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Video-Based Convolutional Neural Networks
Forecasting for Rainfall Forecasting

Andrew P. Barnes , Thomas R. Kjeldsen, and Nick McCullen

Abstract— This study presents a new methodology for
improving forecasts of current monthly, regional precipitation
using video-based convolutional neural networks (CNNs). Using
13 administrative regions of Great Britain as a case study,
three CNN architectures are trained for each region to forecast
monthly rainfall totals given forecast mean sea-level pressure
and 2-m air temperature videos from the MetOffice GloSEA5
model and a benchmark rainfall data. The forecasts generated
by the CNN and the GloSEA5 precipitation forecasts are both
compared directly against a benchmark rainfall dataset for each
of the regions. Following this, the CNN models are combined
with the GloSEA5 forecasts to generate a new ensemble for each
region which is then compared with the benchmark rainfall.
The results show that the trained CNNs produce errors similar
to the GloSEA5 model with RMSEs of 63 mm (single frame),
44 mm (slow fusion), and 37 mm (early fusion) compared with
the GloSEA5 error of 33 mm. Regional variability remained
consistent throughout the compared models. However, the CNN
models all outperform GloSEA5 in the prediction of extreme
events. Furthermore, treating the forecasts as an ensemble results
in errors of 32 mm (CNN ensemble) and 31 mm (post-processing
ensemble), both of which improve on the independent GloSEA5
forecasts.

Index Terms— Forecasting, meteorology, neural networks,
rainfall.

I. INTRODUCTION

MODERN datasets allow efficient interpretation of large-
scale (synoptic) conditions and their relevance to the

description and prediction of local rainfall; for example,
Richardson et al. [11] used a set of 30 weather patterns to
explain regional rainfall variation in the U.K. based on the
mean sea-level pressure (MSLP) patterns across the North
Atlantic. The weather patterns used by Richardson et al. [11]
were originally defined by Neal et al. [12] using MSLP data
covering the North Atlantic to evaluate the performance of
forecast models under different weather conditions. Despite
the regional variation between MSLP patterns observed in the
North Atlantic and the resulting impact on observed rainfall
patterns across the U.K. shown by Richardson et al. [11],
these approaches fail to consider temperature as a key variable.
The relationship between temperature and rainfall is captured
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by the thermodynamic Clausius–Clapyeron relationship which
can vary across a spatial domain as small as the U.K. [8]. Fur-
ther studies also show a stark contrast in synoptic temperature
conditions related to heavy or intense rainfall events [13], [22].

Weather patterns and synoptic conditions have also been
used to directly predict future climatological variables. In a
review by Pham et al. [19], neural networks were shown
to be capable at predicting both daily and sub-daily rainfall
values to within 10 mm across spatial domains varying from
local station scales to state scales such as Florida. More
advanced neural network structures have also been adopted
to forecast rainfall. For example, Haidar and Verma [15]
used a range of climatic indices such as minimum and
maximum temperature, the Southern oscillation (SO) index,
the North Atlantic oscillation (NAO) index, and many others
with a convolutional neural network (CNN) architecture to
predict rainfall in a specific Australian suburb (Innisfail).
Haidar and Verma [15] were able to achieve lower root mean
squared errors (RMSEs) than both the ACCESS-S1 hindcasts
and a standard neural network architecture. More recently,
approaches have used CNNs to interpret synoptic scale images
comprising multiple meteorological variables. For example,
Rasp and Thuerey [17] used geopotential height, temperature,
wind speeds, and specific humidity among others at multiple
preceding time steps to predict precipitation at lead times of
6 h and 1, 3, and 5 days within 2–3 mm on a 5.625◦ spatial
resolution grid. Despite this, they highlight the importance of
higher resolution models and conclude that larger networks
generally offered higher accuracy scores. However, they used
a single-architecture neural network [18].

Karpathy et al. [16] presented four options for including a
time dimension in the structure of a CNN for classification
of videos. The first method takes a single frame (SF) repre-
sentation of the video (SF), and the second takes two images
at either end of the video, passing them through the network
individually before combining them at the end (late fusion).
The third approach passes the entire video through the network
from start to finish [early fusion (EF)], and finally, the fourth
approach passes time-defined subsets of the video through the
network separately, slowly merging them through the network
until they are eventually recombined at the end [slow fusion
(SlowF)]. Their results highlight advantages of the different
architectures; however, an ensemble approach combining all
the architectures is found to be best in this domain.

This letter takes a different approach to current literature,
rather than analyzing static images of the preceding conditions
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(e.g., [12]), these conditions are characterized by a sequence of
images (i.e., “a video”) representing the temporal evolution of
the synoptic conditions. The meteorological videos are then
interpreted by the video-based CNN variants proposed by
Karpathy et al. [16]. A case study using the regional, monthly
rainfall of the 13 regions of Great Britain are used in this
study. Regional forecasting models are generated using each
of the variants and are then combined into two ensembles,
the first is a combination of the CNN variants as shown by
Karpathy et al. [16] and the second includes forecasts from the
MetOffice’s GloSea5 model [20]. These approaches are then
compared and contrasted both against each other and against
a benchmark rainfall dataset.

II. DATA

Two data sources are used to train and evaluate the CNN
models. First, the Centre for Ecology and Hydrology Gridded
Estimate of Areal Rainfall (CEH-GEAR) [21] is used to
represent the benchmark rainfall totals, providing gridded
monthly rainfall across Great Britain between 1890 and 2017.
Next, from the MetOffice GloSea5 (MOS5) hindcasts [20],
daily forecast MSLP and 2AT patterns are used to train the
CNNs to predict the benchmark rainfall data from CEH-GEAR
using a 1-mo lead time. Also, from the MOS5 dataset monthly
rainfall totals are extracted for each region. However, due
to the temporal limits of the MOS5 data (1994–2020) and
the CEH-GEAR data (1890–2017), the temporal range of this
study is limited within 1994–2017.

A. Rainfall

Great Britain has been split into 13 administrative regions
as indicated by Fig. 1, and each of these regions is then
further split into a set of points spaced equally at 30 km ×
30 km. The monthly rainfall total (millimeter) for a given
region is calculated by averaging the total monthly rainfall
from each point within the region. Both the CEH-GEAR and
MOS5 datasets are provided in a gridded format, and as such
each point assumes the value of the grid cell which contains
the point. Following this, each region’s rainfall dataset is
standardized as follows:

p̂i,t = pi,t − p̄i

std(pi)
(1)

where pi, j is a regional series of monthly rainfall totals (mm)
where i = {0, 1, . . . , 12} indicates the region being standard-
ized and t = {1, . . . , 275} indicates which time step (month
in the series) is currently being calculated. Standardizing the
regional rainfall in this way removes biases of regions with
particularly high rainfall, for example, the North West of
England compared with regions of low rainfall such as the
South East of England. The result of this extraction and
standardization are two matrices of rainfall events of size
[275, 13] where 275 is the number of months available to
forecast (275 instead of 276 because a 1-mo lead time is
required which removes January 1994, as available data) and
13 is the number of regions.

Fig. 1. 13 administrative regions of Great Britain.

B. Meteorological Data

Synoptic patterns of MSLP and 2AT were extracted from
the MOS5 hindcasts [20], and these patterns were extracted
for the middle 28 days of every month used in the study
(February 1994 to December 2017) and covered a synoptic
extent between [100 ◦W, 10 ◦N] and [20 ◦E, 70 ◦N]. The
middle 28 days was chosen to represent most of the month
while ensuring all months had the same amount of data
available. The MOS5 data were available on a 2.5◦ × 2.5◦
grid format, meaning each pattern is represented by a matrix
[121, 61] in size. Each pattern was extracted from the final day
of the preceding month; for example, patterns for days 1 Feb-
ruary 1995 up to and including 28 February 1995 were
extracted using forecasts ran on 31 January 1995.

Next, the resulting sets of MSLP and 2AT patterns were
standardized separately as follows:

zvar
x,y = zvar

x,y − zvar
x,y

std
(
zvar

x,y

) (2)

where zvar
x,y represents the set cells at a given position where

x = {1, . . . , 121} and y = {1, . . . , 61} for the variable given
by var = {MSLP, 2AT}. The resulting two sets of matrices
are of size [276, 121, 61, 28] ([number of months, longitude
cells, latitude cells, number of days]) and are finally combined
to give a single matrix of size [276, 121, 61, 28, 2] such that
each dimension represents [number of months, longitude cells,
latitude cells, number of days, variables].

C. Training, Testing, and Validation

To reduce overfitting and provide a fair comparison between
the developed CNN models and MOS5 predictions, the dataset
was split into training, testing, and validation. The training data
were used to optimize the CNN, the testing data were used
to ensure overfitting does not occur, and finally the validation
dataset was be used to compare the resulting CNN models with
MOS5 predictions. To ensure seasonal consistency between
both the training and validation datasets the validation dataset
consisted of all data for years taken at a four-year interval
(1997, 2001, 2005, 2009, 2013, and 2017) which equates to
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Fig. 2. Three CNN architectures for including a temporal dimension, adapted
from Karpathy et al. [20] (2014). Blue boxes indicate convolutional layers, red
boxes indicate max-pooling layers, and yellow boxes indicate fully connected
linear layers.

26% of the total data, and the remaining years are allocated
to training (74% of total data). During the training process,
the training dataset was further split into training (70%) and
testing (30%).

III. FORECASTING METHOD

In this section, the CNN variants used are followed by a
description of the two ensemble approaches which are used
for evaluation.

A. CNN Variants

To forecast regional monthly rainfall totals using the videos
representing the forecast meteorological images, as described
in Section II-B, three CNN architecture variants are trained for
each region resulting in a total of 39 CNN models. Each of
the three models will incorporate the time dimension (number
of days) into the CNN differently and are based on the
architectures proposed by Karpathy et al. [16] (2014).

First, an SF approach is adopted which takes a mean across
the time dimension, creating a new matrix containing the aver-
age MSLP and 2AT patterns across the 28 days. This, in turn,
reduces the number of dimensions from 4 ([longitude cells,
latitude cells, number of days, variables]) to 3 ([longitude cells,
latitude cells, variables]). This 3-D matrix is then interpreted
as a static image and used to train the CNN. Next, an EF
approach processes the entire 4-D matrix at once without
any preprocessing. This involves the convolutional and max-
pooling layers having 3-D filters with kernels covering latitude,
longitude, and temporal dimensions. Finally, a SlowFapproach
splits the initial 4-D matrix along the temporal dimension into
four equally sized (weekly) matrices of [longitude, latitude,
(28/4 = 7) 7, variables]. Each of these weekly matrices is
then passed through the first level of the network individ-
ually before being recombined into two bi-weekly matrices
by concatenating the results of the first across the temporal
dimension. The “bi-weekly” matrices are then passed through
a second level of the network, concatenated into a single
matrix and then passed through a final third level of the
network. A summary diagram of the architectures is shown
in Fig. 2.

At each layer, kernels of size 2 were used such that the SF
model uses kernels of size [2, 2] and the EF/SlowF models use
kernels of size [2, 2, 2] to incorporate the temporal dimension
convolutions. Both the SF and EF models were generated

Fig. 3. Two ensemble approaches are presented. First, CNNE is calculated
by taking the mean of all three CNN results for a given month. Then, the
mean of CNNE and MOS5 prediction is taken as PPE.

using 128 filters in each layer, whereas the SlowF model uses
32, 64, and 128 filters in each respective layer. These sizes
were chosen following several trials which varied the number
of filters in each architecture.

Each of the CNN models was trained using a learning
rate of 0.0001 and the Adam optimization method [22].
As mentioned in Section II-C, the training data are split into
training and testing data with a split of 70% training to 30%
testing. For each region and architecture variant combination,
three training cycles were completed and the model with the
lowest final test error was selected to represent the region and
architecture combination, and this is to provide an accurate
representation of the architecture/region selection which is not
influenced by a poor training cycle.

B. Ensemble Forecasting

Regional forecasts of rainfall across the 13 regions were
also made by combining the outputs from the CNN and MOS5
into two ensemble means First, the CNN ensemble (CNNE) is
defined as the mean of the predictions made by all three CNN
architecture variants (SF, SlowF, and EF). Karpathy et al. [20]
found that an average of the outputs improved accuracy
compared with the individual CNN architectures alone; thus,
this ensemble approach was adopted in this study. The second
approach is a Post-processing ensemble (PPE) which is defined
as the mean of the CNNE and MOS5 prediction. An overview
of these ensembles for a given month is given in Fig. 3.

IV. RESULTS

This section first provides a comparison of the developed
CNN models for each region against MOS5 predictions,
followed by a discussion of the combined CNNE and PPE
ensemble predictions. All results presented in this section
refer to a comparison of the output from the models using a
validation dataset as described in Section II-C; these data were
kept separate from training and testing to ensure the networks
had not been exposed to the validation data.

The average validation RMSEs for the CNN variants and
MOS5 predictions across all regions are as follows: 63 mm
(SF), 44 mm (SlowF), 37 mm (EF), and 33 mm (MOS5). The
MOS5 outperforms all three CNN variants on the validation
dataset across all regions. Despite this, the prediction patterns
highlighted in Fig. 4 show that MOS5 predictions never
exceeded 200 mm of rainfall, whereas all three CNN variants



1504605 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

Fig. 4. Predicted rainfall against the benchmark rainfall value for all months
in the validation dataset.

Fig. 5. Regional RMSEs for each model for the validation dataset; a 95%
confidence interval of the errors is also presented in the error bars.

appear capable of doing so. This is especially true regarding
the EF and SlowF variants which show strong positive correla-
tions between predicted and benchmark rainfall, even though
this comes with an increase in variance.

Fig. 5 shows the contribution to the RMSE values from
across the regions. The results show that the regional bias of
the models remains consistent with each model presenting a
graph with broadly similar shapes with higher RMSE errors
produced for regions known for higher levels of rainfall such
as the three Scottish regions, Wales, and North East England.
Notably, the SF variant producing a larger error for Yorkshire
and Humber which relates to a subset of predictions of 1 mm
in (Fig. 4 SF) indicates a lack of convergence of the CNN.

Next, the ensemble means are generated as described
in Section III-B. Fig. 6 shows the validation dataset

Fig. 6. Ensemble predictions for the validation dataset compared with the
benchmark monthly rainfall totals (mm). (Left) CNNE and (Right) PPE.

Fig. 7. Cumulative residual for all forecasting methods including the
MetOffice’s GloSea5 model.

predictions for CNNE (left) and PPE (right); the variation
in both the plots highlight the similarity between the two
prediction models. The RMSEs for CNNE and PPE are 32 and
31 mm, respectively, across all regions; comparing this with
the 33-mm RMSE found for MOS5, these results indicate
that an ensemble approach with the CNN variants has the
potential to provide more accurate rainfall forecasts. These
results also further confirm those of Karpathy et al. [20]
who also concluded that an ensemble approach improved their
results.

Finally, Fig. 7. shows the cumulative residual of each
CNN and ensemble variant alongside GloSea5 for rainfall
values increasing from 0 to 350 mm. The cumulative residual
is calculated by aggregating the residuals of all predictions
through the benchmark rainfall domain in intervals of 5 mm.
This figure illustrates that although the individual models
appear less accurate at a high level, they do make significant
improvement in the under-prediction of heavy rainfall events
shown by the GloSea5 model. This is an important result as
periods of high rainfall are often responsible for flooding.

V. CONCLUSION

This letter introduces a new technique for sub-seasonal
rainfall forecasting using video-based CNNs. Regional CNNs
were constructed using three different architecture variants and
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trained using forecast daily MSLP and 2-m air temperature
patterns with a lead time of one month. The forecast images
occur throughout a given month and are used to predict the
regional rainfall. Following this, two ensemble models were
produced, one of which was used took the mean of the CNN
variants and the second took the mean of the CNN variants
and the MOS5 model. All models were then compared with
MOS5 predictions with the following findings.

1) Individually, the CNN variants were able to provide
regional rainfall predictions based on forecast MSLP and
2AT patterns.

2) No regional bias was found between CNN variants.
Higher errors were found in regions with higher levels
of rainfall; however, this was to be expected due to the
magnitude of the events.

3) The ensemble models both produced RMSEs lower than
MOS5 predictions.

4) All CNN and ensemble approaches showed increased
accuracy for heavy rainfall events in comparison to the
MOS5 model.

These findings highlight the applicability of video-based
CNNs to rainfall forecasting. This study was limited by the
quantity of data used; however, the results show the use of
an ensemble of different CNN architectures could provide
invaluable post-processing to traditional numerical weather
prediction models, especially focusing on improving the pre-
diction of the most extreme events. To improve the models
further, a cross-validation approach could be taken to increase
the amount of data used during training, and to further increase
the amount of data available data augmentation techniques
could be applied to create a synthetic dataset, providing more
training examples.
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