of 

1( ) ( ) ( )p pP h P h aδ= −
o

. Using the slope of 1( )pP h  curve and equation (4) the value of Es was calculated.  

Knowing the true Es value of the sample, true δ-a curve is determined by reducing the difference 

between the true Es and the one found from equation (4). Having the true δ-a curve resulted in 

finding the 1( )pP h  curve. Using the above procedure the maximum points at the beginning of each 

unloading phase was corrected. By use of equation (11) the 1( )pP h
 
data in each loading process was 

calculated. 

)11(  1
1

max max

max

( )p p
P P

h h
k h h kP

P
−

= = +o

o  

In the determination of k, P and h were the load and the penetration at the start point of unloading 

at each cycle respectively. It is fair to say that above procedure can be very long and time 

consuming. Furthermore, it required many loading and unloading cycles to achieve the final curve. 

In the present work, a new procedure was developed that minimized the efforts to obtain the load-

penetration curve. The new procedure is detailed next. 

4.2 The proposed procedure 

In the proposed method, there was no requirement of cyclic loading. The indentation test was 

simply performed to a certain load level followed by unloading. The sequence of the proposed 

method is as follow: 

1- P(hP0) is determined up to a certain load that was obtained from the experiment and followed by 

unloading. 

2- Using Equation (12), the slope of the unloading curve was found at the maximum point . 
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)12((  
1 1

max max

max
max

max

( )( ( )) ( )P P
p p

P P P PS
ah h h a h P

P
δδ

− −
= =

− − − −
o o

  

where max max( , )P h  was the start point of unloading, ( , )P h  was the next point on the unloading 

curve unloading part and 
0 max 1max

( ) p pa h hδ = − . 

3- Combining equations, (12), (6) and (4), a general expression for a(h) was found. Solving this 

expression led to find the contact radius where unloading began. 

4- Using Equation (13), the 1( )pP h  curve was achieved from the maximum load up to 80% of the 

maximum load with an acceptable accuracy. The numerical analyses showed that for loads lower 

than 80% of the maximum load the accuracy of the equation was compromised.  

)13(  ( 1) 1( 1)
1

( 1)

n n
n n

P P
P P n

n

h h
h h P

P
− −

− −
−

−
= − o

o  

where n is the track number of the data point from which the sphere elastic deformation must be 

eliminated. 

5- Then a curve was fitted to the data obtained from step 4 to achieve P(hP1). 

)14(  
* 2 exp( )

AP h B
RE R

⎛ ⎞= −⎜ ⎟
⎝ ⎠  

Knowing the fact that the slope of unloading curve was the same for each unloading cycle, the 

procedure below was followed. 

1- The load at which the unloading cycle was required was chosen and the corresponding 

penetration value was found. 

2- The amount of penetration on the 1( )pP h  curve was established corresponding to the load at 

which the unloading was occurred.  
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3- Two above values were subtracted. 

4- To find the unloading curve from the load in step 1, the value of step 3 was subtracted from 

all the data points of the unloading curve that was available from unloading of the maximum 

load.  

Location of Figure 6 

The proposed technique was simple and quick. Two models were simulated using finite element 

method to validate both above procedures. The results are shown in Figure 6 (a) and (b). The first 

simulation was performed using yield stress of 450 MPa and n was equal to 0.02. In the second 

simulation the yield stress was kept the same and n was changed to 0.4. In both cases the maximum 

load was 200N. It can be seen in the figures that the proposed procedure was not sensitive to strain 

hardening coefficient and acceptable results were obtained for loading and unloading in each phase. 

As the final step of the material characterization, a neural network was employed to determine the 

stress-strain curve of the sample material. 

 

5 Application of Neural Networks to Determine Stress-Strain Curve 

A two-layer neural network was employed in order to find the stress-strain curve of the testing 

material.  The first layer consisted of 7 neurons with tansig activating function. The second layer had 

two neurons with purline function. The neural network was then trained using the finite 

element simulations detailed in section 3 (49 simulations). Input data to the neural network were 

parameters A and B from equation (14) and output values were the yield stress and strain hardening 

coefficient in Hollomon’s equation. Following training of the network for different cases, it was 

concluded that the best way to introduce the data to the network is to divide the yield stress by 1000 

and feed it to the network along with other data.  
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To validate the outcomes of the neural network, the results were tested for two sets of experimental 

data available in [15]. Figure 7 indicates the stress-strain and load-penetration curves of two 

materials, AISI316L and C40 steels. Coefficients A and B for both materials were determined by 

fitting equation (14) to their load-penetration curve shown in the figure. Next, these coefficients 

were fed to the trained neural network and the coefficients of Hollomon’s equation were calculated. 

The results are shown in Table 2. It can be seen that a good agreement was achieved between the 

experimental results and the neural network output.  

AISI 316L C40 

A=1.1873 

B=2.456 

A=1.2007 

B=1.9449 

EXP.  Neural network  EXP.  Neural network  

n  yσ  n  yσ  n  yσ  n  yσ  

0.278 148 0.2581 140 0.215 334 0.2506 332.6 

Table 2: A comparison between experimental data and neural network findings. 

 

Location of Figure 7 

The neural network was trained by changing its inter-layer weights. Finding these weights from the 

network and the activating functions, Equation (15) was resulted. This expression was simply how 

the neural network processed the input data to reach the output. A schematic presentation of the 

neural network is illustrated in Figure (8). In the figure IW was the layer weight and b was layer 

biases that after Network training specified. Furthermore, Lw was layer weight in the second layer. 
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The weight function, therefore, can be applied to the data without having to use and train a neural 

network again. 

 

 

      Location of Figure 8                               

 
 

)15(  2 1 {2,1} {2}
1 exp( 2( {1,1} {1}))

output LW b
input IW b

⎛ ⎞
= − × +⎜ ⎟+ − × +⎝ ⎠

  

 

[ ]

302.0717 41.0284 30.6598 40.5346 32.9756 23.9116 13.6941
{1,1}

58.9901 9.3423 0.5934 7.4534 0.7027 1.1919 1.9981

{1} 419.7745 1.2819 43.7335 57.4817 46.328 30.8861 19.1916

0.3161 0.2047
61.2159

{2,1}

Iw

b

Lw

− − − −⎡ ⎤
= ⎢ ⎥− − −⎣ ⎦

= − − −

−
− −

= [ ]

141.4175
76.6069 498.2189

(2) 110.8273 196.07530.4292 0.1184
24.9429 160.4065

0.0303 0.1716
1.2058 0.2259

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= −−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥

⎢ ⎥−⎣ ⎦  
 
 

6 Summary and Conclusions 

This paper consists of two sections. First section focused on the elimination of the sphere elastic 

deformation from the load-penetration curve. Available techniques from other researches are based 

on several loading and unloading cycles which are time consuming and complex. A greatly simplified 

procedure was proposed in this work that provided both accuracy and simplicity. In addition to the 

ability of omitting elastic deformation, this technique estimated the unloading curve at each load 

from a single cycle load-penetration curve.  
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The details of determination of the stress-strain curve were provided in the second section. A two-

layer neural network was trained using a series of finite element simulations and its weights were 

extracted explicitly. Therefore, the stress-strain curve of the material can be characterized using a 

single cycle load-penetration curve obtained from the sphere indentation test.  A great agreement 

was achieved between the predicted material properties and those obtained from the experiments. 
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Tables 

Table 1  Coefficients A and B in equation (8). 

Table 2  A Comparison between experimental data and neural network findings. 

Figures 

Figure 1 Difference between the measured and the real penetration. 

Figure 2 Data processing in a typical cell of a neural network. 

Figure 3 A two layer neural network. 

Figure 4 Finite element model used for the analysis, the presentation is not in scale. 

Figure 5 (a) stress-strain curve for AL.6060 and AL.7075 [15], (b) Comparison of P-h diagram 

between experiment and simulation result. 

Figure 6 Load-penetration for material with 450 , 0.02, 0.4y Mpa n nσ = = =  

Figure 7 (a) stress-strain curve, (b) Load-penetration curve, for C40 and AISI316L, 

Experimental data from [15]. 

Figure 8 Neural network used with details. 
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Figure 1 

 

 

 

 

 
 

Figure 1: Difference between the measured and the real penetration.  
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Figure 2 

 

 

 

 

 

 
 

Figure 2: Data processing in a typical cell of a neural network. 
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Figure 3 

 

 

 

 

 

 
 

Figure 3: A two layer neural network. 
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Figure 4 
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Figure 4: Finite element model used for the analysis, the presentation is not in scale. 
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Figure 5 
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a.  

Figure 5: (a) stress-strain curve for AL.6060 and AL.7075 [15], (b) Comparison of P-h diagram 
between experiment and simulation result. 
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Figure 6 
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Figure 6: Load-penetration for material with 450 , 0.02, 0.4y Mpa n nσ = = =  
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Figure 7 
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Figure 7: (a) stress-strain curve, (b) Load-penetration curve, for C40 and AISI316L, Experimental 

data from [15].   
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Figure 8 

 

 

 

 

 

 

 
 

Figure 8: Neural network used with details. 
 

 

 

 


