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Abstract: With the increasingly digital nature of biomedical data and as the complexity of 

analyses in medical research increases, the need for accurate information capture, traceability 

and accessibility has become crucial to medical researchers in the pursuance of their research 

goals. Grid- or Cloud-based technologies, often based on so-called Service Oriented 

Architectures (SOA), are emerging as potential solutions for managing and collaborating 

distributed resources in the medical domain. Few examples exist, however, of successful 

implementations of Grid-enabled medical systems that provide the traceability or provenance of 

research data needed to facilitate complex analyses and even fewer, if any, have been deployed 

for evaluation in practice. Over the past decade, we have been working with mammographers, 

paediatricians and neuroscientists in three generations of projects to provide the data 

management and provenance services now required for 21
st
 century medical research. This 

paper proposes a software solution that provides the foundation for such support. It introduces 

the use of the CRISTAL software to provide provenance management as one of a number of 

services delivered on a SOA, deployed to manage neuroimaging projects that have been 

studying biomarkers in the identification of the onset of Alzheimer’s disease. In the neuGRID 

project a provenance service has been designed and implemented that is intended to capture, 

store, retrieve and reconstruct the workflow information needed to facilitate users in conducting 

neuroimaging analyses. The software enables neuroscientists to track the evolution of 

workflows (or pipelines) and datasets. It tracks the outcomes of various analyses and provides 

provenance traceability throughout the lifecycle of their studies. The paper also comments on 

the suitability of such an ‘analysis service’ in the wider context of medical research and reflects 

on its application in other forms of medical research. 

 



1. Introduction and Background 

The past decade has witnessed orders of magnitude increases in computing power and data 

storage capacity, giving birth to new applications that can handle increasingly complex data in 

large volumes. Similar increases in network speed and availability pave the way for applications 

distributed over the web, carrying the potential for better resource utilisation and on-demand 

resource sharing for bringing meaningful insights from the volumes of data. Medical 

informatics is one of the areas in which these technological advances could bring significant 

benefit both for scientists’ research study and clinicians’ everyday work. With the arrival of the 

deluge of data and information that has resulted from the advances in the medical domain, 

medical research is faced with increasing problems of data analysis and particularly of data 

traceability or provenance in the analysis of those data. 

Over the past two decades, Grid Computing has emerged as a powerful computing paradigm to 

support large-scale experiments in medical and other scientific domains. It is defined as the 

"flexible, secure, coordinated resource sharing among dynamic collections of individuals, 

institutions and resources" [1]. The Grid and latterly the Cloud [2] have provided the 

infrastructures and platforms to address the research challenges in medical research (as 

examples see [3], [4], and [5]). Emphasis has now shifted from the development of such 

infrastructures, to the provision of services through which medical researchers can access data 

and algorithms to facilitate their programmes of research. For example, consider computational 

neuroimaging tools which require huge computing resources and the increasing availability of 

large image datasets will further enhance this need. Many efforts have been directed at creating 

brain image repositories including the recent US Alzheimer Disease Neuroimaging Initiative 

(ADNI) [6]. Geographically distributed computing infrastructures have been launched with the 

goal of fostering shared resources and intensive data analysis to advance knowledge of 

neurodegenerative diseases. Numerous projects, such as NeuroLOG [7] and Neurogrid [8], have 



been undertaken to focus on providing Grid infrastructures that support neuroimaging 

applications.  

The study of Alzheimer’s disease was chosen as the motivational application domain for our 

work because it was an early adopter of imaging-based research techniques. The search for 

imaging biomarkers is a complex task and has led to the use of resource intensive image 

processing algorithms which measure physical brain features, such as the thickness of the cortex 

region. Until recently such analyses could be carried out locally on a reasonably high 

specification desktop or a local cluster. The growth in both the number of images becoming 

available via international studies such ADNI and the increasing resolution of scans will make 

this local approach unsustainable in the near future. Many research groups cannot create large-

scale computing infrastructures locally because of the cost, space and maintenance issues that 

are associated with such facilities. neuGRID [9] was an effort which targeted these limitations 

and sought to improve on existing fledgling neuroimaging based Grid infrastructures.  

The neuGRID project was undertaken to provide a European infrastructure and a set of platform 

services that were designed to support and enhance research, necessary for the analysis of 

neuro-degenerative diseases. neuGRID was an EC-funded scheme, arising from the needs of the 

Alzheimer’s disease  imaging community, which allowed the collection and archiving of large 

amounts of imaging data paired with services, Grid-based algorithms and sufficiently powered 

computational resources. It is being followed up by the N4U (neuGRID for You [10]) project 

which will provide user-facing services, including provenance and querying services, to enable 

neuroimaging analyses to be performed using the data stored in the neuGRID infrastructure. 

The intended benefit of these projects is to enable, ultimately, the faster discovery of new 

disease markers that will be valuable for earlier diagnosis and development of innovative drugs.  

The traceability (or provenance) of data is essential in carrying out meaningful analyses of large 

scale neuroimaging datasets. Provenance typically means the history, ownership and usage of 

data in some domain of interest. In both the neuGRID and N4U projects the vital need for data 

provenance has been identified by the end-user research community. We have addressed this 



through the provision of a Provenance Service whose description is the main contribution of this 

article. 

In this paper we firstly outline the infrastructures that support service-based neuroimaging 

analysis. Suitable architectures for supporting neuroscience analysis are considered and the 

infrastructure adopted in the neuGRID and N4U projects is described. We then investigate the 

needs for data traceability that emerges in the specification and execution of (stages in) 

neuroimaging analysis pipelines and in the definition and refinement of data samples used in 

studies of Alzheimer’s disease; this section also introduces the neuGRID/N4U Provenance 

Service.  The next section describes the use of a system called CRISTAL, as the basis of the 

provenance service. The use of CRISTAL is evaluated as a practical use case in the penultimate 

section of the paper and we draw lessons on its use. The paper concludes with discussion of 

future research including how a provenance repository could act as a knowledge resource for 

providing guided assistance to clinical researchers in biomedical analyses. 

2. Infrastructure and Architecture for Neuroscience Analyses 

The design philosophy that underpins both neuGRID and N4U is one that embodies the 

principles of reuse, flexibility and expandability. A layered and service-oriented approach has 

been followed in order to deliver against this philosophy. This approach enables a separation of 

concerns between the details of the application services (brain imaging) and the Grid 

deployment infrastructure. Different services have been delivered to satisfy the specific 

requirements of neuroscientists but have been designed and implemented to be flexible in nature 

and reusable in application. As shown in Figure 1, a set of generic services ‘glues’ a wide range 

of user applications to available Grid platforms, resulting in a system that addresses specific 

applications but retains a large degree of underlying generality, thus being able to cope with the 

still rapidly changing Grid environment.  

There is general consensus that Service Oriented Architectures [11] provide a suitable basis for 

supporting Grid or Cloud-based services required by the community of researchers. In 



computing, a service-oriented architecture (SOA) represents a method in which a loose coupling 

of functions between operating systems, programming languages and applications can be 

achieved; a SOA separates functions into distinct services [12]. The MammoGrid project 

proposed perhaps the first healthcare example of a Grid-based service-oriented architecture [13]. 

Its philosophy was to provide a set of generic services that were independent both of the front-

end clinician-facing software and of the back-end Grid-facing software. A three-layer service 

architecture was proposed and implemented where the clinician was isolated from the Grid.  

The aim of the neuGRID project was to provide a user-friendly platform and a set of generalised 

services to enable the European neuroscience community in carrying out research that is 

necessary for the study of degenerative brain diseases. neuGRID is an example of an 

infrastructure designed to provide researchers with a shared set of facilities through which they 

can carry out their research. At the heart of the platform is a distributed computation 

environment that is designed to efficiently handle the running of complex image processing 

pipelines (or workflows) such as the CIVET algorithm [14], which enables longitudinal 

measurement of the thinning of the brain cortex. It is not enough on its own however, to provide 

support for neuroimaging analysis, since users require more than simple processing power. 

They need to be able to access a large distributed library of data and to search for a group of 

images with which they will work. A significant proportion of clinical research involves the 

development of new workflows and image analysis techniques. The ability to edit existing, and 

to construct new workflows using established tools is therefore crucial. Researchers need to be 

able to examine each stage in the processing of an analysis workflow in order to confirm that it 

is accurate. neuGRID has followed the MammoGrid philosophy in developing a platform based 

on a SOA [15] in order to enhance its flexibility and interoperability and to promote re-

usability, potentially across other medical applications. This architecture (as shown in Figure 1) 

allows neuGRID, and now N4U, to be implemented in such a way that its users do not require 

any advanced Grid know-how. This will be a great benefit since it has been shown that users 



often find it difficult to cope with the inherent complexities of Grid infrastructures, including 

setting, configuring and maintaining the infrastructure. Performing these tasks requires in-depth 

technical know-how that most neuroscientists usually do not possess.  
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Figure 1: Layered Services Architecture in neuGRID 

By abstracting Grid middleware specific considerations and customisations from clinical 

research applications, the neuGRID generic services provide functionality aimed at medical 

applications. Lower-level services hide the peculiarities of any specific Grid technology from 

the upper service layers thereby providing application independence and enabling the selection 

of ‘fit-for-purpose’ infrastructures. The generic services glue a wide-range of user applications 

to the available Grid platforms creating a foundation of cross-community and cross-platform 

services. The generic medical services are not tied to a particular application or Grid 

middleware; they could be used in any application domain and can be deployed potentially on 

any Grid infrastructure. These services are designed in such a way that a variety of applications 

and Grid middleware can be supported.   



3. Data Traceability and the neuGRID Provenance Service 

In clinical research environments analyses or tasks can be expressed in the form of workflows 

(elsewhere called pipelines). A scientific workflow is a step-wise formal specification of a 

scientific process; an example of a workflow is one which represents, streamlines, and 

automates the steps from dataset selection and integration, computation and analysis, to final 

data product presentation and visualization. A workflow management system supports the 

specification, execution, re-run, and monitoring of scientific processes. As a consequence of the 

complexity of scientific (or biomedical) workflows, researchers require a means of tracking the 

execution of specified workflows to ensure that important analyses are accurately (and 

reproducibly) followed. Currently this is carried out manually and can often be error-prone. 

Errors may include, amongst others, incorrect workflow specifications, inappropriate links 

between pipeline components or execution failures because of the dynamic nature of the 

resources. A real challenge in this scenario is tracking the faults as and when they occur, due to 

the absence of a data and information tracking mechanism during the workflow specification, 

distribution and execution. This may in turn lead to a loss of user control or repetition of errors 

during subsequent analyses. Users may be prevented from being able to:  

i. Reconstruct a past workflow or parts of it to view the errors at the time of specification.  

ii. Validate a workflow specification against a reference specification. 

iii. View the intermediary results produced in the execution of a workflow to determine 

that those results are valid. 

iv. Validate overall workflow execution results against a reference dataset.  

v. Query information of interest from past analyses.  

vi. Compare different analyses.  

vii. Search annotations associated with a pipeline or its components for future reference.  

The benefit of managing specified workflows over time is that they can be refined and evolved 

by users collaboratively and can ultimately reach a level of maturity and dependability (the so-



called ‘gold standard’). Users need to collect information about (versions of) workflow 

specifications that may have been gathered from multiple users together with whatever results 

or outcomes were generated and then to use this so-called 'provenance data' as the drivers for 

improved decision making. This provenance data may, thereby over time, become a valued 

source of acquired knowledge as the nature of the analyses evolve; the provenance data store 

will essentially become a knowledge base for researchers. In future users must be able to invoke 

services to automatically monitor and analyse provenance databases to return statistical results 

that match some criteria as set by the end user. This should provide efficient and dependable 

problem solving functionality and decision support system for the researchers.  

In neuGRID a Provenance Service has been designed and implemented that is primarily 

intended to capture the information needed to populate a project-wide provenance database. As 

described below the service will support and enable the refinement of the workflows in the 

neuGRID project by capturing (as shown in Figure 2):  

a. Workflow specifications.  

b. Data or inputs supplied to each workflow task.  

c. Annotations added to the workflow and individual workflow task.  

d. Links and dependencies between workflow tasks.  

e. Execution errors generated during analysis.  

f. Output produced by the workflow and each workflow task. 

As shown in Figure 2, the provenance capture process starts from the Pipeline authoring step. 

Users can write their workflows and analyses in a number of authoring conventions. A Pipeline 

Service enables clients to perform various functions such as the submission of workflows, 

tracking progress and functions to monitor workflows. The user-facing component of the 

Pipeline Service supports numerous workflow-authoring environments, such as the LONI 

Pipeline and Kepler. These workflows are translated by the Pipeline Service translation 

component (step 3 in Figure 2) and forwarded to a planner (step 4) to optimise the workflow 



and eventually submit it to the neuGRID infrastructure for execution. The Pipeline Service 

supports multiple workflow specification formats; therefore unified format is required for 

processing workflows that have been authored in different environments. For this purpose an 

object-oriented workflow API has been built. The translation component implements an API 

which allows the translation of various workflow specification formats to a common format.  

Figure 2:  Provenance Service and Neuroimaging Analysis 

When a workflow is submitted to the Pipeline Service, at first an appropriate translator for the 

format is instantiated dynamically. The format specific translator translates the workflow into a 

common object-oriented workflow model. This model is then forwarded to the Pipeline Service 

planner for workflow optimisation to enable efficient enactment (step 5 in Figure 2).  The 

provenance service captures the workflow specification as well as execution provenance as 

shown in steps 7 and 8 in Figure 2. The executed workflows report the status update to the 

workflow enactment engine (step 7 in Figure 2) which is then passed on to the provenance 

service. The final results and execution traces retrieved from the Grid (step 9) are also stored in 

the provenance service to have a consolidated view of the specification, execution, monitoring 

and results provenance. A user can then use the querying interface (step 10) of the provenance 



service to browse the provenance information and may even use this information for workflow 

validation to find if the results are accurate or not. 

The neuGRID infrastructure supports interoperable, reusable, extensible and scalable services. 

The Provenance Service is one such service that traces, stores and provides access to analysis 

data for improved decision making. It is primarily intended to capture workflow specifications, 

final and intermediate datasets and meta-data produced during an analysis and information 

pertaining to the environment where the data was produced (compute node, architecture, etc.)  

The neuGRID Provenance Service allows users to query analysis information, to regenerate 

analysis workflows, to detect errors and unusual behaviour in past analyses and to validate 

analyses. It assists users by providing them with access to past executions or histories of their 

analyses. It also provides users with a means of capturing and maintaining workflow 

specifications and execution information in its provenance database. After the execution of a 

workflow all the information that was initially provided and that which was generated during an 

analysis is stored in the provenance database. The service thereby supports the continuous fine-

tuning and refinement of pipelines in the neuGRID project.  The provenance database can be 

queried by the user to verify results or improve and fine-tune pipelines and acts as a rich 

knowledge base of accumulated analysis steps and outcomes for users to consult. 

The neuGRID Provenance Service has adapted a system called CRISTAL [16] that has been 

developed by the authors to manage the construction of large-scale High-Energy Physics (HEP) 

detectors for the Large Hadron Collider (LHC) at CERN, Geneva, for the purposes of tracking 

neurological analyses of Alzheimer’s disease. The next section outlines how CRISTAL has 

been adapted to provide provenance tracking functionality for medical analysis. 

4.  CRISTAL as the Basis of a Provenance Service in neuGRID and N4U 

CRISTAL is a distributed data and workflow management system which uses a generic and 

extendable storage repository, a multi-layered architecture for its component abstraction and 



dynamic object modelling for the design of its objects and components. These techniques are 

critical in handling the complexity of data and workflow traceability in distributed systems and 

to provide the flexibility to adapt to the changing analysis scenarios typical of any research 

production system. CRISTAL has been based on a so-called description-driven approach in 

which all logic and data structures are ‘described’ by meta-data, which can be modified and 

versioned online as the description of the object, component, item or an application changes. A 

Description-Driven System (DDS) architecture, as advocated previously in [17] is an example 

of a reflective meta-layer architecture (as shown in Figure 3). 

DDSs make use of meta-objects to store diverse domain-specific system descriptions (such as 

items, processes, lifecycles, goals, agents and outcomes), which control and manage the 

lifecycles of instances or domain objects i.e. the essential objects of a particular domain. In 

neuroimaging these objects might be, for example, raw image datasets, pipelines, derived 

datasets or analysis outcomes etc. As objects, reified system descriptions of DDSs can be 

organised into libraries conforming with frameworks for modelling of languages in general, and 

to their adaptation for specific domains.           
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Figure 3: Model vs. Description in CRISTAL  



The meta-data along with the instantiated elements of data are stored in the database and the 

evolution of the design is tracked by versioning the changes in the meta-data over time. Thus 

DDSs make use of meta-objects to store domain-specific system descriptions that control and 

manage the lifecycles of domain objects. The separation of descriptions from their instances 

allows specification and management to evolve independently and asynchronously. This 

separation is essential in handling the complexity issues facing many web-based computing 

applications and facilitates interoperability, reusability and system evolution. Separating 

descriptions from their instantiation allows new versions of defined objects (and in turn their 

descriptions) to coexist with older versions. Neuroimaging is constantly developing new 

algorithms and workflows which may require variations to the provenance data that is collected. 

At the same time provenance data to be useful needs to remain consistent over time, to be 

traceable, queryable and easily accessible and scientists’ analyses need to be conducted on those 

data. CRISTAL handles all of this. The reader is directed to previous publications on DDS (i.e. 

[17] and [18]) for further background. CRISTAL [19] is essentially a provenance tracking 

system which has previously been used to track the construction of large-scale experiments e.g. 

the CMS project [20] at CERN. It is both a process modelling and provenance capture tool, 

which addresses the harmonisation of processes so that multiple potentially heterogeneous 

processes can be integrated and have their workflows tracked in the CRISTAL database. 

Using its facilities for description and dynamic modification in a generic and reusable manner, 

CRISTAL is able to support modifiable and reconfigurable workflows. It uses the description-

driven nature of the CRISTAL models [17] to act dynamically on process instances already 

running and can thus intervene in the actual process instances during execution. Figure 4 shows 

how the CRISTAL system captures and tracks workflow provenance. User interaction starts 

with the authoring of a pipeline, which the user wants to execute on datasets held on the Grid. 

The workflow specification is enriched by including provenance actors for provenance 

collection. In neuGRID the so-called Pipeline Service translates the workflow specification into 

a standard format and plans the workflow. Another service, called the Glueing Service, 



facilitates the linking (and importantly the isolation) of services such as the Pipeline Service and 

Provenance Service to/from the underlying enabling (Grid) infrastructure. The reader should 

consult [21] for more information on these services. 

 

Figure 4: The Provenance Service in neuGRID 

The planned workflow, as depicted in Figure 4, is forwarded to the CRISTAL enabled 

provenance service which then creates an internal representation of this workflow and stores the 

workflow specification into its schema. This schema has sufficient information to track the 

workflow during subsequent phases of the workflow execution. The workflow activity is 

represented as a directed acyclic graph; all associated dependencies, parameters, and 

environment details are represented in this graph. The schema also provides support to track the 

workflow evolution and the descriptions of derived workflows and its constituent parts are 

related to the original workflow activity. 

Once a workflow has been enacted in the Grid, the Provenance Service coordinates the retrieval 

of all final data outcomes as well as intermediate data that was produced during the lifetime of 

the workflow. CRISTAL populates the appropriate structures to enable provenance tracking. In 



the CRISTAL model, a workflow consists of a number of activities, these activities being 

associated to multiple events and each event is associated with an outcome. An activity event 

may denote that the activity has failed and its outcome may include associated error logs, while 

the outcome of a successful activity may be the data produced during the runtime of the job. The 

adopted model enables the pervasive tracking of the entire life-cycle of a neuroimaging 

workflow, from the pre-planned workflow to the final data outcomes. 

5. The neuGRID Provenance Service in Practice 

A prototype Provenance Service was deployed during the final stages of neuGRID and 

evaluated against the requirements from users. In order to thoroughly evaluate it a two pronged 

strategy was pursued. This involved functional testing via large-scale data challenges and a 

more user focused testing scheme which was based on a clinical researcher defined case study. 

The results of such evaluations are considered in detail in the next sections and conclusions are 

drawn regarding lessons learned and future directions for further work in this area. 

Since the completion of neuGRID the Provenance Service has been further refined in the N4U 

project to ensure that it satisfies the tracking as detailed in the neuroscience research 

community’s requirements [22]. It satisfied the need for independent analysis traceability via 

CRISTAL. This provided the ability for users to define, run and share the output of user 

analysis between neuroimaging researchers for the first time. The Provenance Service consisted 

of two layers; an API layer and the CRISTAL layer, as shown in Figure 5. The CRISTAL API 

layer implements the Web Service API that serves as entry point into the Provenance Service. It 

was implemented using Apache Axis 1.4 (http://ws.apache.org/axis/) and Tomcat 6.2.20 

(http://tomcat.apache.org/). This layer also consists of a so-called Translator component. The 

API allows clients to store workflow templates, create workflow instances and update workflow 

instance status. The Translator component is responsible for converting the workflow passed to 

the Provenance Service in a standard format into CRISTAL’s internal format. It employs a two-



pass translation mechanism. In the first pass, the workflow is mined for information about each 

activity such as TaskName, Executable, Priority etc. In the second pass, the CRISTAL 

workflow is constructed using information mined during the first pass.  

 

Figure 5: Provenance Service Architecture 

The CRISTAL layer is the tracking element in the Provenance Service. Once a workflow 

execution starts in the neuGRID infrastructure, a parallel workflow simulation is created within 

CRISTAL. This allows clients (typically the Pipeline Service) to send incremental updates to 

the Provenance Service. The virtual workflow within CRISTAL simulates the actual execution 

of the workflow on the grid infrastructure. Adapting CRISTAL for the Provenance Service 

involved creating the appropriate item descriptions and factories within CRISTAL. As shown in 

Figure 5, CRISTAL uses two databases; the ‘CRISTAL DB’ stores only the CRISTAL internal 

model and the ‘Provenance DB’ stores workflows’ provenance. Other neuGRID services (e.g. 

Querying Service) directly interact with the Provenance DB for the execution of users’ queries.  

6. Evaluation of the neuGRID Platform through International Data Challenges 

In order to test the functionality of neuGRID infrastructure thoroughly and to demonstrate the 

capability of neuGrid Services (including the Provenance and Pipeline Services), a number of 



data challenges to be conducted across international boundaries were devised. These challenges 

were designed to test each deployed service individually and to evaluate the neuGRID 

infrastructure as a whole. They were selected to test the major aspects of the platform including: 

a. Performance: that the infrastructure performs efficiently and as expected. 

b. Scalability: that the infrastructure scales up appropriately in relation to the size of the 

jobs submitted to it. 

c. Fault tolerance: that the infrastructure should be able to detect, report and recover from 

any errors that occur. 

d. Functionality: that the required functionality in order to successfully carry out and 

trace the Neuroimaging Analysis is available. 

In order to carry out the evaluation in a structured way, a group of three progressively more 

intensive data challenges were developed. The first challenge was designed to test the 

functionality of the underlying grid infrastructure. In this test, each of the individual services 

provided by gLite, the middleware used in neuGRID, were tested. This involved setting up a set 

of automated scripts that ran some standard tests of the services and reported any problems. The 

test validated the system functionality in that all the services were reported to work according to 

their specifications. 

Experiment duration on the Grid < 2 weeks 

Analysed data 
Patients 715 

MRI Scans 6,235 

Number of parallel cores 184 

Output data produced 1 TB 

Table 1: Second Data Challenge Statistics 

The second data challenge involved a real world analysis which was performed on the US-

ADNI dataset [6]. This challenge was designed to test the infrastructure as a whole via a 

medium-scale test. Table 1 shows some details about the configuration and results. The dataset 

used consisted of a total of 6,235 brain scans involving 715 patients. Each scan comprised a 10 



to 20 MB data file in MINC format. The entire dataset represented about 108 GB of data. The 

analysis consisted of running the CIVET pipeline [14] on the dataset and retrieving the results. 

The CIVET pipeline was converted into an automated workflow using the neuGRID Pipeline 

Service and then enacted on the underlying gLite infrastructure using the neuGRID Glueing 

Service (figure 2). The analysis steps were tracked, modelled and archived using the neuGRID 

Provenance Service. To run the test, two out of three sites (Fatebenefratelli (FBF) in Italy and 

Karolinska Institute (KI) in Sweden) of the neuGRID infrastructure were commissioned. They 

were set up with 64-bit worker nodes and 64-bit gridified versions of the CIVET pipeline. 

Between them, the two sites provided 184 processing cores and 5.3 TB of storage capacity. The 

sites were connected via the GEANT2 network, thus guaranteeing good network connectivity.  

Initial tests had shown that CIVET takes about seven hours to process a single scan and as 

output generates in volume about ten times the input data. Therefore, it was estimated that the 

test would take two weeks to run and produce an output of approximately 1 TB. During the first 

15 minutes, a service at the FBF site was identified which was misreporting because of an 

inherent bug in the version deployed. This service was successfully updated with the data 

challenge still running. Subsequently, after the test had been running for about 12 hours the FBF 

site disappeared from the grid due to a power failure. The Workload Management Service 

(WMS) that is responsible for managing the workload across the different sites detected this 

failure and rescheduled all the jobs from FBF to KI, causing the job queue at the KI site to 

overload. This was resolved by limiting the size of the job queue to 3000 jobs. After this the 

remainder of the test ran smoothly and all the jobs were completed successfully. The entire test 

took less than two weeks to complete, as was originally estimated. 

Experiment duration on the Grid ~3 weeks 

Analysed data 
Patients 800 

MRI Scans ~7,500 

Number of parallel cores ~1000 

Output data produced 2.2 TB 

Table 2: Third Data Challenge 



The third data challenge was similar to the second; however, it was more compute and data-

intensive. The purpose was to test the infrastructure under extreme conditions and to confirm its 

scalability. Table 2 shows the statistics for the third data challenge. As with the previous one, 

the US-ADNI dataset was chosen. However, as opposed to 6,235 scans in the second challenge, 

the third challenge involved analysing approximately 7,500 scans in DICOM format. The scans 

represented approximately 112 GB of data, with each scan being 10 to 20 MB in size. The 

challenge consisted of analysing these images using three popular pipelines used by 

neuroscientists i.e. CIVET [14], FREESURFER [23] and BRAINVISA [24]. Therefore, a total 

of 22,500 jobs were to be executed on the infrastructure. This was beyond the capacity of the 

three neuGRID sites to handle. Therefore, additional sites were added to the Grid for this 

challenge, made available by the European Grid Infrastructure (EGI). After the neuGRID 

infrastructure was reconfigured to include these sites, a total of approximately 1000 processing 

cores became available for this challenge. This reduced the estimated time of completion of the 

jobs to approximately three months.  

A significant feature of this challenge was that CIVET and BRAINVISA both require input data 

in the MINC format. However, as noted above, the data available for this challenge was in 

DICOM format. Therefore, it needed to be pre-processed in order to convert it to MINC format 

for use with CIVET and BRAINVISA The data challenge  finished execution in approximately 

three months and produced a total of 2.2 TB of data. The successful completion of this large-

scale evaluation confirmed that the infrastructure and integrated services were functioning 

correctly as was anticipated.  

7.  Evaluation of the neuGRID Provenance Service with End Users 

In order to evaluate the neuGRID Provenance Service practically with researchers, an end-to-

end use case scenario was developed in collaboration with end users. The community of end 

users included medically trained clinical researchers, statisticians, PhD students and imaging 

experts both from within the neuGRID project and externally. Figure 6 shows the use case 



which spans a complete analysis cycle in neuGRID from initial data collection, through analysis 

workflow execution to collaborative data analysis. This use case has been previously introduced 

briefly in [22] but is expanded here in order to illustrate the process of evaluation of the 

Provenance Service. By carrying out test cases which were based on this use case, the neuGRID 

platform has been thoroughly tested and evaluated by end users.  The early stages of the use 

case initialise the platform prior to an analysis being carried out. The first action in the use case, 

shown on the left in Figure 6 (the progression in time is from left to right), was to register 

images in the neuGRID store that have been collected from the hospital data acquisition systems 

or have been imported from other research projects.  

 

Figure 6:  An end-to-end example of the neuGRID Analysis Environment 

Existing data was put through a process that enforces quality control, formatting and ethical 

compliance (plus anonymisation when required). The data was then integrated with the 

neuGRID data model, which enabled other researchers to access it and carry out their research. 

As new data sets were acquired they were put through a local quality control step before passing 

through the system-wide quality control, formatting, ethical compliance and data model 

integration processes. The registered data was tracked by the Provenance Service which 



recorded its creation and stored the definitions of the datasets for subsequent tracking of their 

usage in analyses. 

When the data had been registered, the next step in the analysis process was to make the data 

browsable through automated querying tools. The user interacts with the system using the 

neuGRID data store, to search for and to identify an appropriately large set of images from a 

group of hospitals that match the required criteria. Once the data has been imported into the 

neuGRID system and users are able to access and query these data, they can carry out studies 

with their corresponding data analyses (as shown in Figure 6). The Provenance Service is made 

aware of the creation of analysis workflows so that their subsequent usage may be tracked. For 

example, a researcher may wish to run a comparative analysis using a study set of MRI scans 

stored in geographically distributed medical centres. The user would typically interact with the 

system to choose a study set of perhaps 3000 images (again this study is recorded in the 

provenance database), may select the CIVET [14] pipeline through which the analysis will take 

place and would start the analytical process. Users are not limited to using previously specified 

workflows and study samples; they can also construct new workflows. These workflows are 

also captured in the provenance database for later execution and monitoring on the Grid. 

It is important that results should be reproduced and reconstructed using their full set of 

Provenance information. It may also be necessary to validate and to view the original workflow 

that has been used to obtain the results. For example, a user may create a new workflow and run 

it on a test data set. At each stage in the execution of the workflow, the intermediary images or 

data would be stored by the Provenance Service and a full audit trail of the data will be kept. 

After results have been produced, the user can examine the provenance database to check that 

each stage of the analysis has been completed correctly. The raw results can then be exported 

into the user’s preferred analysis tool such as SPSS [25] and the whole process can be added to 

the researcher’s history for future reference (Figure 6). Without the mechanism to validate 



workflows, it would be difficult, to correct the process and generate accurate results. Once a 

workflow has been developed and verified, a user is able to share it with other researchers. 

Reflecting on the reasoning behind why certain user requirements were captured and described 

in the previous use case, can guide us in further evaluating the completed neuGRID 

infrastructure and help us to assess the degree to which CRISTAL addressed the needs of 

researchers in terms of traceability. Clinical researchers develop research hypotheses which are 

then evaluated by teams of statisticians, computer scientists and associated experts. The 

collective effort that is necessary makes traceability a key feature of the research process. There 

is always a fear that a small error or even misunderstanding in one part of a highly complex 

analysis can render the final results useless, thereby wasting a large amount of time, money and 

potentially embarrassing the research team if they need to retract published work. In order to 

avoid such problems researchers need to follow established methodologies.  

The standard scientific method requires that research results should be repeatable. This means 

that an independent team should be able to take an experiment that has been carried out 

elsewhere and repeat it in order to verify the results that were originally produced. In many 

scientific disciplines this is a relatively simple task, provided that methods are described with an 

appropriate level of detail. In the medical imaging domain however repeating experiments 

becomes much more complicated. Researchers would need to know details such as which 

images were used, their source, which pipelines were applied, which algorithms, algorithm 

versions, settings that were given and much more in order to be able to reproduce the analysis. 

The level of the traceability that the underlying CRISTAL provenance system provides in 

neuGRID can therefore be determined by comparing such requirements against what is actually 

captured by CRISTAL in terms of provenance data. 

While designing the integration of CRISTAL as the basis of the neuGRID Provenance Service 

with the Pipeline and Glueing Services, it was decided that CRISTAL would not be used to 

orchestrate every step in the execution of each workflow. This was because it was believed that 

the round-trip times to receive the result of each step executed in the workflow from the 



Pipeline Service, to extract the next step from the stored workflow specification and to delegate 

it to the Pipeline Service would increase the already high workflow execution times. In addition 

the gLite V2.1 framework [26] used to provide the Grid platform already supported DAG 

(Directed Acyclic Graph) based jobs that facilitated workflow execution on the Grid computing 

element itself. Furthermore it was believed that this will reduce the dependency of the low level 

services (such as workflow execution) on CRISTAL, allowing those services to run workflows 

without the Provenance Service if a particular deployment did not require it. In this instance 

CRISTAL simply tracked the workflow, replicating its state when it received notifications from 

the Pipeline Service about remote workflow events.  

During the experimentation and evaluation of neuGRID, it became clear that CRISTAL should 

in fact be used as the orchestrator for each and every workflow step. CRISTAL could then 

control the execution of the workflow by acting on any changes in state during the execution as 

notified by the Pipeline Service and could instruct it as to the next workflow step. In the absence 

of such adequate pushing of workflow state changes to the Pipeline Service, events could be 

missed and provenance lost. In practice, without such controlled orchestration, it proved 

impossible to replay the correct state changes on the CRISTAL workflow to keep it in-line with 

the workflow execution on the Grid. Moreover when the support for DAG jobs was removed 

from gLite (in its upgrade from V2.1 to V2.2) the ability of the Pipeline Service to run 

independent workflows on the Grid became unsupported. It would have required a major rewrite 

of the Pipeline Service itself in order to replace the functionality that was removed. If control of 

workflow orchestration had resided within CRISTAL, manifested through the Pipeline and 

Provenance services, then neither of these flaws would have made any difference to their 

operation.  

The resulting lesson learned from neuGRID was that provenance and execution control need to 

be tightly coupled to avoid any problems of infrastructure evolution later in the project lifecycle. 

Consequently, for a provenance system to be able to provide the level of traceability and control 



required to enable researchers to have full analysis tracking, the system must have all elements 

of analysis provenance data pushed to it. In other words the provenance system must be 

informed of all information generated through the execution of the analysis workflows. If 

fragments of the workflow need to be farmed out remotely for execution, then a robust 

mechanism of delivering the execution progress must be in place to make sure that the relevant 

provenance data is returned. 

The neuGRID project concentrated on the management, orchestration and infrastructure aspects 

of provenance tracking rather on the user-facing services to facilitate usability. Consequently 

users found the interface to the Provenance Service non-intuitive and with only infrequent 

access, difficult to use. In the N4U project we are addressing this by the provision of a so-called 

Analysis Service in which users can define their personalised analyses visualised through a 

Virtual Laboratory (VL) interface. In the context of provenance data management, the 

CRISTAL data model is currently being adapted for compliance with the emerging standard 

Open Provenance Model [27] in the Virtual Laboratory environment of N4U. In the near future 

the Analysis Service will develop and transform neuGRID into a VL in N4U, capable of 

meeting the requirements of the vast majority of scientists working in the field of imaging of 

neurodegenerative diseases, white matter diseases, and psychiatric diseases. The VL offers 

scientists access to a wide range of datasets, algorithm applications, access to computational 

resources, services, and provenance support (see [10]).  

CRISTAL has been adapted in the Provenance Service to track the provenance of neuroimaging 

analysis in neuGRID. The important question that immediately comes to mind is how well the 

CRISTAL model can cope with tracking detailed provenance in the medical domain in general. 

In the neuGRID context, pipelines (workflows) provide a means of capturing processes and 

their associated metadata, which is a relatively common format to specify and build analyses in 

almost all types of medical applications. The underlying CRISTAL structure is flexible, this 

flexibility allows CRISTAL to store all of the information that users require in terms of 

traceability. CRISTAL can therefore capture and link all of the provenance data that was 



requested by users during the requirements analysis. This was validated through the feedback of 

users during infrastructure testing where the provenance capture mechanism was demonstrated 

to them. All of the processes outlined in the neuroimaging example from neuGRID and N4U are 

common across the domain of (bio) medical research. The need to capture analysis 

specifications, both in terms of the data (e.g. images) and the workflows (or pipelines) to be run 

on those data are not specific to neuroimaging. Furthermore the requirement to collect 

provenance data as workflows are executed and to compile a history or audit of the analysis 

processes is also common practice especially with the need for repeatability and independent 

verification. Having worked with mammographers and paediatricians in the research domain it 

is clear that a general purpose Provenance Service, potentially delivered using CRISTAL, 

would be widely applicable and desirable to the community of (bio) medical researchers. This 

hypothesis will be tested in future applications of the neuGRID/N4U Provenance Service. 

8. Conclusions and Future Directions 

In this paper we have outlined the approach to provenance management that is being developed 

in the neuGRID and N4U projects. neuGRID has built the foundations for exploitation of Grids 

in the neuroscience domain through the construction of an adaptable and extensible platform 

providing customisable, generalised services. N4U is being executed to build the environment 

in which end-users can access that platform and services and, in particular, to take advantage of 

the Provenance service. The major benefit in neuroimaging for Alzheimer’s studies should 

ultimately be earlier diagnosis and faster development of new drugs, which will improve the 

quality of life of elderly people. The set of services has been designed and developed using the 

service oriented architecture paradigm. These services can be reusable both across Grid-based 

neurological data and later for wider application in medical analyses.  

We have shown that the neuGRID Provenance Service captures the workflow information 

needed to populate a project-wide provenance database. It tracks the origins of the data and their 

evolution between different stages of research analyses allowing users to query analysis 



information, to regenerate analysis workflows, to detect errors and unusual behaviour in past 

analyses and, finally, to validate analyses. The use of CRISTAL as the Provenance Service 

database for neuGRID has enabled neuroscientists to support their complex image analyses over 

time and to collaborate together in teams with fully versioned workflows and datasets.  

Ultimately one important N4U deliverable will be the Virtual Laboratory which will provide the 

environment for users to conduct their analyses on sets of images and associated clinical data 

derived from a collection of project-specific data. This will provide facilities for users to interact 

with the underlying set of N4U services. The VL will comprise a ‘Dashboard’ to present the 

underlying system, a set of integrated data resources, a set of services enabling access to the 

neuGRID infrastructure, and a user analysis workbench to define/configure pipelines and 

inspect analysis output. As the Dashboard is the first point of entry for the user to the underlying 

N4U services, the work area is the first point of experimentation that empowers the user to use 

the N4U services in an infrastructure. This Dashboard service presents the underlying system 

with a standard user-defined look and feel and which can handle role-specific (novice, regular, 

advanced user) access to the services. This will enable users to prototype their analyses by 

refining data selections and pipelines, by trying out simple tests and ultimately larger 

experiments and to visualize the results of those test and experiments. In this way we believe 

that CRISTAL could become an essential building block for future projects requiring data and 

analysis tracking with provenance management both in execution and design. 
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