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The standard description of Fermi acceleration, developing in a class of time-dependent billiards, is

given in terms of a diffusion process taking place in momentum space. Within this framework, the

evolution of the probability density function (PDF) of the magnitude of particle velocities as a function

of the number of collisions n is determined by the Fokker-Planck equation (FPE). In the literature, the

FPE is constructed by identifying the transport coefficients with the ensemble averages of the change

of the magnitude of particle velocity and its square in the course of one collision. Although this

treatment leads to the correct solution after a sufficiently large number of collisions have been reached,

the transient part of the evolution of the PDF is not described. Moreover, in the case of the Fermi-Ulam

model (FUM), if a standard simplification is employed, the solution of the FPE is even inconsistent

with the values of the transport coefficients used for its derivation. The goal of our work is to provide a

self-consistent methodology for the treatment of Fermi acceleration in time-dependent billiards. The

proposed approach obviates any assumptions for the continuity of the random process and the existence

of the limits formally defining the transport coefficients of the FPE. Specifically, we suggest, instead of

the calculation of ensemble averages, the derivation of the one-step transition probability function and

the use of the Chapman-Kolmogorov forward equation. This approach is generic and can be applied to

any time-dependent billiard for the treatment of Fermi-acceleration. As a first step, we apply this

methodology to the FUM, being the archetype of time-dependent billiards to exhibit Fermi

acceleration. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697399]

Fermi acceleration, which is the increase of the mean

energy of an ensemble of particles due to random colli-

sions off moving scatterers, is clearly one of the most inter-

esting physical mechanisms linked to time-dependent

billiards. Despite this fact, the standard approach in the

literature for its analytical treatment can at best describe

Fermi acceleration in the asymptotic time limit. Herein,

we propose a methodology, which describes the evolution

of Fermi acceleration at all times and, even more, obviates

any unclear or ad hoc assumptions, which can lead to

inconsistencies or unreliable results. We exemplify the

proposed approach in the prototype of billiards exhibiting

Fermi acceleration; The Fermi-Ulam model.

I. INTRODUCTION

More than 60 years ago, Fermi1 proposed an intuitive

mechanism for the explanation of the origin of the highly

energetic cosmic ray particles and ever since it has been a

subject of intense study. The mechanism consists in the

increase of the mean energy of particles as a result of random

collisions with moving scatterers. Soon after his seminal pa-

per, his co-worker Ulam introduced a simple mechanical

model for testing Fermi’s idea,2 known as the Fermi-Ulam

model (FUM), linking for the first time Fermi acceleration

with the study of time-dependent billiards.

Since the introduction of the FUM, the standard descrip-

tion of Fermi acceleration developing in a class of time-

dependent billiards is given in terms of a diffusion process

taking place in momentum space.3–5 Within this framework,

the evolution of the probability density function (PDF) of the

magnitude of particle velocities as a function of the number

of collisions n is determined by the Fokker-Planck equation

(FPE). In the literature, the FPE is constructed by identifying

the transport coefficients with the ensemble averages of the

change of the magnitude of particle velocity and its square in

the course of one collision.3–6 Although this treatment leads

to the correct solution after a sufficiently large number of

collisions have been reached, the transient part of the evolu-

tion of the PDF is not described. Moreover, in the case of the

FUM, if a standard simplification is employed—known as

the static wall approximation (SWA) or the simplified Fermi

Ulam Model (SFUM)—the solution of the FPE is even

inconsistent with the values of the transport coefficients used

for its derivation.7

The aim of the work presented is to provide a self-

consistent methodology for the derivation of the PDF of parti-

cle velocities for all times. The proposed approach obviates

any assumptions for the continuity of the random process and

the existence of the limits formally defining the transport

coefficients of the FPE. Specifically, we suggest, instead of

the calculation of ensemble averages, the derivation of the

one-step transition probability function (TPF) and the use of
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the Chapman-Kolmogorov (forward) equation (CKE). This

approach is generic and can be applied to any time-dependent

billiard for the treatment of Fermi-acceleration. As a first step,

we apply this methodology to the FUM, being the archetype

of time-dependent billiards to exhibit Fermi acceleration. In

this context, we show that the FPE reported in the literature5

describing the evolution of the PDF of the magnitude of parti-

cle velocities is not valid, and that the observed agreement for

n� 1 between the analytical and numerical results, in this

case, should be regarded as accidental, i.e., due to the validity

of the central limit theorem (CLT).

II. STATISTICAL DESCRIPTION OF FERMI
ACCELERATION

Fermi acceleration developing in a time-dependent bil-

liard can be described in terms of a stochastic process taking

place in the velocity space. Let W(v, z) denote the probability

of a particle being at the velocity z to perform a jump to ve-

locity v in the course of a single collision and qðv; njv0; n0Þ
the probability of a particle to possess velocity v after n colli-

sions given that at the n’th collision it had velocity v0. This

jump process can be described by the following equation:

qðv; njv0; n0Þ ¼
ð

dzqðz; n� 1jv0; n0ÞWðv; zÞ: (1)

Equation (1) is exact, on the condition that the process is

Markovian. From a physical point of view, this means that

the probability of a particle to experience a velocity jump

equal to Dv upon the nth collision depends only on the veloc-

ity it had at the previous step, i.e. at the nth-1 collision.

A. The Fokker-Planck approximation

The standard approach in the literature for the determi-

nation of the asymptotic behaviour of the PDF of particle

velocities, is the approximation of the jump process with a

diffusion process, described by the FPE.3–5 This approxima-

tion has also been used for the analytical treatment of Fermi

acceleration developing in higher-dimensional billiards, such

as the simplified periodic Lorentz gas,6 i.e., the oscillating

hard circular scatterers oscillate only in the velocity space.

An equation of the form of the FPE can be derived from

Eq. (1) as follows:8

If we introduce Dv � v� z, then the integrand in Eq. (1)

can be rewritten as,

qðv; njv0; n0Þ ¼
ð

dðDvÞqðv� Dv; n� 1jv0; n0Þ

�Wðv� Dvþ Dv; v� DvÞ: (2)

Expanding the distribution function qðv;Dv; v0; n0Þ and the

TPF Wðv; DvÞ in a Taylor series—known in the literature as

the Kramers-Moyal expansion8—yields,

qðv; njv0; n0Þ ¼
ð

dðDvÞ
X1
m¼0

ð�1Þm

m!
ðDvÞm

� @m

@vm
qðv; n� 1jv0; n0ÞWðvþ Dv; vÞ: (3)

Integrating now Eq. (3) over Dv we obtain,

qðv; njv0; n0Þ ¼
X1
m¼0

ð�1Þm

m!

@m

@vm
MmðvÞqðv; n� 1jv0; n0Þ; (4)

where MmðvÞ stands for the mth moment of the TPF, i.e.,

MmðvÞ ¼
ð
ðDvÞmWðvþ Dv; zÞdðDvÞ:

Therefore,

qðv; njv0; n0Þ � qðv; n� 1jv0; n0Þ

¼
X1
m¼1

ð�1Þm

m!

@m

@vm
MmðvÞqðv; njv0; n0Þ: (5)

By truncating the above series to the second order, and fur-

ther by approximating the discrete derivative

Dkqðv; njv0; n0Þ ¼ ½qðv; nþ kjv0; n0Þ � qðv; njv0; n0Þ�=k;

(k¼ 1) with the continuous derivative @qðv; njv0; n0Þ=@n, for

n� 1 one obtains an equation resembling the FPE.

@

@n
qðv; njv0; n0Þ ¼ � @

@v
½Bqðv; njv0; n0Þ�

þ 1

2

@2

@v2
½Dqðv; njv0; n0Þ�; (6)

where the coefficient B and D is the ensemble average of the

change of particle velocities and its square, respectively, in

one mapping period.

The approximations applied above for the construction

of the FPE are valid on the condition that only very small

jumps are probable and further that the solution qðv; njv0; n0Þ
varies slowly with v so that one can perform the expansion in

a Taylor series. More formally,9 we demand that there exists

a d > 0,

Wðzþ Dz; zÞ � 0; for jDzj > d (7a)

qðvþ Dv; njv0; n0Þ � qðv; njv0; n0Þ; for jDvj < d: (7b)

In the literature,5 the derivation of an FPE from Eq. (1) for

the statistical description of Fermi acceleration is carried out

on an ad hoc basis. As a consequence, as shown in the fol-

lowing, it has produced contradictory results. Moreover, by

construction, the description of Fermi acceleration with a con-

tinuous stochastic process, can at best describe the statistics

only for n� 1. Hence, a full description of Fermi accelera-

tion (FA) in a time-dependent billiard can only be given in the

context of a jump process and consequently by Eq. (1).

B. A complete description: The Chapman-Kolmogorov
equation

The study of the transient statistics can only be accom-

plished by means of the Chapman-Kolmogorov equation,

i.e., Eq. (1). Assuming that initially particle velocities are

distributed according to qðv; 0Þ ¼ dðv� zÞ, Eq. (1) can be

rewritten in respect with the one-step TPF. Wðv; v0Þ as,
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qðvn; njz; 0Þ ¼
ð

…

ð
Wðvn; vn�1Þ… Wðv1; zÞdv; (8)

where dv ¼ Pn�1
i¼1 dvi. The derivation of the one-step TPF

can be achieved by determining the PDF p(q) of the varia-

bles q � fxig appearing in the dynamical equation defining

the velocity of a particle after a collision with the moving

boundary of the time-dependent billiard, vn ¼ f ðvn�1; qÞ.
Then, the TPF is

Wðvn; vn�1Þ ¼
ð

pðqÞd½vn � f ðq; vn�1Þ�dq: (9)

If the resulting TPF is a function of the difference of veloc-

ities at successive steps Wðvn; vn�1Þ ¼ Wðvn � vn�1Þ, Eq. (8)

can be easily solved in the Fourier space. Specifically, if this

condition is met, then by taking the Fourier transform of Eq.

(8) we find,

F½~qðv; njz; 0Þ� ¼ ð2pÞ
n�1

2 e�ikzfF½WðvÞ�gn; (10)

where F ¼ 1=ð
ffiffiffiffiffiffi
2p
p
Þ
Ð1
�1 exp½�ikv� dv.

Moreover, in this case, an approximate solution can be

obtained directly in the velocity space, using the saddlepoint

approximation technique.10 Specifically, from Eq. (8), one

can derive the moment generating function

/ðt; nÞ ¼
ð1
�1

etxqðv; njz; 0Þdv

¼
ð1
�1

etvWðvÞdv

� �n

etz

(11)

of the velocity PDF. To find the saddlepoint t̂ðv; nÞ, we solve

the equation j0ðt; nÞ ¼ v, where jðt; nÞ ¼ logð/ðt; nÞÞ. Pro-

vided that j00ðt̂ðv; nÞÞ > 0, the PD\F is approximately,

qðv; njz; 0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pj00ðt̂ðv; nÞÞ

s

� exp½jðt̂ðv; nÞÞ � t̂ðv; nÞv� þ Oðn�3=2Þ: (12)

Equation (12) can always be employed in this context, since

the particle velocity after the nth collision can be viewed

as the sum of n identically and independently distributed

random numbers vn ¼
Pn

i¼1 Dvi þ v0. In this case, it has

been proven that j00ðt̂ðv; nÞÞ > 0.10,11 Finally, we note that

the approximation can be improved by renormalizing the

result, i.e.,
Ð

qðv; njz; 0Þdv ¼ 1.

In Sec. III, we implement the proposed methodology in

the prototype of time-dependent billiards exhibiting Fermi

acceleration; FUM.

III. FERMI ACCELERATION IN THE STOCHASTIC
SIMPLIFIED FUM

The Fermi-Ulam model, originally proposed for testing

the feasibility of gaining energy through scattering off moving

targets, i.e., Fermi acceleration, consists of one harmonically

oscillating and one fixed infinitely heavy hard wall and an en-

semble of non-interacting particles bouncing between them.

Ever since, many different versions of the original model

have been suggested and investigated, such as variants of the

FUM with dissipation,12–16 different deterministic or random

drivings of the moving wall17,18 the quantum-mechanical

version19–24 and the, so called, bouncer model,25 where a par-

ticle performs elastic26 or inelastic27–33 collisions with an

oscillating infinitely heavy platform under the influence of a

gravitational field. Recently, a hybrid version of the FUM and

the bouncer model has also been investigated.34,35

The equations defining the dynamics of the FUM are of

implicit form with respect to the collision time, which compli-

cates numerical simulations and hinders an analytical treat-

ment. A simplification5—known as the SWA (Refs. 17 and

36)—consists in treating the oscillating wall as immobile,

located at its equilibrium position, yet allowing the transfer of

momentum upon impact with a particle as if the wall were

harmonically oscillating. This simplification has become over

the time the standard approximation for studying the FUM.37

The SWA speeds-up the numerical simulations and facilitates

the analytical treatment of the problem, while it has been gen-

eralized to higher-dimensional billiards with time-dependent

boundaries, such as the time-dependent Lorentz Gas.6,17

Let us consider, without loss of generality, a FUM con-

sisting of a fixed wall on the right and a moving wall on the

left, oscillating with frequency x. If we further assume that

the positive direction of particle velocities is towards the

right, then the dynamics of the billiard within the framework

of the SWA is defined by the following set of dimensionless

difference equations:

tn ¼ tn�1 þ
2

vn�1

; (13a)

vn ¼ jvn�1 þ 2unj; (13b)

un ¼ � cosðtn þ gnÞ; (13c)

where un is the velocity of the “oscillating” wall, vn is the

algebraic value of the particle velocity immediately after the

nth collision with the “oscillating” wall measured in units of

xw (w denoting the spacing between the walls), tn the time

when the nth collision occurs measured in units of 1=x, gn a

random variable uniformly distributed in the interval ½0; 2pÞ
updated immediately after each collision between a particle

and the fixed wall and � the dimensionless ratio of the ampli-

tude of oscillation to the spacing between the “oscillating”

and the fixed wall. It is noted that in all numerical simula-

tions � was fixed at 1/10.

The absolute value in Eq. (13b) is introduced in order to

avoid the occurrence of positive particle velocities after a

collision with the “oscillating” wall, which would lead to the

escape of the particle from the area between the walls. It

should be stressed that such a collision, within the frame-

work of the exact model, corresponds to a particle experienc-

ing at least one second consecutive collision with the

“oscillating” wall. Therefore, if jVn�1j < 2junj and un � 0, in

order to prevent the particle from escaping the region

between the walls the velocity is reversed artificially. The

presence of the absolute value function in Eq. (13b), never-

theless, complicates the analytical treatment of the accelera-

tion problem. For this reason, it has become a standard
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practice in the treatment of the FUM to remove the absolute

value function, thereby neglecting the set of collision events

upon which the particle direction is not reversed after its

collision with the “oscillating” wall. However, this further

simplification gives rise to a fundamental inconsistency:

the ensemble mean of the absolute velocity obtained ana-

lytically does not change through collisions with the

“oscillating” wall, despite the well-established numerical

result that Fermi acceleration does take place in the phase-

randomized FUM.

A. The asymptotics of the PDF of particle velocities

1. Application of the central limit theorem

In this section, we will discuss the asymptotic behaviour

of the PDF of particle velocities in the SFUM. Evidently,

after n collisions, the velocity of a particle evolving in the

SFUM is the sum of the velocity jumps, it has experienced

up to this point, i.e., vn ¼
Pn

m¼1 Dvn þ v0. Furthermore, due

to Fermi-acceleration developing in the SFUM, after n� 1

collisions, the vast majority of the particles has acquired

velocities much greater than the maximum wall velocity,

irrespective of the initial distribution. Therefore, most of the

collisions, after a sufficiently large “time,” take place in the

high velocity regime. In this limit, the absolute value func-

tion can be neglected and we immediately obtain3,7 hDvi ¼ 0

and hðDvÞ2i ¼ 2�2. Therefore, the velocity jumps are com-

pletely uncorrelated, i.e., do not depend on the velocity of

the particle had at the previous step. Thus, for n� 1 and

v� �, the CLT dictates that the PDF of particle velocities

tends to a Gaussian distribution, with a mean value equal toPn
i¼1hDvii and variance r2 ¼

Pn
i¼1½hðDviÞ2i � hDvii2�.

Hence, the PDF of particle velocities for n� 1 is

qðv; nÞ ¼ 1

�
ffiffiffiffiffiffi
pn
p exp � v2

4�2n

� �
: (14)

In Fig. 1, Eq. (14) is plotted along with the histogram of par-

ticle velocities obtained from the simulation of 1:2� 106 tra-

jectories for n ¼ 105 collisions. The ensemble was initially

distributed according to the delta function dðv� �Þ. The ana-

lytical result obtained from the application of the CLT is in

perfect agreement with the numerically computed PDF.

2. FPE equation in the SFUM

As mentioned in Sec. III A 1, assuming that for n� 1,

the probability measure of the events occurring in the low-

velocity regime is negligible, B � hDvi ’ 0, D � hðDvÞ2i
’ 2�2. In this limit, Eq. (6) obtains the form of a standard

diffusion equation, which for a delta initial distribution of

velocities v¼ z together with reflecting conditions at v¼ 0

has as a solution the sum of two spreading Gaussians

qðv; njz; 0Þ¼ 1

2
ffiffiffiffiffiffiffiffiffi
pn�2
p

(
exp �ðv� zÞ2

4n�2

" #
þexp �ðvþ zÞ2

4n�2

" #)
;

(15)

which for n 	 z2=ð4�2 ln 2Þ transforms to Eq. (14).

3. Remarks

Although the solution derived by means of the FPE is in

agreement with the one obtained from the application of the

CLT, the methodology used for the derivation of Eq. (6)

stands on very shaky ground, since the termination of the se-

ries at the second term in Eq. (5) is completely arbitrary.9 In

general, a jump process can be approximated by a diffusion

process, on the condition that a scaling assumption for the

transition probability holds. Namely, in the limit of infinitely

small time intervals, the jumps should become smaller and

more frequent, such that the random process can be viewed

as a continuous one.38 An intuitive way to examine this is to

consider the average square of the jump size hðDvÞ2i a parti-

cle makes having a velocity v prior to the collision.

Given that the SWA treats the moving wall as fixed in

the configuration space, all phases upon collision are possible,

independently of the velocity v of particles before a collision.

As a result, the average jump size is not reduced as v! 0. In

contrast, within the exact model, as the velocity of the particle

prior to a collision decreases, it becomes increasingly proba-

ble to collide with the wall at the turning points, where its

velocity is close to zero. Moreover, if the velocity of the parti-

cle before a collision is small, then successive collisions are

likely to occur, the exact dynamics result to higher exit veloc-

ities. Consequently, successive collisions render small particle

velocities improbable, as opposed to the SFUM, where as

shown in Sec. I, v¼ 0 is the most probable velocity.

Summarizing, the application of the CLT for the deter-

mination of the long-time statistics is much more straight-

forward and renders the solution of a differential equation

redundant. More importantly, the assumption of continuity

of the stochastic process describing Fermi acceleration,

which is essential for the construction of an FPE, is not

required.

FIG. 1. Histogram—diagonal crosses—of particle velocities after n ¼ 105

collisions, obtained by the iteration of Eq. (13), on the basis of an ensemble

of 1:2� 106 particles initially distributed as qðv; 0Þ ¼ dðv� �Þ. The analyti-

cal result derived through the application of the CLT [Eq. (14)] is also plot-

ted—solid (red) line.
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B. Short-time statistics in the SFUM

From Eq. (13), the particle velocity after the nth colli-

sion given that it had velocity z is,

v ¼ �z� 2u� 2ðzþ 2uÞH ð2uþ zÞ; (16)

where HðxÞ is the Heaviside unit-step function.

According to Eq. (13b), the wall velocity un is deter-

mined by the phase nn � tn þ gn of oscillation at the instant

of the nth collision. Due to the fact that in the stochastic

SFUM, the phase is randomly shifted through the addition of

a random number gn—distributed uniformly in the interval

ð0; 2pÞ—after each collision, the oscillation phase nn is com-

pletely uncorrelated between collisions, following a uniform

distribution. Furthermore, given that in the context of the

SFUM the wall remains fixed in the configuration space, the

wall velocity upon collision does not depend on the velocity

of the particle, therefore, un and vn�1 are also uncorrelated.

From the fundamental transformation law of probabilities,

the PDF of the wall velocity upon collision is,

pðuÞ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � u2
p : (17)

For the single-step TPF W(v, z), we can write,

Wðv; zÞ ¼
ð�
��

pðuÞd½v� vðu; zÞ�du: (18)

Substituting Eqs. (16) and (17) into Eq. (18), we obtain after

integrating over u,

Wðv; zÞ¼ 1

p

"
Hð2��v�z;2��zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�2�ðvþzÞ2
q þHð2��vþz; 2�þv�zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�2�ðv�zÞ2
q

#
:

(19)

In Fig. 2, the analytical result of Eq. (19) is compared with

the histogram of particle velocities after a single collision,

obtained numerically using Eq. (13) and an ensemble of

1:2� 106 particles, with initial velocity z¼ 0.1. Clearly, the

numerical and analytical results are in agreement.

The analytical result of Eq. (19) reveals that the TPF

depends only on the most immediate history of a particle,

which is on the velocity it had at the previous step. Conse-

quently, the stochastic process is indeed Markovian. Even

more, if the particle before a collision has velocity z > 2�,
then the velocity jump Dv ¼ v� z it undergoes is

completely independent on its history. Therefore, changes

in velocity in the high-velocity regime are completely

uncorrelated.

In more detail, Eq. (19) consists of two parts, one of

which does indeed depend only on the jump size. However,

the other branch of the TPF, taking effect for v < 2�—relat-

ing to the set of rare events7—depends also on the velocity

at the last step. Nevertheless, the action of both branches of

W allows of a simple geometrical interpretation: At each

step, the second branch of the TPF stretches the PDF

qðv; njz; 0Þ, resulting to a probability flux towards negative

values of velocity. This unphysical result caused by the

stretching is negated by the first branch, which folds the

part of the q density over the vertical line at v¼ 0. There-

fore, the solution of Eq. (8) can be obtained by extending

the domain of qðv; njz; 0Þ to the whole real line and applying

the method of images. Thus, for any number of collisions,

we have

qðv; njz; 0Þ ¼ ~qðv; njz; 0Þ þ ~qðv; nj � z; 0Þ; (20)

where ~q is the solution of the unrestricted problem. Substi-

tuting Eq. (19) into Eq. (10) we obtain,

~qðk; njz; 0Þ ¼ 1ffiffiffiffiffiffi
2p
p expð�ikzÞ J0 ð2�jkjÞn: (21)

Equation (21) cannot be inverted analytically. To obtain an

analytical result into the velocity space, we use the saddle-

point approximation [Eq. (12)]. The moment generating

function of qðv; njz; 0Þ is,

/ðt; nÞ ¼ ðI0ð2t�ÞÞnetz; (22)

where I0 is the modified Bessel function of the first kind.

Consequently, the characteristic function is jðt; nÞ
¼ log /ðt; nÞ ¼ n logðI0ð2t�ÞÞ þ tz. The saddlepoint is the

point t̂ðv; nÞ that satisfies

FIG. 2. Histogram—diagonal crosses—of particle velocities after a single

collision with the “moving” wall, obtained using Eq. (13) and an ensemble

of 1:2� 106 particles with initial velocity z¼ 0.1. The analytical result [Eq.

(19)] for the one-step transition probability is also plotted for the sake of

comparison—solid line
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j0ðt; nÞ ¼ v) 2n�I1ð2t�Þ
I0ð2t�Þ þ z ¼ v: (23)

Equation (23) is implicit and cannot be solved analytically.

To derive an explicit equation, we expand j0ðt; nÞ in powers

of � to second order. Doing so we get,

t̂ðv; nÞ ¼ v� z

2n�2
: (24)

Substituting Eq. (24) into Eq. (12) we have,

qðv;njz;0Þ� 1

2�
e�
ðv�zÞ2

2n�2 I0

v�z

n�

� �n

�
I0

v�z
n�

	 
2

pnI0
v�z
n�

	 
2þpnI2
v�z
n�

	 

I0

v�z
n�

	 

�2pnI1

v�z
n�

	 
2

" #1=2

:

(25)

To improve the accuracy of the approximation, we renormal-

ize Eq. (25) by integrating numerically over v for a given n.

In Fig. 3, we present the exact numerical solution of

Eq. (8) [red solid line] as well as the approximate one given

by Eq. (25) [blue solid line] for n¼ {3, 5, 10, 31}, using only

the second branch of the one-step TPF [Eq. (19)], followed

by the application of the method of images [Eq. (20)]. The

numerical solution is in total agreement with the histogram

of particle velocities obtained by the iteration of the dynami-

cal equations (13a)–(13c) [upright crosses], for all times.

Even more, we see that the saddlepoint approximative

solution describes very accurately the evolution of the

PDF for n 	 5. As can be observed, the PDF of particle

velocities quickly approaches to a Gaussian distribution, in

accordance with the prediction of the CLT. This is attributed

to the fact that the TPF can be reduced to a difference kernel.

Consequently, the additional assumption we made for the

application of the CLT in Sec. I, namely, that the statistical

weight of the rare events7 is negligible, is redundant. This

can be circumvented, as aforementioned, by extending the

domain of particle velocities. Thus, if one applies the CLT

on the whole real line, then all the conditions for its applica-

tions are met exactly. As a final remark, we would like to

stress that the success of the Fokker-Planck type of equation

reported in the literature for even short times is attributed to

the validity of the CLT, guaranteeing that the PDF will con-

verge to a normal distribution, allowing for the use of a

diffusion equation. If, however, the reduction of the TPF to a

difference kernel is not feasible, then the transient can be

arbitrarily long, a point demonstrated via an example in

Sec. III C.

C. Long transients

In the last section, we showed that the specific choice

made for treating negative velocities after a collision, i.e.,

reflection with respect to the v¼ 0, reduces the TPF to an

even function of the jump size. As a consequence, the PDF

of particle velocities approaches rapidly to a sum of two

spreading Gaussians. Clearly, after a number of collisions,

the system will “forget” its initial distribution, and the sum

will converge to a single half-Gaussian centered at v ¼ 0þ.

Therefore, the most probable velocity for a particle evolving

in the phase-randomized SFUM will eventually be vp ¼ 0þ,

in clear contrast with the results given by the numerical sim-

ulation and analytical results derived using the exact dynami-

cal mapping,17,36 according to which as v! 0; qðv; nÞ ! 0.

From a physical point of view, this happens because if the

motion of the wall in the configuration space is taken into

account, as v! 0 collisions resulting in an energy loss can

occur only in a small neighborhood around the wall’s

extreme positions, where its velocity is zero, resulting to a

minimal energy loss. Furthermore, if the particle velocity is

comparable with the wall velocity, consecutive collisions

can take place, resulting in a higher exit velocity from the

interaction region within the exact model.

On account of these properties of the collision process

in the exact model, the reflection of negative velocities is not

realistic. To gap the difference between the results of the

simplified and the exact FUM, we propose instead of

the inversion of negative particle velocities, the inversion of

the direction of the wall’s velocity, if the collision would

lead to a negative particle velocity. This would lead in a

greater energy gain in comparison with the reflection, as

jvþ uj � jvj þ juj. Therefore, Eq. (13) change to,

tn ¼ tn�1 þ
2

Vn�1

; (26a)

FIG. 3. Histogram—upright crosses— of particle velocities after n¼ {3, 5,

10, 31} collisions, obtained by the iteration of Eq. (13), on the basis of an

ensemble of 1:2� 106 particles initially distributed as qðv; 0Þ ¼ dðv� �Þ.
The exact numerical solution of Eq. (8) [red solid line] as well as the approx-

imate one given by Eq. (25) [blue solid line] for n¼ {3, 5, 10, 31}, using

only the second branch of the one-step TPF [Eq. (19)], followed by the

application of the method of images [Eq. (20)] are also plotted for the sake

of comparison line.
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Vn ¼ Vn�1 þ 2junj; (26b)

un ¼ � cosðtn þ gnÞ: (26c)

Let us now derive the TPF. From Eqs. (17), (18), and (26b)

we obtain,

Wðv; zÞ ¼ Hð2�þ z� vÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � ðv� zÞ2

q fHð2�þ z� vÞ

þHð�� z=2Þ½Hðz� v� 2�Þ þHðv� 2zÞ�g:
(27)

A comparison of the analytical result given by Eq. (27)

and the histogram of velocities obtained on the basis of

an ensemble of 1:2� 106 particles after 1 iteration of

Eq. (26) is presented in Fig. 4, proving the validity of the

derived result.

As expected, the TPF has two branches, one taking

effect only in the low velocity regime, i.e., z < 2� and

another which is nonzero for any velocity z prior to a colli-

sion. As was also the case in the SFUM with reflection of

negative velocities, the part of the TPF that is relevant to

the low-velocity regime depends on the jump size as well

as on the velocity of a particle prior to a collision. However,

due to the fact that this branch of W does not have a simple

geometrical interpretation, the single-step transition func-

tion cannot be reduced to a difference propagator by an

extension of the domain of W to the whole real line. Thus,

the conditions for the application of the CLT are not met

exactly. However, due to the acceleration of the particles,

as n!1, the probability measure of particles having

velocity z < 2� becomes negligible. Therefore, for n� 1

and v� �, the PDF of particle velocities tends to a Gaus-

sian distribution [Eq. (14)].

The study of the transient behaviour of the PDF requires

the solution of the CKE [Eq. (8)]. The numerical solution of

Eq. (8) at times n¼ {3, 5, 17, 316} is presented in Fig. 5.

The histograms of particle velocities for the same times, cal-

culated by iterating an ensemble of 1:2� 106 particles for up

to n ¼ 105 collisions, are also plotted for the sake of compar-

ison. It can be seen that the solution of the CKE is in agree-

ment with the results of the simulation for all times

presented. In Fig. 6, the histogram of velocities for n ¼ 105

collisions is plotted. The solution obtained from the applica-

tion of the CLT—on the assumption that the statistical

weight of collisions happening in the region v < 2� is negli-

gible, is also plotted, and is full agreement with the PDF in

this velocity region. However, a blow-up of the low-velocity

region shows that even after 105 collisions, the PDF diverges

from the Gaussian profile. This is clear evidence that even

after a very large number of collisions, the PDF in the whole

velocity domain cannot be described by an FPE, in contrast

to the standard version of the SFUM [Eq. (13)] even though

the argumentation used in both cases was the same, i.e., the

particles are accelerated. This exemplifies the potential pit-

falls of a diffusion approximation of Fermi-acceleration in

time-dependent billiards.

FIG. 4. Histogram—diagonal crosses—of particle velocities after a single

collision with the “moving” wall, obtained using Eq. (26) and an ensemble

of 1:2� 106 particles with initial velocity z¼ 0.1. The analytical result [Eq.

(27)] for the one-step transition probability is also plotted for the sake of

comparison—solid line

FIG. 5. Histogram—upright crosses—of particle velocities after n¼ {3, 5,

17, 316} collisions, obtained by the iteration of Eq. (26), on the basis of an

ensemble of 1:2� 106 particles initially distributed as qðv; 0Þ ¼ dðv� �Þ.
The solution obtained by numerically solving the forward CKE [Eq. (8)]

using as the TPF of the modified version of the SFUM [Eq. (27)] is also plot-

ted—solid (red) line.
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D. Fermi acceleration in the exact FUM

The simplification employed to the treatment of Fermi

acceleration in the FUM—treating the wall as fixed in real

space—however, widespread and thoroughly studied,

prohibits the study of the details of Fermi acceleration. In

Refs. 7, 17 and 36, it was proved that small additional fluctu-

ations of the time of collision due to dynamical correlations

induced by the displacement of the scatterer upon impact,

quantitatively as well as qualitatively change the evolution

of the PDF of velocities, increasing the efficiency of Fermi

acceleration. Moreover, the development of correlations

causes the CLT to break down and the asymptotic PDF

ceases to be a normal distribution.

In Ref. 36 utilizing a novel simplification, the so-called

hopping approximation, which succeeds into retaining all the

essentials of the exact dynamics, an analytical solution for

the asymptotic behaviour of the PDF of particle velocities in

the exact FUM, which was in excellent agreement with the

numerical simulation of the exact FUM. Specifically, it was

shown by means of a Fokker-Planck type of equation that, in

contrast with the SFUM, the attractor of the PDF of velocities

in the function space is a Maxwell-Boltzman like distribution,

i.e., independently of the initial distribution of velocities, the

PDF converges to a Maxwell-Boltzman like distribution.

Therefore, in the case of the exact FUM for v! 0þ,

qðv; njz; 0Þ ! 0, in contrast to the SFUM where qðv; njz; 0Þ
attains its maximum value for v! 0þ. This difference

between the simplified and the exact FUM can be understood

as follows: If the velocity of a particle after a collision with

the moving wall is small, then multiple successive collisions

are likely to occur within the exact FUM, resulting into higher

exit velocities, as opposed to the simplified model, within

which successive collisions cannot be realized.

Another subtle difference between the simplified and the

exact FUM [see Sec. III] is that within the exact FUM par-

ticles with low velocity are more likely to collide with the

oscillating wall near its turning points, where the wall veloc-

ity is close to 0. Hence, the velocity jump performed by a

particle due to a collision with the wall Dv! 0 as v! 0. As

a result, Fermi acceleration when using the exact dynamics

can be better approximated by a continuous stochastic pro-

cess, or equivalently, by the FPE. Still, the transient statistics

in the system can only be studied by means of the CKE.

As aforementioned, the movement of the wall in the

configuration space described by the exact dynamics results

into a more efficient energy transfer from the moving wall to

the particles upon collision, when compared to the SFUM. In

mathematical terms, this causes the PDF of the oscillation

phase on collisions to deviate from the uniform distribution,

reflecting the fact that head-on collisions are more preferable

than head-tail collisions. However, the phase of oscillation

of the moving wall when a particles collides with the fixed

wall—or when it passes through any fixed point within the

area between the two walls comprising the FUM—is uni-

formly distributed. The map describing the exact dynamics is,

dn; ¼ � sinðdtn þ tn�1 þ gnÞ; (28a)

un ¼ � cosðdtn þ tn�1 þ gnÞ; (28b)

vn ¼ vn�1 þ 2un; (28c)

where dn; stands for the position of the moving wall in the

instant of the nth collision, un for the wall velocity, gn for the

random phase component, and vn for the particle velocity af-

ter the nth collision. The time of free flight dtn is obtained by

solving the implicit equation

xn�1 þ vn�1dtn ¼ dn; (29)

where xn stands for the position of the particle in the instant

of the nth collision.

If we denote the phase of oscillation of the moving wall

when a particle collides with the fixed wall with w, then

wn ¼ cos�1 un

�

� �
þ 1

z
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � u2

n

q� �
: (30)

For Eq. (30), we obtain for the distribution of the wall veloc-

ity upon collision,

peðuÞ ¼
uþ z

pz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � u2
p : (31)

Installing Eq. (31) into Eq. (18), we obtain the one-step TPF

for the exact model

Weðv; zÞ ¼
Hð2�� jv� zjÞðvþ zÞ

2pz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � ðv� zÞ2

q : (32)

FIG. 6. Histogram—upright crosses—of particle velocities after n ¼ 105

collisions, obtained by the iteration of Eq. (26), on the basis of an ensemble

of 1:2� 106 particles initially distributed as qðv; 0Þ ¼ dðv� �Þ. The asymp-

totic Gaussian distribution [Eq. (14)] predicted by the CLT is also plotted–-

solid (red) line. A blow-up of the numerically obtained histogram at the low-

velocity region is illustrated in the inset.
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Inserting Eq. (32) into the CKE we can numerically compute

the evolution of the PDF of particle velocities. In Fig. 7, the

numerical solution of the CKE is compared with the histo-

gram of particle velocities, obtained by simulating 1:2� 106

trajectories using Eq. (28). The particles were initially dis-

tributed according to qðv; 0Þ ¼ dðv� 10Þ. Once more, the

solution of the CKE is in complete agreement with the

results of the simulation, proving that the method can also be

successfully employed when the exact dynamics are taken

into account.

IV. SUMMARY AND CONCLUSIONS

Fermi acceleration is one of the most interesting aspects

of time-dependent billiards, as it has been understood over

the years, that it is a fundamental acceleration mechanism,

playing a key role in a variety of phenomena, far beyond its

original scope, i.e., cosmic-ray particle acceleration.

Until now, the investigation of Fermi acceleration—in

the class of time-dependent billiards in which it develops—

has been carried out via its approximation with a diffusion

process. Within this framework, the evolution of the den-

sity of particle velocities was determined by a Fokker-

Planck equation. However, its derivation is always based

on assumptions and approximations that rarely can be justi-

fied. Moreover, its prediction power is limited in the long-

term statistics of the system and no information is given

for the transient behaviour. Even more, its use in the

SFUM, which is the first system that was successfully

investigated with the use of the FPE, is completely redun-

dant, as the CLT yields the same results in a far more

straightforward manner.

Herein, we proposed a consistent methodology, which

obviates unclear assumptions and even more, can give an

accurate description of the transient evolution of particle

velocities. The cornerstone of this methodology is the use of

the Chapman-Kolmogorov equation. The fundamental differ-

ence in comparison with the traditional approach using the

FPE, is that no assumption for the continuity of the stochas-

tic process describing Fermi acceleration needs not to be

made. Another advantage of the proposed approach is that

all collision events can be taken into account, which cannot

be done in the construction of the FPE, and even when possi-

ble, it can lead to less accurate results.

The method was successfully applied to the FUM, which

is the prototype of time-dependent billiards exhibiting Fermi

acceleration. In specific, we studied the standard SFUM,

within which collisions leading to a potential escape from

the system are handled by artificially inverting the particle

exit velocity, as well as a variant of the SFUM, where if a

collision would lead to a particle still moving towards the

wall, the velocity of the wall is inverted before the collision

takes place. Finally, we showed how this method can be

applied to the exact model, showing how the effect of the

motion of the wall in the configuration space can be included

in the description of Fermi acceleration through the CKE. In

all three cases, the CKE yielded accurate results for all times.

As a final remark, we would like to stress that this methodol-

ogy can be applied to higher-dimensional billiards39 and

therefore is generic.
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