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Abstract

Among the most promising and active research areas in heuristic optimisation is the
field of adaptive memetic algorithms (AMAs). These gain much of their reported ro-
bustness by adapting the probability with which each of a set of local improvement
operatorsis applied, according to an estimate of their current value to the search process.
This paper addresses the issue of how the current value should be estimated. Assum-
ing the estimate occurs over several applications of a meme, we consider whether the
extreme or mean improvements should be used, and whether this aggregation should
be global, or local to some part of the solution space. To investigate these issues, we use
the well-established COMA framework that coevolves the specification of a popula-
tion of memes (representing different local search algorithms) alongside a population
of candidate solutions to the problem at hand. Two very different memetic algorithms
are considered: the first using adaptive operator pursuit to adjust the probabilities
of applying a fixed set of memes, and a second which applies genetic operators to
dynamically adapt and create memes and their functional definitions. For the latter,
especially on combinatorial problems, credit assignment mechanisms based on histor-
ical records, or on notions of landscape locality, will have limited application, and it
is necessary to estimate the value of a meme via some form of sampling. The results
on a set of binary encoded combinatorial problems show that both methods are very
effective, and that for some problems it is necessary to use thousands of variables in
order to tease apart the differences between different reward schemes. However, for
both memetic algorithms, a significant pattern emerges that reward based on mean im-
provement is better than that based on extreme improvement. This contradicts recent
findings from adapting the parameters of operators involved in global evolutionary
search. The results also show that local reward schemes outperform global reward
schemes in combinatorial spaces, unlike in continuous spaces. An analysis of evolving
meme behaviour is used to explain these findings.

1 Introduction

Among the most promising and active research areas in heuristic optimisation is the
field of adaptive memetic algorithms (AMAs). These couple global search, via an evolu-
tionary algorithm (EA), with solution improvement via the selective application of one
or more memes representing local search strategies. AMAs gain much of their reported
robustness by adapting the probability with which each of a set of local improvement
operators is applied, according to an estimate of their current value to the search pro-
cess. The concept of assigning credit to different memes, based in some way on their
perceived current benefit, is closely linked to a long, and ongoing, history of operator
and parameter adaptation within EAs and related methods such as hyperheuristics. The
key issues from that research may be summarised as the evidence used by an operator
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or parameter adaptation algorithm, the scope of that algorithm (e.g., whether it makes
global changes or attempts to model the local landscape), and the mechanism used to
calculate new values according to the evidence.

Based on insights from that field, Ong et al. (2006) created a taxonomy of early work
in AMAs and provided some useful benchmark results in continuous search spaces,
where notions of locality are implicit and the link between global and local behaviours
is fairly transparent. Tellingly, they reported a preference for global adaptation, which
contrasts with the local landscape modelling of state of the art EAs such as CMA-ES
(Ostermeier et al., 1994). Chen et al. (2011) report a large number of papers in which
AMAs have delivered highly impressive results across a range of application domains.
However, the vast majority of researchers have considered what has been called second
generation MAs (2GMAs),! where the set of memes available is fixed a priori, so that
historical records of operator utility are available and relevant. Specific evidence has
been drawn from historical records in a number of different ways, and a wide range
of mechanisms has been used to adapt meme choice, often based on domain-specific
insights. As concluded by Ong et al. (2006), there is still a lack of general understanding
of the issues surrounding credit assignment in 2GMAs.

Moreover, Ong’s findings, and many of the subsequent algorithm designs, rely im-
plicitly on the properties of continuous spaces. This could be via the use of an estimated
gradient to inform local search, or through the notion of a shared landscape structure to
estimate the likely rates of progress of global and local search operators, and hence to
adapt the ratio of computational effort allotted to global/local search. While these av-
enues have yielded valuable insights, as we have argued elsewhere (see, e.g., Stone
and Smith, 2002; or Serpell and Smith, 2010), the situation regarding adaptation is more
complex in combinatorial spaces. When a search problem is encoded with a discrete
representation, “locality” has a meaning solely with respect to a given neighbourhood
structure. Hence, although the evolutionary components of these algorithms may op-
erate on a fixed landscape, those neighbourhood structures that are seen by memes,
and consequently the set of solutions which are locally optimal, change over time. This
impacts both on the design of credit assignment mechanisms, and on the management
of the trade-off between global and local search.

The gaps in current understanding are even larger for third generation MAs
(3GMAs), which dynamically adapt, and create, memes and their functional defini-
tions, for which purpose many different heuristics and metaheuristics can be used. As
aresult, depending on the metaheuristic used, at any given time all of the memes avail-
able may be present for the first time, and /or some may be duplicated. Therefore, credit
assignment mechanisms based on historical records will have limited application, and
it is necessary to estimate the value of a meme via some form of sampled measure of
its effect in the current population of candidate solutions. Previous results by ourselves
and others have shown that a sample size of one (i.e., a single pairing of meme with
a candidate solution) creates excessive noise, but clearly testing every meme against
every candidate solution may not be viable other than for small sets of memes.

Based on these observations, this paper addresses two outstanding issues concern-
ing credit assignment in general AMAs working in combinatorial search spaces.

1. In the light of recent results on adapting operator choice in EAs, is it better to
assign credit to a meme based on an estimate of the extreme benefit, or on the

IThe terms second and third generation MAs are explained fully in Section 2.
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mean benefit it causes? It has been argued that extreme versions, which reward
occasional large jumps in fitness rather than small steady improvements, yield
better results in EAs, but that is in the context of adapting the global search
components, which are responsible for escaping from local optima. In contrast,
memes typically represent mechanisms that cause systematic improvements to
local optima.

2. Since memes represent local improvement operators, should their value be esti-
mated globally (using information from every pairing of an incident of that meme
with a candidate solution) or should it be sampled and estimated locally (sep-
arately in different regions of the search space)? Alternatively, for 3GMAs, how
should fitness be assigned to a meme which occurs multiple times in a meme
population? Different schemes will implicitly create different amounts and types
of noise in the sampling process. For example, evidence from a local extreme
scheme might fool the meme adaptation mechanism by awarding large credit
to an otherwise useless meme that happens to cause a large improvement in a
poor candidate solution. Conversely, local mean evidence might lose too much
information in the averaging process to drive successful adaptation.

In order to generate insights which can be seen in a context of previous research,
we use an existing framework. Taking inspiration from Dawkins’ original concept of
memes as evolving entities which influence the behaviour of individuals coded for by a
population of genes, the coevolutionary memetic algorithms framework (COMA) was
designed as a testbed for investigating a range of behaviours and effects in AMAs.
Section 3 summarises how starting with simple fixed length pattern-matching memes,
and successively building in more complexity, experimental results have shown signif-
icant performance benefits over fixed MAs on a range of problems. Using that frame-
work to instantiate both 2GMAs and 3GMAs, we examine all four combinations of
global/local and extreme/mean reward, focussing on the sometimes conflicting as-
pects of effectiveness and efficiency.

The major contribution of this paper is the use of a well-established general frame-
work to generate experimental results that attempt to provide answers to the questions
above, and hence provide generic guidance to designers of AMAs. The paper is organ-
ised as follows: Sections 2 and 3 review related work and the historical development of
COMA to provide context. Sections 4 and 5 describe the algorithmic and experimental
setup to support this research. Section 6 reports the results obtained when different
reward schemes were tested in exemplars of 2GMAs and 3GMAs. Section 7 discusses
the findings in the light of related research, and analyses the changing pattens of meme
usage and behaviour in order to explain the results. Finally, Section 8 discusses these
results and their significance.

2 Background

The field of memetic computation? encompasses a wide range of algorithms based on the
concept of memes as methods for generating or improving individual solutions to one or
more problem instances. Rather than considering these algorithms to be just local search
evolutionary hybrids, Ong et al. (2010) consider memetic computation to be a more
general paradigm which uses “the notion of meme(s) as units of information encoded

20Often also referred to as memetic computing.
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in computational representations for the purposes of problem solving.” In their more
general view, memes might be represented as “decision trees, artificial neural networks,
fuzzy system, graphs, etc.” and are not necessarily coupled to any evolutionary compo-
nents at all, requiring simply a method for credit assignment. This enticing view offers
the promise of memes capturing useful structural and behavioural patterns which can
be carried between instances of the same problem, as is being explored, for example, in
Ting et al. (2010).

In this paper, we restrict ourselves to the broad class of MAs. Introduced by Moscato
(1989), these combine population-based global search heuristics (such as EAs) with
heuristics that attempt to improve a single solution. Meuth et al. (2009) distinguish
between:

® First Generation MAs. Defined as “Global search paired with local search.”

® Second Generation MAs. Defined as “Global search with multiple local opti-
mizers. Memetic information (choice of optimizer) passed to offspring (Lamarck-
ian evolution).”

¢ Third Generation MAs. Defined as “Global search with multiple local optimiz-
ers. Memetic information (choice of local optimizer) passed to offspring (Lamar-
ckian evolution). A mapping between evolutionary trajectory and choice of local
optimizer is learned.”

They noted that, at the time of writing, the self-generating MAs and COMA were the
only algorithms falling into the 3G class, and went on to propose (but not implement)
a fourth generation of MAs in which they suggest: “Mechanisms of recognition, gener-
alization, optimization, and memory are utilized.” Arguably, the use of pattern-based
memes in COMA fall into this class, and certainly the ADEP framework described in
Chen (2010) represents an important step toward such algorithms. Thus, while this
paper deals with credit assignment issues which must be dealt with in 2GMAs and
3GMAs, many of the issues will also be present as 4GMAs are developed (it is believed
that patents are being processed in this area).

21 Credit Assignment in Adaptive Memetic Algorithms

There are several recent examples of the use of multiple meme operators within evo-
lutionary systems. Ong et al. (2006) present an excellent recent review of work in
the field of AMAs. This encompasses multi-memetic algorithms (Krasnogor, 1999,
2002; Krasnogor and Smith, 2000, 2001; Krasnogor et al., 2002), the COMA framework
(Smith, 2002a, 2003c, 2004, 2007a, 2007b), meta-Lamarkian MAs (Ong and Keane, 2004),
hyper-heuristics (Cowling et al., 2001; Burke and Smith, 2000; Kendall et al., 2002; Burke
etal., 2003, 2010), and self-generating MAs (Krasnogor, 2004; Krasnogor and Gustafson,
2004).

Essentially, each of these approaches maintains a pool of local search operators
available to be used by the algorithm, and at each decision point makes a choice of
which to apply. Ong’s classification uses terminology developed elsewhere to describe
adaptation of operators and parameters in EAs (see Section 2.3). This taxonomy cate-
gorises algorithms according to the way that these decisions are made. One way (static)
is to use a fixed strategy. Another (adaptive) uses feedback of which operators have
provided the best improvement recently, and is further subdivided into external, local
(to a deme, or region of search space), and global (to the population), according to the
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nature of the knowledge considered. Finally, they note that LS operators may be linked
to candidate solutions (self-adaptive). In benchmark studies on five continuous prob-
lems, they reported that a global-level adaptation scheme yielded the highest mean best
fitness after a fixed number of evaluations compared to the local adaptive scheme, and
both outperformed schemes that did not adapt operator probabilities, or did so without
reference to search information. One of their main conclusions was that a good deal more
research needs to be pursued into the adaptation and credit assignment mechanisms.

A number of subsequent papers have expanded on these themes. Barkat Ullah
et al. (2009) proposed an agent-based approach for optimising constrained problems
defined over continuous spaces. Here each agent had available to it a suite of local
search algorithms, and maintained a local record for each. This was a scalar value in the
range {-1,1} according to the meme’s effect on the feasibility of the candidate solution,
and also on the fitness improvement caused, in the last generation.

Caponio et al. (2007) proposed a fast adaptive memetic algorithm that simulta-
neously adapted the global and local search characteristics according to a measure of
(global) fitness diversity. Adapting the global search was done by adjusting the EA’s
population size and the aggressiveness of mutation to maintain diversity. The probabil-
ity of applying two very different local search operators was determined using a static
external rule, taking as evidence the generation count and the ratio of the current fitness
diversity to the most extreme value ever observed. This concept was explored further
in Neri (2007a, 2007b). Caponio et al. (2009) extended this idea, using fitness diversity
in a probabilistic way (beta distribution) to assign activation probability to the memes.

Nguyen et al. (2009a) proposed static adaption in cellular memetic algorithms. Their
approach split the population into groups according to fitness diversity and applied
global search to one member from each group, with a blacklist of members that did not
benefit from local search. This blacklist method used local historical evidence to bias
the global/local search trade-off, and while highly effective, it of course only worked
with fixed memes. A more general probabilistic memetic framework was proposed
in Nguyen et al. (2009b) to adapt the global/local search trade-off. Using arguments
based on the likelihood of generating points within a basin of attraction on a continuous
landscape, they proposed to dynamically estimate the probabilities of achieving benefits
via local search and global search, and adapting the number of iterations allowed to
local search accordingly. This was successfully instantiated using local search traces plus
a database of historical points. Notably, this used an extreme measure of improvement
to assign credit to memes.

2.2 Credit Assignment in Coevolutionary Systems

If selection is performed separately for the two populations, with memes’ fitness as-
signed as some function of the relative improvement they cause in the solution pop-
ulation, then we have a cooperative coevolutionary system. Bull (1995) conducted a
series of more general studies on cooperative coevolution using Kauffman's static NKC
model. Bull and Fogarty (1997) examined the evolution of linkage flags in coevolving
symbiotic systems and showed that the strategies which emerge depend heavily on
the extent to which the two populations affect each other’s fitness landscape. In highly
interdependent situations, linkage of the two species” chromosomes was preferred—
which in our context is equivalent to memes’ self-adapting as part of the solutions’
genotypes. Bull (1997) also examined the effect of various strategies for pairing mem-
bers of different populations for evaluation, with inconclusive results. This work was
revisited and extended by Wiegand et al. (2001) with very similar findings. Wiegand’s
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work also considered the number of partners with which a member of either population
should be evaluated, which draws attention to the trade-off between accurately esti-
mating the value of an object (solution or meme), and using up evaluations doing so.
Parker and Blumenthal (2004) suggested “punctuated anytime learning with samples”
as an alternative approach to the pairing problem, using periodic sampling to estimate
fitness, but this is more suited to cases where the populations evolve at different rates.

2.3 Credit Assignment in Adaptive Operator Selection

Since the beginnings of the field of evolutionary computation, the question of how to
assign the probabilities of applying different operators, and the choice of associated
parameters, has been the subject of intense and ongoing scrutiny. A wide range of dif-
ferent strategies has been proposed for adapting operator probabilities in response to
their perceived utility (see, e.g., Smith and Fogarty, 1997; Eiben et al., 1999; or a synthe-
sis of the work in Eiben et al. (2007)). There are two principal categories: self-adaptive
schemes (where utility is implicitly assumed, via association with fitter solutions that
survive selection) and adaptive schemes that track the qualities of offspring produced
by different operators and then recalculate probabilities periodically. The use of the
intrinsic evolutionary processes to adapt mutation step sizes has long been used in
evolution strategies, as described by Schwefel (1981), and evolutionary programming,
as described by Fogel (1992). Back (1992), and Smith and Fogarty (1996c) applied similar
approaches to self-adapt mutation probabilities. The choice of crossover points in re-
combination operators was self-adapted by Schaffer and Morishima (1987), Smith and
Fogarty (1996b), and Smith (2002b). Smith and Fogarty (1996a) combined these to de-
velop more complex generating operators. More recently, Serpell and Smith (2010) have
showed that self-adaptation can very effectively govern both the choice and parame-
terisation of different mutation operators for GAs with permutation representations.

Recent work in the area of adaptive operator selection by, for example, Maturana
et al. (2009), and Whitacre et al. (2006) has divided the problem into two areas—first
how to assign a quality metric to an operator that changes responsively over time, and
second how to allocate probabilities to operators on that evolving basis (see, e.g., papers
by Thierens, 2007; Fialho et al., 2008; Maturana et al., 2009; Fialho et al., 2010; Burke et al.,
2010). A major proposal emerging from this stream of work is that it may be beneficial to
use extreme values, that is, to use the maximum positive difference between offspring
and parent fitness, rather than the mean value of the effect of an operator. This is in the
spirit of rewarding operators that produce occasional large jumps in fitness rather than
those which produce steady, but small, fitness improvements. However, as we have
noted above, this relates to the characteristics of global search via the EA.

In a memetic context, clearly it is beneficial to estimate values by evaluating memes
in the context of more than one solution, and initial experiments (not shown for rea-
sons of space) show this can be achieved by increasing the selection pressure in the
meme population by using tournaments of size 5. Equally clearly, this credit assign-
ment mechanism needs to be responsive to the current (rather than historical) state
of the population of candidate solutions. This follows a stream of arguments in evo-
lutionary computation research using the current rather than historical data to model
the current population (as in estimation of distribution algorithms) or the underlying
search landscape (as in covariance matrix adaptation). Similarly, Thierens (2007) pro-
posed adaptive operator pursuit, and Maturana et al. (2009) trigger forgetfulness of
previous operator utility in their dynamic multi-arm bandit approaches. In 3G versions
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of COMA, the probability allocation is dealt with by the action of selection in the meme
population—as long as the memes’ fitness accurately reflects their quality.

Based on the review above, three possibilities can be identified for assigning meme
fitness. The first is implicit, that is it uses the fitness of the attached solution. This does
not necessarily imply self-adaptation, since the selection processes could be decoupled,
but it does imply same-sized populations. Therefore, we do not consider it here as it
is less relevant to 2GMAs. The second and third possibilities record the effect of every
time a meme is applied, and use either the mean or extreme improvement caused.

3 Previous Findings with the COMA Framework

The COMA framework maintains two parallel populations: one of candidate solutions
(genomes) and one of memes, representing local search algorithms to be applied to
the genomes. Typically, an EA is applied to both populations, but there is no fixed
restriction on the choice of metaheuristic used to adapt either population. In the work
to date, the neighbourhood structure used by a meme is defined via pattern matching
and substitution, akin to regular expressions. Thus, each meme encodes a condition
and action pattern of equal length plus an integer rule_length specifying the number
of positions in the pattern string to consider. The memes’ rules are shorter than the
genomes, so the local search neighbourhood of a meme is defined as the set of solutions
obtained by the matching and substitution of genome substrings, and correspondingly
the neighbourhood size may vary for each meme-genome pairing. Note that this concept
of evolving adaptive neighbourhoods refers to the landscape structure, as opposed to
the algorithmic (deme) structures coevolved by Whitacre et al. (2008).

Using full linkage between the two populations, so the memes were self-adapted
with the genomes, Smith (2002a) demonstrated successful evolution of rules with the
appropriate lengths and symbols to capture structural dependencies for various differ-
ent types of binary-encoded problems. This was then extended to higher cardinality
representations, and successfully applied to the problem of protein structure prediction
by Smith (2003c). Using the binary testbed, Smith (2003a) introduced a don’t care (#)
allele for the rule condition, and examined the use of different pivot rules (i.e., steepest
or greedy ascent) and different linkage strategies between the two populations. The
results showed that the random pairing of memes and genomes (i.e., uniform credit
assignment to memes) was poor, indicating that adaptation rather than merely meme
variety is necessary. Assigning credit on the basis of a single meme—genome interaction
was found to introduce excessive noise when coupled with a greedy pivot rule, so
steepest ascent was more reliable, albeit slower on most problems. In Smith (2007a), an
invert allele for actions and a binary flag for the choice of pivot rule were introduced
and yielded more robust behaviour across a wide range of test problems.

Smith (2007b) focused solely on the issue of credit assignment in adaptive memetic
algorithms using Ong’s taxonomy as a guideline. COMA was instantiated with a single
step of greedy local search, and a variety of mechanisms for credit assignment in
the meme population. The results clearly demonstrated the advantages of a credit
assignment mechanism based on more than one meme—genome pairing. A memory-
based approach was able to rapidly identify and exploit a problem structure if present,
but this faster convergence was disadvantageous on unstructured problems such as
MAX-SAT. A local adaptive strategy with a collaboration pool size of two was the
most effective and efficient, and the use of mean evidence was better than the extreme
evidence case.
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These papers represented the development and exploration of the COMA frame-
work, and it should be noted that the most successful credit assignment schemes relied
on equal-sized populations. Also, the restriction to a single step of local search simulta-
neously simplified the management of global/local search, and limited the scalability
of the approach to large problems where local search is more effective (e.g., OneMax).
In Smith (2010), a flag was added to the memes denoting a binary choice of whether
local search should run for one iteration, or until it reached local optimality. Early
results showed that the choice of fixed strategy was problem dependent, but the adap-
tive schemes were always competitive. An investigation of different memepool sizes
(which affects the size of sample in the credit assignment) showed that provided ade-
quate selection pressure was present, a large number of memes aided the overall search
process.

4 A Framework for Self-Adaption and Coevolution
of Memes and Genes

The pseudocode in Algorithm 1 illustrates the COMA framework. Note that although
this pseudocode assumes synchronous evolution, this need not in general be the
case. For the sake of clarity, we have omitted some of the parameters, for example,
Recombine(ParentSet, parentlid, parent2id) is assumed to return a copy of the first
parent with probability 1 — Px (where Px is the probability of applying crossover).

The representation of the memes is a tuple <Pivot, Depth, Pairing, Move>. The rep-
resentation of the tuple elements leads naturally to the choice of evolutionary variation
operators. The Pivot element is naturally binary. The Depth element is mapped as an
integer representing the computational effort allowed (maximum number of calls to
fitness function). An arbitrarily large number is used to signify that search should al-
ways progress until a local optima is reached. Algorithm 2 illustrates the process of
applying a meme to a solution. Note that this paper uses Lamarkian learning and the
pattern-based specification of meme neighbourhoods described below.

The Pairing element is one of {Self~Adaptive, Random, Fitness_Based} and determines
how memes are created and applied to solutions. As is illustrated in Algorithm 2, a
range of behaviours from self-adaptive through collaborative coevolution to random
meme drift can be obtained by fixing the elements; and selectively allowing mutation
to operate on them creates various different adaptive schemes. Note that a wide range
of selection operators can be applied to either (or both) populations since they work on
the basis of fitness, and are independent of the representation.

This framework is designed to be generic in the way that move operators are
described; for example, they could be GP-like expressions as per Fukunaga (2008). Here
they are encoded as condition:action pairs, which specify one pattern to be looked for
in a genome, and another to replace it. Although this representation at first appears to
be very simple, it has the potential of representing highly complex moves via the use of
symbols to denote not only single/multiple wildcard characters (in a manner similar to
that used for regular expressions in Unix) but also the specifications of repetitions and
iterations. Further, permitting the use of different length patterns in the condition and
action parts of the rule gives scope for cut and splice operators working on variable
length solutions. The neighbourhood of a genome i then consists of i itself, plus all
those points where the substring denoted by condition appears in the representation of
i and is replaced by the action. To give an example, a rule 1#0 — 111 matches the binary
string 1100111000 in positions 1, 2, 6, and 7, so the neighbourhood is the set {1100111000,
1110111000, 1111111000, 1100111100, 1100111110}. The string is not treated as toroidal,
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Algorithm 1 Pseudocode definition of COMA algorithm

COevolving Memetic Algorithm for Binary Coded Problems :
Begin
/* Given populations P of us solutions and M of u,, memes */
initialise P and M randomly ;
set generations = 0;
set evaluations = 0;
Repeat Until (run_termination condition is satisfied)
Do

/* Create ps solution offspring and store parent ids */
For i := 1 To 1 = us Do
/* Select pool of parents and store ids */

set FirstParent[i] = Select_One_Genome_Parent (P) ;
set SecondParent[i] = Select_One_Genome_Parent (P) ;
/* Create offspring by recombination and mutation */
set Offspring[i] = Recombine (P, FirstParent[i], SecondParent[i]) ;
Mutate (Offspring([i]) ;
set i = 1 +1;
Od

/* Create pm meme offspring according to pairing */

For i =1 To i = um Do
/* Select parents of the new meme and store their indices */
set Pairing = Get_Pairing(M,1i);
If (Pairing = SelfAdaptive) Then

set MemeParentl[i] = FirstParent[i];
set MemeParent2[i] = SecondParent [i];
/* note this requires pum = ps. */
Fi
Else If (Pairing = Fitness_Based) Then
set MemeParentl[i] = Select_One_Meme_Parent (M) ;
set MemeParent2[i] = Select_One_Meme_Parent (M) ;
/* Note selection mechanism may not be same in each population */
Fi
Else
set MemeParentl[i] = RandInt (1, pum);
set MemeParent2[i] = RandInt (1, um);
Esle
/* Create meme offspring via recombine parents and mutation */
set NewMemes [1i] = Recombine (M, MemeParentl[i],6 MemeParent2[i]) ;
Mutate (NewMemes [1]) ;
set i = i+1;
Od

/* Apply local search to Offspring Using Memes */
For i =1 To 1 = pus Do
If (Pairing = SelfAdaptive) Then

set meme = 1i;
Fi
Else

set meme = Select_Random(NewMemes) ;
Esle

set evals_used = Pair Meme With Solution(Offspring([i], NewMemes [m]) ;
/* the procedure also updates the meme and genome fitness */
Ood
set P = Offspring;
set M = NewMemes;
Od
End
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Algorithm 2 Pseudocode for application of meme to candidate solution

Pair_Meme_With_Solution(meme m , solution s):
Begin
set maxdepth = Get_Depth (m);
set pivot = Get_Pivot (m);
set evals_used = 0;
set original_fitness = Get_Fitness(s);
set incumbent = s;
set Locally Optimal False;
While ((evals.used < maxdepth) and (Locally Optimal = False))
Do
/* Apply the meme’s pattern matching rule */
/* to create a ordered set of neighbours */
set Neighbours = Apply-Rule_To_Offspring(incumbent,m);
Evaluate_Fitness (Neighbours);
/* Pivot rule of meme determines choice of neighbour */
If (pivot = Greedy) Then
set best = Get_First_Better_Than (incumbent, Neighbours);
set evals_used = evals_used + PositionInSequence (best, Neighbours);
Fi
Else
set best = Get_Best (Neighbours);
set evals_used = evals_used + | Neighbours|;
Esle
If (Get_Fitness (best) < Get_Fitness (incumbent)) Then
set Locally Optimal = True;

Fi
Else
set incumbent = best;
Esle
Od
set Afitness = Get_Fitness(incumbent) - original_fitness;

Update_Solution Fitness (s, Get_Fitness(s);
If (Lamarkian Learning) Then
set s = incumbent;
Fi
Update Meme_Fitness(m, Afitness, evals_used);
return evals_used;
End

and the neighbours are evaluated in a random order so as not to introduce positional
bias into the local search when greedy ascent is used.

5 Test Suite and Methodology

A range of well understood test problems was used to examine the performance of
various 2GMAs and 3GMAs using combinations of global/local and extreme/mean
improvements as evidence to the meme update mechanisms. A range of binary-coded
combinatorial problems was used; some of these are standard testbed functions for EAs,
while others were specifically designed to probe certain behaviours.

For this paper, we focussed on three measures of performance. The effectiveness of
the search algorithm is measured by the success rate (SR)—the number of runs finding
the global optimum. The efficiency is measured by the average evaluations to solution
(AES). The reliability is measured by the mean best fitness observed per run (MBF). For
each problem, 100 runs were made (10 each for instance for the MAX-SAT problems),
each continuing until the global optimum was reached, subject to a maximum of 500,000
evaluations. The reason for the large cutoff value was to try to avoid skewing results, as
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can happen with an arbitrarily chosen lower cutoff, rather than to be indicative of the
amount of time available for a real world problem. Note that since one iteration of a local
search may involve several evaluations, algorithms are compared strictly on the basis of
the number of calls to the evaluation function. To analyse the experimental results, we
used appropriate nonparametric tests (Mann-Whitney for two groups, Kruskal-Wallis
for three or more, with post hoc pairwise comparisons) to identify whether there were
significant differences between groups in the SR, AES, and MBE. In every case where a
difference is reported, it should be read as being statistically significant with over 95%
confidence.

5.1 Test Problems

The first set of problems used is composed of 16 subproblems of Deb’s 4-bit fully
deceptive function described in Back et al. (1997). The fitness of each subproblem i is
given by its unitation u(i), that is, the number of bits set to one:

fy = {0.6 —0.2-u(i): u(i) <4

1: u(i)y=4 @

Versions of trap were used with lengths taken from the set {40, 80, 120, 160, 200, 400,
800, 1000, 2000}.

The royal road function used is a simple R1 type with fitness rewards for groups
of eight contiguous genes all set to 1. The set of lengths used was {64, 96, 128, 160, 212,
256, 512, 1024}.

Watson'’s highly epistatic HIFF function rewards matching pairs of adjacent bits in

a solution s, that is,
1/2-1

fis= ) 1~ XOR(s2. 52i41) @
i=0

and this process is applied recursively, so that a problem of size I = 2 has k levels. In
each ascending level, the number of blocks is reduced by a factor of two, and the fitness
awarded for each matching pair is increased by a constant factor, in our case, two. This
problem has a number of Hamming suboptima, and two global optima corresponding
to the u(i) € {0, 1}. Problem sizes I € {32, ...,512, 1024} were used, corresponding to
3-10 levels. Note that for / >16, the length of the blocks to be identified at the highest
levels far exceeded the maximum rule length.

The MAX-SAT problem is a classical combinatorial optimisation problem, consist-
ing of a number of Boolean variables and a set of clauses built from those variables. A
full description and many examples can be found on the SATLIB (2010) website. For
lengths of 50 and 100 variables, the first 10 were taken from the sets of uniformly ran-
domly created satisfiable instances around the phase transition (in terms of hardness)
where there are approximately 4.3 clauses per variable.

In the light of previous results, and given that Maturana et al. (2009) have asserted
that “it is well-known that EAs do not perform well on MAX-SAT without using spe-
cialized operators,” a simplified version of the SAW algorithm (Eiben and van Hemert,
1999) was implemented for the MAX-SAT problems. Each constraint/clause is initially
given a weight of 4-1, and the fitness of a given solution is the sum of the weights of the
constraints it satisfies, normalised by the current sum of all weights. In every genera-
tion, the current best solution is analysed and a value of +1 is added to the weight of
each constraint which is not satisfied by that solution, which thus focusses the search
toward those clauses.
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5.2 Algorithms

In previous papers, we have repeatedly shown that a vanilla GA is always outperformed
by 3GMAs, and that a simple IGMA (SMA) using a bit-flipping hill-climber is always
outperformed except on certain MAX-SAT problems (e.g., Smith, 2007a, 2010). With the
addition of the SAW mechanism to MAX-SAT, the simple MA is now outperformed on
those problems. Therefore, especially in view of the fact that the success rates of the GA
and SMA are almost always zero on the longer problems used here, the results for these
algorithms are omitted for the sake of clarity.

For the population of candidate solutions, a generational genetic algorithm was
used, with no elitism, and deterministic binary tournaments to implement Select_One_
Genome_Parent(). The population size p, was 400. One point crossover was applied
with probability 0.7, followed by self-adaptive mutation using the scheme outlined in
Smith (2001, 2003b), and Stone and Smith (2002). Rather than attempting to adapt a
continuous mutation rate parameter, each solution encodes a choice from a discrete set
of mutation rates, and this mutation choice gene is itself subject to mutation with a
probability 0.01. These choices were taken as standard, and no attempt was made to
tune them to individual problems.

The 2GMA was instantiated using five static memes and the adaptive operator
pursuit mechanism described in Thierens (2007). In light of the problems chosen above,
five greedy search operators were implemented. Using the notation above, with I
denoting invert, these were {# — I} with depth one, or to local optimality, {## — IT7},
{#HH# — 111}, and {#HEHEEHE — 11111111}, all with depth one.

P(m), the probability of selecting meme m to be used in a genome-meme pairing,
is initialised to 0.2. The improvement observed in the pairing is recorded. At the end of
each generation of the GA, the best performing meme m* is noted, and for each meme
m, P(m) is updated according to:

P(m)+,3(Pmax_P(m))5 m=m*

P(m) + B(Pmin — P(m)) : otherwise &)

P'(m) = {
using the suggested values Pmin = 0.1, Pynax = 0.6, and g = 0.8. To keep the memes
static, the probability of crossover or mutation was set to zero in the meme population.

To instantiate the third generational MA, Select_One_Meme_Parent() used deter-
ministic tournaments of size 5. No crossover was used in the meme population, so
memes were produced by copying selected parents and then applying mutation. The
pivot rule in all memes was fixed to be greedy. The mutation rate in the meme popu-
lation was set to be self-adaptive, as for the solution population. To this end, a single
gene in each meme genome P,,,, encoded for one of the values 1.0/RL x {0.001, 0.005,
0.01,0.05,0.1,0.2,1.0,2, MIN(0.25 x RL,5.0), MIN(0.25 x RL,10.0)} where RL is the
maximum allowed rule length (16). The global meme strategy adaptation rate P,,, takes
a value of 0.1.

During meme mutation, with probability P,,, an A'(0, 2) normal deviate is added
to the encoded rule length, which is then truncated to the range [0, 16]. An identical
process adapts the encoded meme depth with step size 1,000 and range [0, 25,000]. Next,
again with probability P,,, the value of P,,, is randomly reset. Finally, the condition
and action parts of the rules are subjected to allelewise mutation with probability P, .

For both 2GMAs and 3GMAs, the meme depth is taken to represent the total
number of solutions evaluated during local search, that is, taking into account the size
of the neighbourhood searched. The search was terminated when no improvement was
found, so that the depth represents a maximum value available rather than the absolute
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Table 1: Explanation of symbols used to describe algorithms in this paper. Note that
the term memotype is used analogously to genotype as a specific set of allele values
that may have several copies in a meme population. Note also that the sets of fitness
improvement include all the steps taken during a local search.

Symbol Algorithm described

Pom Locuswise probability of mutating condition and action parts of meme rules.
Py Componentwise probability of applying mutation to other elements of a meme.
RL Maximum length of rule in memes.
X1 Extreme-local strategy. Uses maximum observed fitness improvement

when applying an individual meme, that is, sampled locally in solution space.
Xg Extreme-global strategy. Uses maximum observed fitness improvement from all

applications of a memotype, that is, sampled globally across solution space.
Ml Mean-local strategy. Uses average observed fitness improvement

when applying an individual meme, that is, sampled locally in solution space.
Mg Mean-global strategy. Uses mean observed fitness improvement from all

applications of a memotype, that is, sampled globally across solution space.

value used. However, each neighbourhood is sampled fully, even if doing this slightly
exceeds the depth value. Hence, a depth of 1 means that one iteration of local search is
applied, but a depth of 1,000 could mean between 1 and 1,000 iterations, depending on
the length of the solution representation, the meme’s rule length, and the specificity of
its condition.

As well as the comparing memes according to the extreme (X) or mean (M) im-
provement they caused, a no-duplicates strategy was used to evaluate whether it was
possible to link meme actions to particular regions of solution space. In a local strategy
(Ml or Xl), each meme maintained its own fitness record, so different copies of the
same meme can have different fitnesses. Alternatively, in a global strategy (Mg or Xg),
although multiple copies of memes were allowed, a single record was maintained for
each meme genotype. To aid the reader, Table 1 specifies the meaning of the various
symbols used.

6 Comparative Results

6.1 Results for Second Generational Memetic Algorithms

Table 2 summarises the results obtained with the 2GMA using adaptive operator pursuit
based on either extreme or mean improvement to allocate the meme probabilities.
The lengths of the problem that were successfully tackled were less than the 3GMA
versions. As can be seen, in most cases, the extreme version is less effective (lower SR)
slower (larger AES), and less reliable (lower MBF). These results are confirmed by the
appropriate nonparametric tests with over 95% confidence.

6.2 Performance of Reward Schemes in 3G MAs

For those problem instances where at least one, but not all, algorithms located the global
optimum, Table 3 summarises the success rates achieved, the mean time taken to locate
the global optimum, and the mean best fitness observed. The mean best fitness achieved
and the number of evaluations at which this was done are also shown graphically in
Figure 1. Given the effectiveness of these algorithms, we do not present results from
short problem lengths where all algorithms performed equally well, but rather for
each problem focus on those challenging instance lengths where different patterns of

Evolutionary Computation ~ Volume 20, Number 2 177



J. E. Smith

Table 2: Comparison of search effectiveness (success rate), efficiency (AES), and reli-
ability (MBF) for different reward strategies with a 2GMA with five memes. For each

problem and metric, the best results are shown in bold.

SR AES (1,000s) MBF
Function length M X M X M X
HIFF 32 100 100 26.29 27.10 100 100
64 100 100 167.79 223.36 100 100
128 40 43 550.76 801.26 90.20 89.34
256 0 0 0.00 0.00 66.00 53.45
Royal road 64 100 100 282.30 284.86 100 100
96 97 99 532.31 588.73 99.73 99.91
128 60 40 772.76 899.24 96.42 95.2
160 5 1 906.62 998.44 88.20 84.85
212 0 0 0.00 0.00 72.64 67.76
Trap 40 100 100 87.47 120.71 100 100
80 100 100 339.26 532.71 100 100
120 91 24 671.70 897.57 99.76 98.14
160 13 0 844.13 0.00 97.47 91.76
200 0 0 0.00 0.00 94.17 86.16
MAX-SAT 50 43 69 3196.50 3572.36 99.53 99.80
100 18 15 2960.76 1482.64 99.1 99.1

Table 3: Comparison of search effectiveness (success rate), efficiency (AES), and relia-
bility (MBF) for different reward strategies on problems. Instances solved by all or no
algorithms omitted. 3GMAs with 400 memes, elitism in genome population, depth of
local search measured in evaluations. For each problem, the best values of the algorithm
are shown in bold for the three metrics.

Problem
length

Success rate

AES (1,000s)

MBF

Mg Ml Xg

X1

Mg

Ml Xg

X1

Mg Ml

Xg X1

HIFF 128
256
512

1024

64
96
128
160
120
160
200
400
600
800
1000
2000
50
100

Royal
road

Trap

MAX-
SAT

100 100 100

929 99
31 31
4 6
97 100
91 94
73 79
39 56
100 100

100
95 99
8§ 13
2 1
98 100
94 96
73 84
29 52
97 100

100
100
98
84
56
33
11
74
28

100
100
97
81
49
45
10
78
30

82
73
37
39
26
21
13
96
57

96
90
58
46
35
24
12
94
52

88.44
379.65
607.74
702.07
145.22
337.60
619.99
878.09

90.73
148.01
185.28
392.71
579.17
649.93
721.72
563.74

1958.24

88.59 121.31
403.02 585.15
67240 242.14
549.29 690.30
120.33 145.33
295.10 353.99
518.61 598.19
763.80 878.85

91.07 362.55

117.09 100

536.54
492.66
562.32
121.90
302.31
515.57
795.60

227.24 100

100
99.89 99.83
83.44 84.07
66.07 67.27
99.61 100
99.19 99.46
97.87 98.35
95.85 97.15
100

100

100
99.1  99.83
73.03 77.09
61.76  62.30
99.74 100
99.64 99.43
97.51 98.88
94.35 97.00
99.96 100

130.37
195.63
393.42
580.22
593.11
697.17
618.81
1740.9

362.40
408.65
342.87
583.40
614.61
672.05
800.12
915.4

317.69 100

409.56 100

415.64 99.97
586.26 99.81
688.16 99.41
631.44 99.48
720.87 90.07
11342 998

4334.5 4001.8 61239 4521.7 99.63

100

100
99.94
99.84
99.21
98.58
89.84
99.85
99.64

99.65 99.92
99.35 99.75
97.33 98.55
96.46 97.89
9498 96.34
94.46 94.30
91.25 91.06
99.98 99.90
99.87 99.85
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Figure 1: Comparison of mean best fitness (top) and when observed (divided by 10,000;
bottom) for different reward functions. Bars represent mean values with error bars at
95% confidence intervals.

behaviour begin to emerge. As is discussed later, every instance of the OneMax function
was solved in the first generation by all algorithms.

In order to examine the sensitivity of the results to different parameter settings,
further experiments were run with different population sizes, different selection meth-
ods (including with elitism not present in the genome population), with various fixed
mutation rates for the genome and condition/action parts of memes, and with different
meme strategy adaptation rates. In every case, the patterns of results matched those
presented here, so for the sake of clarity, those results are omitted but will be available
with the algorithm code from the author’s website.?

Pooling the results and testing for significant differences between results yields the
following.

3ht‘rp: //www.bituwe.ac.uk/7j4-smith/ COMA
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® All schemes are equally effective at locating global optima: there is no difference
between the success rates for different reward schemes.

® The reward schemes based on mean fitness find higher quality solutions than
those based on extreme fitness.

e The reward schemes based on mean fitness find their best solutions faster than
those based on extreme fitness.

® Thereward schemes based on local fitness find higher quality solutions than those
based on global fitness, and the time taken is not significantly different.

® Looking at the combination of reward type and locality, the best solutions found
by Ml are of significantly higher quality, and are found significantly faster, than
those found by Xl or Xg.

® Mg lies between MI and the two global schemes for quality and speed. The
differences between the two mean schemes are not significant. The differences are
significant for speed but not quality between Mg and Xl and are significant for
both between Mg and Xg.

e Xl finds significantly higher quality solutions than Xg, and the time taken is not
significantly different.

Analysing the results by individually functions, we start by noting that for the
OneMax function there are no differences in performance. With a population of 400
memes randomly initialised, there is an above 93% chance that the initial population
will contain a meme representing a simple bit-flipping hill-climber. For the sake of
fairness, the same sets of 100 seeds were used for all comparison runs, and a brief
inspection of the results confirmed that in every run the global optimum was located
within the first generation, regardless of problem length.

For the MAX-SAT problems, there was no difference in either the quality of the best
solution identified, or in the number of evaluations taken to identify it. This is despite
the apparently higher success rates for extreme-based rewards.

For the trap functions, Ml and Mg do not differ significantly for either mean best
fitness or speed, but on either measure, both are significantly better than X1 or Xg. X1
locates better solutions than Xg, and does so faster, but not significantly faster.

For the royal road functions, the only significant difference in the quality of the
solutions is that Ml finds better solutions than Xg. In terms of speed, the only significant
difference is that Ml is faster than Mg.

For the HIFF functions, there is no difference in the time to locate the best solutions
found, but there is a difference in the quality. Both Ml and Mg find better solutions than
Xg, and with 93% confidence, Ml finds better solutions than XI.

7 Discussion and Analysis

Having noted that both 2GMAs and 3GMAs gave better results with mean-based rather
than extreme-based reward schemes, we start by contrasting this with results obtained

elsewhere, then look for evidence of the suggested reasons in the patterns of evolving
meme usage (2GMA and 3GMA) and behaviour (3GMA).
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7.1 Analysis of Relationship to Other Algorithms and Results

Although many of the 2GMA schemes described in Section 2.1 use extreme-based
credit, there is little analysis of the effects of this as a design choice. Within adaptive
operator selection in EAs, proponents of extreme-value based credit assignment have
demonstrated it with various operator adaptation policies. For example, Fialho et al.
(2008) show results on OneMax that track the optimal choice of mutation operator,
although they do not compare their results against mean-value schemes. Maturana
et al. (2009) compare mean-based and extreme-based policies on MAX-SAT problems,
but using the more complex COMPASS assignment scheme, which also takes into
account the diversity of the offspring. Perhaps more pertinently, both of these papers
focus their attention on very low population sizes: (1« + 1) with u =1 and 3, respectively.
Later papers such as Fialho et al. (2010) performed a deeper analysis of extreme and
average-based credit assignment in conjunction with multi-armed bandits and adaptive
pursuit (Thierens, 2007) as methods for operator selection. Simulated results on artificial
problems showed that the extreme method was either risk-taking, or risk adverse,
depending on the operator selection scheme, whereas the mean reward based scheme
was unbiased in either setting. Tellingly, on a royal road function with a (100, 100) GA,
no statistically significant difference could be observed in between the behaviour of the
two approaches to credit assignment, or to a simultaneous scheme. Our hypothesis is
that when their scenarios show a difference, this is often because of the focus on tiny
populations, where a major factor is a loss of diversity and the possible need to escape
from either a local optimum or a plateau, hence the preference for risk-taking methods.

In contrast, our observations show that on both 2GMAs and 3GMAs there is strong
evidence against the use of extreme value based schemes. Rather than casting doubt
on the results for adaptive operator selection, this points to a fundamentally different
role played by memes as opposed to global search operators. Whereas the latter play a
vital role in maintaining diversity with the genome population, memes (at least in the
context of a memetic algorithm) play a role in intensifying search toward local optima.
In fact, in 2GMAs or 3GMAs, there is even a drive toward the subset of points which
are locally optimal for a number of different operators. As a consequence, most of the
improvement steps arising from a genome-meme pairing will be relatively small.

Thus, whereas large individual improvements arising from a chance mutation event
may signify escape from a local optimum, in the memetic context, it is far more likely
to signify that the genome involved in the pairing had a low initial fitness. Assigning a
high credit to that meme, and therefore increasing its usage in subsequent generations,
is unlikely to yield fitnesses in the genome population if the genome is only present in
low numbers (because of its relatively low fitness).

To carry this thought experiment further, it is not hard to imagine a meme that
enables a genome population to make the transition from a relatively low fitness region
(local optima, or plateau) to a higher region, but which does not consistently improve
genomes belonging to higher regions, or may even be deleterious to them on average.
This situation is analogous to well-known arguments about the diminishing optimal
mutation rates for OneMax. In this case, an extreme scheme will still give a high reward
to that meme as long as there are a few genomes present from the original regions, even
if other memes would be better used.

To examine whether there is evidence for this hypothesis, Figure 2 plots the max-
imum genome fitness and the relative probabilities of applying the five meme types
against evolutionary time in the 2GMA in typical runs for three problems. Looking at the
middle row (royal road) at around generation six, one meme is clearly associated with
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Figure 2: Evolution of meme behaviour for 2GMA separated by fitness function
(rows) and reward (column). Each scatter plot has generations for the x axis; y axes are
logarithmic.

an increase in the maximum fitness, but as that value plateaus around 10 generations,
the meme usage drops off rapidly, to be replaced by a more suitable meme, which causes
further fitness increases. Looking at the patterns for the Xl in the same time frame, there
is a brief increase in the usage of a meme which is presumably associated with such
a low fitness solution, since the maximum fitness actually decreases in that period. A
similar pattern can be seen around generation seven in the bottom row (HIFF function).

Figure 3 plots the evolution of the maximum genome fitness, maximum and mean
meme fitness, and mean number of evaluations used per local search for typical runs of
the 3GMA. Again, exactly the same phenomenon can be seen for the royal road, where
following a transition, the X1 scheme shows a prolonged increase in maximum meme
fitness, at a period where the genome fitness is stagnating or even falling. In contrast,
the peak in meme fitnesses associated with the MI algorithm is far shorter, and the
genome fitness continues to climb.

7.2 Analysis of Evolving Meme Behaviour

Figure 3 shows examples of the fitness patterns and the evolution of the global-local
search trade-off (controlled by the depth part of the memes) on the different functions
with Ml and XI rewards. A single representative run is shown, as although similar
patterns of behaviour were observed in all the runs inspected, variability in when those
occurred tends to obscure the patterns when averages from several runs were plotted.
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Figure 3: Evolution of different aspects of global-local search balance separated by
fitness function (rows) and reward (column). Problem lengths are 1,000 (trap), 256
(royal road), and 512 (HIFF). Each scatter plot has generations for the x axis; y axes are
logarithmic.

Figure 4 shows the different patterns of local search behaviour exhibited by the memes
in the same runs. To aid viewing in the same scale on the y axis, the mean meme lengths
are multiplied by 10 and the mean numbers of evaluations used per local search are
divided by 10.

From Figure 4, the following patterns are apparent:

® For the trap function, the performance of both the algorithms uses a large propor-
tion of local search: the 1,000 bit problem is solved within three generations of the
GA. Within that time, memes in the Xl population rapidly evolve to length four,
and the conditions become less specific than the 67% starting ratio.

® For the royal road functions, the pattern is quite different. In the Ml population,
we can see the rise and fall of a meme with high unitation, low specificity, and
length 8, that is, a magic bullet of ##HH#H#H#H#H# — 11111111. However, this meme
will of course match in almost every part of the genome, but only definitely bring
improvement when aligned with block borders. As noted above, this meme then
disappears—the mean meme length drops and the ratio of local search to global
search stays relatively low. In other words, given the ability of the EA crossover
operator to bring together coadapted blocks of genes, the meme population adapts
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Figure 4: Evolution of meme behaviour separated by fitness function (rows) and re-
ward (column). Problem lengths are 1,000 (trap), 256 (royal road), and 512 (HIFF). Each
scatter plot has generations for the x axis; y axes are logarithmic.

to take on a role more akin to a systematic repair mechanism. By contrast, in the X1
meme population, the killer meme is never discovered; rather, short nonspecific
memes take over and consume more of the evaluation budget, before uncovering
the global optimum.

¢ On the HIFF function, the MI algorithm clearly settles on short, nonspecific, low
unitation memes which favour the all-zeroes solution within around six genera-
tions. The XI population maintains a unitation of around 30% and consumes more
evaluations per local search before improvements are found.

It must be stressed that these are results from single runs—albeit randomly selected.
However, the different patterns of behaviour exhibited by the memes evolved under
the two reward schemes support the hypothesis that selecting memes on the basis of the
mean improvement they cause means they can be more closely coupled to the current
genome population. This enables a greater synergy between the global search provided
by the evolutionary algorithm and the local improvement caused by the memes.

8 Conclusions

This paper set out to answer two important questions for 2GMAs and 3GMAs: is basing
the reward on the extreme improvement observed from a meme preferable to the mean
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improvement? And, should the reward be estimated via global, as opposed to local,
sampling?

The results strongly support a negative answer to both questions, in contrast to
much accepted practice. We propose that this arises from the very different roles of
the genetic operators in global (evolutionary) search and local improvement operators
represented by memes, and that using extreme rewards, especially when amortised over
the global search space, can cause the two aspects of search to become rather decoupled.
A close examination of the evolving patterns of meme usage in a 2GMAs, and of meme
behaviour in a 3GMA, supports this view, and permits a positive answer to a third
question: for 3GMAs, do simple coevolutionary models provide enough information to
adapt the local-global search trade-off via the encoded depth of local search?

The use of the COMA framework to instantiate two very different types of AMA
with very different methods for allocating the probabilities of using memes, but yield-
ing the same patterns of results, supports our belief that these results have generic
importance for the design of AMAs in general.
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