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OAdrenomedullin (AM) is a novel vasodilatatory peptide which acts primarily through the calcitonin receptor-

like receptor (CLR) in combination with either receptor-activity-modifying-protein (RAMP) 2 or 3 (forming
receptors, AM1 and AM2 respectively). AM plays an important role during inflammation, with its expression
increasing following cytokine treatment, promoting macrophage action in situ and high expression by T cells
during hypoxic conditions. Examination of T cell AM receptor expression has previously been incomplete,
hence we here consider the presentation of AM receptor and their responsiveness to AM and glucocorticoids
(GC). AM receptor expression was examined by PCR and flow cytometry in primary human T cells, revealing
that RAMP2, 3 and CLR are physiologically expressed in unstimulated T cells, both intracellularly and on the
cell surface. PHA stimulation decreased receptor proteins, significantly so for CLR and RAMP3. Incubation
with AM elicited limited receptor alterations however, GC treatment (10−6 M; 24 h) markedly affected cell
surface expression, significantly increasing receptor components in unstimulated cells and significantly de-
creasing the same in stimulated T cells. Our findings indicate that human T cells utilize both AM1 and AM2

receptors, which are GC-sensitive in an activation-state dependent manner.
© 2012 Published by Elsevier B.V.
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C1. Introduction

Adrenomedullin (AM) is a novel vasodilatory peptide originally
isolated from human pheochromocytoma by Kitamura and his group
[9] that circulates in the plasma. Although AM is well known for its
cardiovascular effects, AM production has been found to be high in
the brain and the cerebral endothelia cells have been identified as a
major source [1]. Indeed, AM has subsequently been classified as a
neuropeptide [2,3], recognizing the peptide's influence within the
brain and its regulatory capacity at the blood–brain barrier [1].

AM effects are mediated through a G-protein coupled receptor,
calcitonin receptor-like receptor (CLR) [4], associated with receptor-
activity modifying protein (RAMP) 2 or 3. The CLR/RAMP2 receptor
or AM1, is characterized by approximately 100-fold greater affinity
for AM over other members of the peptide family [5], on the contrary
CLR/RAMP3, or AM2, appears to discriminate less between AM and re-
lated peptides. RAMPs have been shown to play an important role not
only in determining the ligand specificity of CLR, but also in mediating
translocation of CLR from the endoplasmic reticulum to the cell sur-
face [6,7]. Following AMbinding to the AM receptor, adenylate cyclase
protein kinase pathways are activated resulting in elevation of intra-
cellular cAMP [8,9]. However, alternative signaling events such as ele-
vated Ca2+ [9,10] and activation of endothelial NO synthase have been
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Adrenomedullin receptors on
demonstrated [11]. Although there have been no reports showing dif-
ferences in intracellular signaling via the two AM receptors, tissue dis-
tribution of RAMP2 and RAMP3 differs, as well as cell gene expression
under physiological and pathological conditions, suggesting a sepa-
rate role played by AM1 and AM2 [12].

Increases in plasma concentrations of AM are well documented in
association with inflammatory and infectious disease states. Indeed,
endothelial cells (EC) and vascular smooth muscle cells, as well as
macrophages, monocytes and neutrophils augment AM production
when exposed to IL-1, TNF-α and LPS [13]. Similarly, astrocytes,
which can secrete AM under normal conditions, were shown to in-
crease AM production after cytokine treatment (TNF-α, IL-1 and
INF-γ) [14]. All of the above sources will have likely contributed to
the elevation of circulating AM observed concomitant with the devel-
opment of neuroinflammatory lesions in a rat paradigm of multiple
sclerosis [15]. Anti-inflammatory properties have also been attributed
to this peptide: Wong et al. (2005) reported that AM markedly in-
creased IL-6 expression in fibroblasts, although this was in contrast
with Kubo et al. (1998), who reported a reduction in IL-6 production
by LPS-activated macrophages following AM treatment, indicating a
cell-dependent effect [16,17]. However, AM could clearly influence
other macrophage cytokine expression, down-regulating its own in-
ducer TNF-α, indicating a further anti-inflammatory effect during in-
flammation [18]. Importantly, AM has also shown its ability to reduce
inflammation level, in a variety of animal models: in experimental ar-
thritis where it successfully reduced both incidence and severity of
disease [19] and in two different models of sepsis by decreasing levels
of immuno-inflammatory mediators [20].
human T cells are glucocorticoid-sensitive, Int Immunopharmacol
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Table 1 t1:1

Primer characteristics: primer sequence, product size, and annealing temperature (T)
of the primers used to perform real‐time PCR.

t1:2
t1:3Gene Primer sequences (5′–3′) PCR product

(bp)
Annealing T
(°C)

t1:4AM Sense: GGCACACCAGATCTACCA
Antisense: CTTGTGGCTTAGAAGACA

150 59

t1:5RAMP2 Sense: CCAGATCCACTTTGCCAA
Antisense: CTGTCTTTACTCCTCCA

150 61

t1:6RAMP3 Sense: AGACAGGCATGTTGGAGA
Antisense: CAGTTGGTGAAACTCTCA

155 59

t1:7GAPDH Sense: AGGAGTGGGTGTCGCTGTTG
Antisense: TGGACCTGACCTGCCGTCTA

160 59–61

2 E. Liverani et al. / International Immunopharmacology xxx (2012) xxx–xxx
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Glucocorticoids (GC) are the best-known immunosuppressant,
exerting an important role during the inflammatory process [21]. In-
terestingly, an interaction between AM and GC has been proven in a
variety of cell types including cultured rat ventricular myocytes [22],
human vascular EC [23] and T98G human glioblastoma cells [24].
Treatment with the synthetic GC dexamethasone (Dex), increased
the secretion of AM in both vascular EC and glioblastoma cells in a
dose-dependent and time-dependent manner. Interestingly, a dose-
dependent GC-mediated up-regulation of AM concentration and ex-
pression was observed in the lung [25]. Also hormones have been
shown to influence AM and AM receptor levels such as for example
thyroid hormonewhich appears to directly up-regulate AMmRNA ex-
pression in rat EC and vascular smooth muscle cells [26]. However, no
previous findings have analyzed how GCs affect AM, AM1 and AM2 ex-
pression and hence AM-sensitivity in T cells upon stimulation.

Previous studies detected RAMP2 and CLRmRNA expression in the
Jurkat leukemia cell line and primary T cells [27], but no further inves-
tigations were conducted on RAMP3 or on these receptor components
at a protein level. In order to clarify AM's role during inflammation, the
purpose of our research has been to assess the protein expression of
AM receptor components in T cells. To accomplish this aim, expression
of AM receptor proteins RAMP2, RAMP3 and CLR was investigated in a
T cell line and human primary CD3+ T cells before and following acti-
vation. Furthermore, we assessed RAMP2, RAMP3 and CLR sensitivity
to AM and GC exposure. Our results underline the importance of AM
in the inflammatory process, suggesting that AM1 and AM2 expression
and functionality are closely related to the T cell activation state, as is
the influence exerted by GC's on T cell AM-sensitivity.

2. Materials and methods

2.1. Cell culture

Fresh PBMCs were prepared from heparinized blood of healthy
volunteers by Ficoll density gradient centrifugation [Axis-Shield PoC
AS] and CD14− PBMCs were isolated using a monocyte isolation kit
[Miltenyi Biotech] with magnetic separation. CD14− PBMC were main-
tained at 37 °C and 5% CO2 in RPMI 1640 media [Sigma-Aldrich], fully
supplemented with penicillin–streptomycin (0.8 mM) [Sigma-Aldrich],
Amphotericin B (0.03 μM) [Sigma-Aldrich] and glutamine (2 mM)
[Sigma-Aldrich]. For activation, the T cell fraction (1×106 cells/ml)
was incubatedwith 5 μg/ml Phytohemagglutinin (PHA) [Sigma-Aldrich]
for 48 h. The Jurkat T cell line was maintained in fully supplemented
RPMI media at 37 °C and 5% CO2.

2.2. Treatments

Cells were treated with human Adrenomedullin (AM — 10−6 M)
[Bachem] or Dexamethasone (Dex — 10−6 M) [Sigma-Aldrich] or AM/
Dex (10−6/10−7 M respectively) or AM plus AM antagonist (human
AM 22–52 [Bachem] 10−6/10−6 M respectively) in fully supplemented
media and incubated for 24 h. Control cells received an equivalent
amount of vehicle.

2.3. Flow cytometry analysis

Unstimulated and PHA-stimulated T cells were stained for T cell
surface marker CD3 plus either RAMP2, RAMP3 or CLR using anti-
bodies successfully applied previously [5,22]. Cells were firstly incu-
bated with anti-CD3 antibody directly conjugated with Phycoerythrin
(PE) [eBiosciences] and then fixed with 1% paraformaldehyde in PBS
with addition of 0.1% saponin [Sigma-Aldrich], if permeabilized. There-
after, cells were incubated with either primary antibody anti-RAMP2,
anti-RAMP3 or anti-CLR [1:100 dilution; Santa Cruz Biotech], followed
by a Fluorescein isothiocyanate (FITC)-conjugated rabbit anti-goat IgG
[1:50 dilution; DAKO]. Cells were acquired using a Becton Dickinson
Please cite this article as: Liverani E, et al, Adrenomedullin receptors on
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FACS Vantage cell sorter and analyzed with CELLquest software. Values
are expressed as geometric mean of fluorescence intensity (GMFI).

2.4. Measurement of cAMP levels

Activation of adenylate cyclase was assessed by detecting the levels
of cAMP using the direct cAMP enzyme immunoassay kit [Sigma-
Aldrich]. Briefly, cells were incubated at 37 °C in the presence or ab-
sence of AM, Dex or AM–Dex co-treatment in supplemented media
for 15 min and then lysed using 0.1 M HCl for 10 min, centrifuged at
600 g at room temperature, and the supernatant used directly in the
assay. All samples were acetylated with the acetylating reagent and
aliquoted into a 96-well plate, neutralizedwith the neutralizing reagent
and treated with cAMP conjugate and cAMP antibody. After incubating
at room temperature for 2 h, wells were washed three times, followed
by incubation with substrate for 1 h at room temperature. The reaction
was stopped, read at 405 nm and the measured optical density was
used to calculate the concentration of cAMP.

2.5. Calcium mobilization assay

Cells were incubated with 2 M Fure2-AM (Molecular Probes, Invi-
trogen) in assay buffer (13 mM Glucose, 10 mMHepes, 147 mM NaCl,
2 mM KCl, 1 mM MgCl2, 2 mM CaCl2, pH 7.3) supplemented with
pleuronic acid (1 M, Invitrogen) at 37 °C for 1 h in the dark. Subse-
quently, cells were washed and AM (10−6 M) and AM/AM antagonist
added (equal concentrations 10−6/10−6 M respectively, as previously
reported [1,23]). Ionomycin (1 M, Sigma-Aldrich) was used as a posi-
tive control. Mobilization of intracellular calcium was measured by
recording the ratio of fluorescence emission at 510 nm after sequen-
tial excitation at 340 and 380 nm using NOVOstar (BMG labtech,
Aylesbury) microplate reader. Results were expressed as a % of the
positive control response.

2.6. Real-time PCR amplification

Total RNA was isolated using Trizol [Invitrogen] and quantified by
optical density at 260 nm. All primers were designed using Gene Fisher
software package and synthesized by TAGN Ltd [Gateshead] except the
primer for the housekeeping gene GAPDH which was synthesized by
MWG-Biotech AG Oligo Production (Ebersberg) (Table 1). Primer pair
annealing temperatures had been optimized during a series of prelimi-
nary studies (Table 1). RT-PCRwas performed to obtain cDNA. The reac-
tion was set up in a total volume of 10 μl containing 1× buffer (50 mM
KCl, 10 M Tris–HCl pH 9 0.01% triton X-100), 25 mMMgCl2, 1 U RNasin
[Promega], 5 U MMLV [Promega], 0.5 mM dNTP [Promega], 0.5 g oligo
dT per μg RNA and “common” sequence (5 μg per 1 μg of RNA; 5′-
NNNNNTTTATT-3′) [TAGN]. Thermal parameters were 23 °C for 5 min,
42 °C for 1 h, 37 °C for 1 h, 99 °C for 5 min and 4 °C for 5 min.

Real-time PCRs were conducted using detection of iQ™ SYBR
Green supermix [BioRad] fluorescence on a BioRad iCycler real-time
PCR platform. Each real-time reaction contained primers (500 nM in
human T cells are glucocorticoid-sensitive, Int Immunopharmacol
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2.5 μl each) (Table 1), BioRad Supermix (6.5 μl) and 50 ng of cDNA
for a total volume of 13 μl. They were performed in Thermo-Fast
semi-skirted 96-well microplates [ABgene] capped with optical caps
[ABgene]. A single fluorescence measurement was taken at the end
of the 72 °C for 20 s segment (amplification and quantitation step)
and continuous fluorescence measurements were taken during the
annealing step (50 °C for 30 s) and melting step (95 °C for 30 s).
The amount of cDNA was calculated relative to the fluorescence in-
tensity of the amplified housekeeping gene GAPDH. Data were ana-
lyzed with the iCycler™ iQ, Optical System software [BioRad], by
comparing the threshold cycle (Ct), at which the reporter dye emis-
sion intensities rose above background noise. The real-time amplified
products were also analyzed by electrophoresis through a 2% Agarose
[Geneflow Limited], containing ethidium bromide (20 ng/ml) and
compared to 50 bp DNA marker [Invitrogen]. Gels were visualized
on a 650 nm ultraviolet transilluminator and images taken with Gel
Capture software (Sivetton Scientific).
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2.7. Statistics

Data was normally distributed, therefore statistical analysis was
carried out using Student's t-test, with p value less than or equal to
0.05 being taken as significant. All data are expressed as means+/−
standard error of the mean (SEM).
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3. Results

3.1. RAMP2 and RAMP3 expression in Jurkat leukemic cell line

In order to better understand the T cell's response to AM, expres-
sion of RAMP2 and RAMP3 were initially assessed in Jurkat leukemic
cells, using flow cytometry and real‐time PCR. Cells were analyzed in
permeabilized and unpermeabilized states, in order to discriminate
between cytosolic and membrane locations. Jurkat cells demonstrat-
ed a higher expression of RAMP3 than RAMP2 on the cell surface
(Fig. 1, p≤0.05), while an increase in RAMP3 expression was noted
intracellularly, although not significant. It is also worth noting that
RAMP2 expression on the cell surface was significantly lower than in-
tracellularly (Fig. 1, p≤0.05) although a similar profile of mRNA ex-
pression for RAMP2 (Ct: 31.2±0.6) and RAMP3 (Ct: 35.6±0.8) was
reported at a basal level, compared with the housekeeping gene
GAPDH (Ct: 20.5±0.8).
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Fig. 1. RAMP2 and RAMP3 protein and mRNA basal expression in Jurkat leukemia cells.
Immunofluorescence detection by flow cytometry; GMFI values show a significantly
higher membrane expression of RAMP3 compared to RAMP2. RAMP2 intracellular ex-
pression was significantly higher than its extracellular membrane level (n=3; *p≤0.05
compared to RAMP3 expression, p≤0.05 compared to cell surface levels). GMFI of the
secondary antibody control for unpermeabilised and permeabilised cells was respectively
18±2 and 37.5±.1.7.
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3.2. AM receptor component expression in primary human T cells

RAMP2, RAMP3 and CLR patterns of expression were assessed in
CD3+ human primary T cells following 48 h PHA stimulation, in com-
parison with unstimulated T cells. RAMP2, RAMP3 and CLR protein
expression were detected through flow cytometry both on the cell
surface and intracellularly above background levels (Fig. 2A). In
PHA-stimulated T cells, RAMP3 and CLR detection was significantly
lower on the cell surface compared with unstimulated cells (p≤0.05)
although no significant changes were noted in intracellular RAMP2,
RAMP3 and CLR after PHA stimulation. Real‐time PCR indicated that
RAMP2, RAMP3 and AM mRNA are expressed in both stimulated and
unstimulated cells (Fig. 2B), however, stimulation did not significantly
affect RAMPs or AM mRNA production.

3.3. AM receptor expression in human primary T cells following AM and
Dex exposure

Changes in T cell sensitivity to AM through receptor expression
was analyzed, following either AM or Dex exposure for 24 h (Fig. 3).
AM treatments (10−6 M) significantly decrease RAMP2 expression
on the cell surface in PHA-stimulated T cells (Fig. 3A, p≤0.05) while
intracellularly, a decrease in RAMP3 was observed in unstimulated
cells (p≤0.05). No differences were noted in CLR for any of the con-
ditions analyzed.

Dex exposure (10−6 M) affected the cell surface expression of all
AM receptor components analyzed showing opposite effects upon
PHA stimulation (Fig. 3B). Indeed, an increase in RAMP2, RAMP3
and CLR was observed in unstimulated T cells (p≤0.05), while con-
versely a decrease in all proteins was noted for treated stimulated T
cells (p≤0.05). Intracellularly, only RAMP3 expression was altered
by exposure to the GC, demonstrating an increase for stimulated cells.

3.4. AM stimulation of cAMP production and Calcium mobilization in
T cells

In order to gauge AM receptor functionality, a preliminary assess-
ment of cAMP production was conducted in response to AM
(10−6 M), Dex (10−6 M) or AM–Dex (both 10−6 M) exposure for
15 min in unstimulated and PHA-stimulated T cells. In unstimulated
T cells (Fig. 4A), Dex and AM–Dex co-treatments elicited cAMP out-
puts that were significantly lower than control (n=3, p≤0.05), but
not different to each other. Indeed AM (10−6 M) alone produced no
significant change from control cAMP. However, in stimulated T
cells AM administration elevated cAMP production above control
levels, signifying that stimulation alters AM signaling capabilities in
T cells (Fig. 4B) (n=3, p≤0.05). Both AM and Dex appeared to in-
crease cAMP production to a similar degree and no further augmenta-
tion was observed when co-administered.

Further to this, Ca2+ mobilization was measured following AM
(10−6 M) treatment alone and when co-administrated with its an-
tagonist, AM 22–52 (10−6 M) (Fig. 4C). Results are shown as a per-
centage of the values observed after Ionomycin (1 M) addition.
After AM exposure, Ca2+ release appeared to be significantly higher
than when AM and AM antagonist were added at the same time
(p≤0.05). Assessment of calcium mobilization determined that AM
(10−6 M) generated a large calcium response within both stimulated
and unstimulated T cells (Fig. 4C), which was greater in those PHA-
stimulated but not significantly so. Moreover, this calcium response
was significantly attenuated by co-administration of peptide antago-
nist AM 22–52 (p≤0.05).

4. Discussion

In order to pursue our aims, we firstly characterized all the AM re-
ceptor component expression in T cells, which was accomplished by
human T cells are glucocorticoid-sensitive, Int Immunopharmacol
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Fig. 2. AM receptor component expression in stimulated and unstimulated primary human T cells. (A) Immunofluorescence detection of AM receptor proteins using flow cytometry.
A significant decrease in CLR and RAMP3 surface expression followed 24 h PHA stimulation, while intracellular reductions in receptor components were not significant (n=4;
*p≤0.05 compared to unstimulated cells). GMFI of the secondary antibody control for unpermeabilized and permeabilized cells was respectively 73±7.1 and 119±10.1.
(B) Real‐time PCR studies indicated RAMP3 mRNA levels to be lower than RAMP2, AM and the housekeeping gene in T cells both before and following stimulation (n=3).
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the Jurkat T cell line and in primary human CD3+ T cells before and
after PHA stimulation under normoxic conditions. Our results suggest
a different distribution for AM receptors in Jurkat T cells with AM1

being primarily located intracellularly while AM2 is situated on the
cell membrane, as previously reported for astrocytes [28] and cere-
bral endothelial cells [1]. Although intracellular RAMP levels are not
significantly different, data suggest AM2 as the predominant AM re-
ceptor in Jurkat cells, with a tendency towards increased intracellular
expression, which may be biologically important. On the contrary, in
primary human T cells a differential expression for RAMP2 and 3 was
observed upon PHA stimulation of primary T cells with a reduction
being seen only on the cell surface. When mRNA investigation were
carried out, we could not detect any difference in RAMP mRNA levels
between PHA-stimulated and unstimulated cells, suggesting that re-
ceptor expression is regulated locally. This observed decrease in AM2

receptor indicates a decrease in AM-sensitivity that appears to distin-
guish stimulated T cell phenotype from their unstimulated couterpart.
Previous investigations on alternate cell systems have also clearly
shown differences in RAMPs and CLR expression depending on the
condition cells were exposed to [12]. For example, in calcified VSMC
all AM were up-regulated in calcified versus control VSMC [29], com-
pared to the remnant kidneys of rat with mass ablation where the ex-
pression of RAMP3 and CLR was lower than that of healthy kidneys
[30], while in an alternative model of renal failure [31] RAMP2 and
CLR were shown to be strongly up-regulated.

AM has a known ability to regulate its receptor components [26],
hence CLR, RAMP2 and RAMP3 production in primary human CD3+ T
Please cite this article as: Liverani E, et al, Adrenomedullin receptors on
(2012), doi:10.1016/j.intimp.2012.06.011
cells was investigated following 24 h treatment with AM. Considering
increased AM levels during inflammation [13,32] and hypoxia condi-
tions [17,27], a pathological concentration of 10−6 M was selected in
line with previous experiments on the blood–brain barrier [33] and ce-
rebral endothelia cells [1]. Our study revealed a modest activation-
dependent down-regulation of RAMP2 and RAMP3 following expo-
sure to AM, while RAMP3 altered intracellularly in unstimulated cells.
The relevance of these subtle RAMP2 and 3 changes in response to ele-
vated AM in the cellular environment requires investigation, however
altered sensitivity to AMmay assist cells in recognizing an inflammato-
ry environment [15,34] or contribute to a protective autocrine mecha-
nism [27,35]. Furthermore, the apparent association of certain RAMPs,
and hence receptors, with particular stimulation states is of interest,
as investigated in other cell types and conditions [12] such as up-
regulation of only RAMP3 was reported in rat lungs [36], while up-
regulation of CLR, RAMP2 and RAMP3 was detected in rat heart [37].

GCs have always played an active part in the physiological homeo-
static response to inflammation, being a fundamental component of
the recovery phase. Interestingly CLR, RAMP2 and RAMP3 were
down-regulated in PHA-stimulated cells following Dex treatment, in-
dicating that cells were rendered much less responsive to AM and
hence possible changes in their environment. On the other hand,
GCs could up-regulate both AM1 and AM2 in the non-stimulated cell
population, drastically increasing their AM-sensitivity. Therefore, GCs
seem to further polarize the AM receptor profile of the unstimulated
and stimulated T cell populations, whereby stimulation, and more so
GC-modulation of stimulated cells, reduces the availability of AM recep-
tors on the cell membrane. Such GC-sensitive AM receptor presentation
human T cells are glucocorticoid-sensitive, Int Immunopharmacol

http://dx.doi.org/10.1016/j.intimp.2012.06.011
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Fig. 3. Effect of AM and Dex treatment on RAMP2, RAMP3 and CLR expression. Human
primary T cells were PHA-stimulated for 48 h and then incubated for 24 h with either
10−6 M AM (A) or 10−6 M Dex (B). AM treatment decreased RAMP2 cell surface ex-
pression following stimulation and RAMP3 intracellular expression in unstimulated
cells (A) (n=4; *p≤0.05 compared to untreated). Dex affected AM receptor protein ex-
pression on the cellmembrane, dependent on stimulation-state (increase in unstimulated
cells, decrease in stimulated cells) (B). An increase in intracellular RAMP3 production was
also noted in stimulated cells (B) (n=4; *p≤0.05 compared to untreated).
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was observed in unstimulated and stimulated T cells, following AM (10−6 M) adminis-
tration, which was significantly decreased when AM (10−6 M) was co-administrated
with its antagonist (AM 22–52 — 10−6 M; n=3; p≤0.05).
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Ois in agreement with previous studies, as for example in osteoblastic

cells where RAMP2 and RAMP3 changes were reported following incu-
bation with Dex for 10 h [38]. Considering AM anti-inflammatory prop-
erties previously shown [19,20], it is surprising to notice that these anti-
suppressants would decrease T cell sensitivity to the peptide. However,
other work attributes both pro- and anti-inflammatory effects to AM
most likely based on the peptide's concentration [17], indicating that
AM also plays a role in regulating inflammation rather than only en-
hancing or suppressing it. Moreover, studies by Makino et al. (2003)
have clearly demonstrated AM's contribution to protect T cell ability
to perform under hypoxic conditions [27]. Therefore, by reducing the
available AM receptors in sensitized T cells, GCs may be acting to limit
this protective function. All considered, we believe that influencing
cell sensitivity to AM via receptor availability rather than its concentra-
tion could be a mechanism through which it is possible to regulate the
inflammatory process. Furthermore, decreasing sensitivity may help
to start the recovery phase, as GCs could do in this case. Hence a strong
relationship between T cell activation state and the GC-mediated
changes in AM receptor expression on the cell may point to an interest-
ing and novel anti-inflammatory action of GCs.
Please cite this article as: Liverani E, et al, Adrenomedullin receptors on
(2012), doi:10.1016/j.intimp.2012.06.011
AMhas been shown to exert its effect through two independent sig-
nal transduction pathways: cAMP accumulation after adenylate cyclase
activation [9] and Ca2+mobilization inducingAkt phosphorylation [39].
Our data showed for the first time that AM treatment could increase
cAMP cellular levels in PHA-stimulated versus unstimulated T cells, in
accordance with signaling mechanisms reported in endothelial cells
human T cells are glucocorticoid-sensitive, Int Immunopharmacol
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[10] and astrocytes [40]. Unstimulated T cells showed no elevation
above background cAMP levels after AM exposure despite appearing
to present higher amounts of receptor protein on the cell surface than
their stimulated counterparts. Therefore, we also investigated Ca2+mo-
bilization before and after PHA stimulation, observing that AM initiates
a strong Ca2+ response in both unstimulated and PHA-stimulated cells.
In light of these results, AM may operate a dual signaling capability in
activated T cells, presumably managed via the two receptors AM1 and
AM2, similar to that seen in bovine aortic endothelial cells [10] while
the peptide appears to act primarily through Ca2+ mobilization in the
unstimulated state despite apparently exhibiting both AM1 and AM2 re-
ceptors on the surface. These results suggest an intriguing relationship
between T cell activation state, the AM signaling pathways and the pat-
tern of AM receptor presentation.

In our study while Dex caused an increase in PHA-stimulated cells,
it decreased further the already low cAMP levels in unstimulated cells,
probably indicating apoptosis induction in stimulated cells (immuno-
suppressive activity) but not in their unstimulated counterparts. The
ability of Dex to increase cAMP cellular levels in stimulated T cells sup-
ports previous observations that indicate an increase in cAMP levels as
a mechanism through which Dex causes apoptosis in T cells, hence
how it exerts its immunosuppressive activity [41,42]. Furthermore,
co-treatment with AM and Dex did not augment increased cAMP
levels in stimulated T cells or reduced cAMP levels in unstimulated T
cells beyond that seen with individual treatments, suggesting either
a possible competition for signaling cascades between the twomedia-
tors or that the cAMP responses elicited by the single treatments are
already at peak levels and thus cannot be further increased.

In conclusion, our studies show key differences between stimulat-
ed and unstimulated T cells firstly in terms of their presentation of
cell surface AM receptor proteins and secondly regarding the signal-
ing functionality of those receptors and their responsiveness to ex-
ternal mediators. In particular, AM receptor presentation in T cells is
GC-sensitive, which is highly dependent on stimulation state. The im-
portance of the activation state-dependent sensitivity of the human T
cell to this peptide and how this links to its protective capabilities
under hypoxic conditions on the one hand and to the known anti-
inflammatory properties of AM on the other, will require further con-
sideration and provides an intriguing paradox to resolve.
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